

ELECTRONIC CIRCUITS

FUNDAMENTALS AND APPLICATIONS

MIKE TOOLEY

Electronic Circuits

Electronics explained in one volume, using both theoretical and practical applications.

Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The 5th edition includes an additional chapter showing how a wide range of useful electronic applications can be developed in conjunction with the increasingly popular Arduino microcontroller, as well as a new section on batteries for use in electronic equipment and some additional/updated student assignments.

The book's content is matched to the latest pre-degree level courses (from Level 2 up to, and including, Foundation Degree and HND), making this an invaluable reference text for all study levels, and its broad coverage is combined with practical case studies based in real-world engineering contexts. In addition, each chapter includes a practical investigation designed to reinforce learning and provide a basis for further practical work.

A **companion website** at http://www.key2electronics.com offers the reader a set of spreadsheet design tools that can be used to simplify circuit calculations, as well as circuit models and templates that will enable virtual simulation of circuits in the book. These are accompanied by online self-test multiple choice questions for each chapter with automatic marking, to enable students to continually monitor their own progress and understanding. A bank of online questions for lecturers to set as assignments is also available.

Mike Tooley has over 30 years' experience of teaching electrical principles, electronics and avionics to engineers and technicians, previously as Head of Department of Engineering and Vice Principal at Brooklands College in Surrey, UK, and currently works as a consultant and freelance technical author.

Electronic Circuits

Fundamentals and applications

Fifth edition

Mike Tooley

Fifth edition published 2020 by Routledge 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

and by Routledge 52 Vanderbilt Avenue, New York, NY 10017

Routledge is an imprint of the Taylor & Francis Group, an informa business

© 2020 Mike Tooley

The right of Mike Tooley to be identified as author of this work has been asserted by him in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.

Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

First edition published by Elsevier 1995 as *Electronic Circuits Student Handbook* Fourth edition published by Routledge 2015

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data A catalog record has been requested for this book

ISBN: 978-0-367-42199-1 (hbk) ISBN: 978-0-367-42198-4 (pbk) ISBN: 978-0-367-82265-1 (ebk)

Typeset in Univers by Servis Filmsetting Ltd, Stockport, Cheshire

Contents

Preface		vii 14 Fault finding		275
	ote for teachers and lecturers vord about safety	ix xi	15 Sensors and interfacing	290
1	Electrical fundamentals	1	16 Circuit simulation	306
2	Passive components	22	17 The PIC microcontroller	327
3	D.C. circuits	51	18 Electronic applications and the Raspberry Pi	342
4	Alternating voltage and		the haspiserry in	U-12
	current	71	19 Electronic applications and the Arduino	371
5	Semiconductors	89		
			20 Circuit construction	400
6	Power supplies	117		
_			1-1	434
7	Amplifiers	139	, ,	438
•	On anotice all amoutifiers	465	Appendix 3 Answers to problems with	4.40
8	Operational amplifiers	165		449453
۵	Oscillators	179	, ,	456
9	Oscillators	173	1-1-	460
10	Logic circuits	192	• •	467
	 9.0 0.1 0 . 1.10		• •	470
11	Microprocessers	208	• •	494
	•		• •	497
12	The 555 timer	227		
			Index	500
13	Test equipment and			
	measurements	238	Note that there is an additional chapter and extra	
			resources on the companion website for this title.	
			Visit www.key2electronics.com for more informatio	n.

Preface

This is the book that I wish I had when I first started exploring electronics over half a century ago. In those days, transistors were only just making their debut and integrated circuits were completely unknown. Of course, since then much has changed but, despite all of the changes, the world of electronics remains a fascinating one. And, unlike most other advanced technological disciplines, electronics is still something that you can 'do' at home with limited resources and with a minimal outlay. A soldering iron, a multi-meter and a handful of components are all you need to get started. Except, of course, for some ideas to get you started – and that's exactly where this book comes in!

The book has been designed to help you understand how electronic circuits work. It will provide you with the basic underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators.

The book is ideal for people who are studying electronics for the first time at any level, including a wide range of school and college courses. It is equally well suited to those who may be returning to study or who may be studying independently as well as those who may need a quick refresher. The book has 20 chapters, each dealing with a particular topic, and ten appendices containing useful information. The approach is topic-based rather than syllabus-based and each major topic looks at a particular application of electronics. The relevant theory is introduced on a progressive basis and delivered in manageable chunks.

In order to give you an appreciation of the solution of simple numerical problems related to the operation of basic circuits, worked examples have been liberally included within the text. In addition, a number of problems can be found at the end of each chapter and solutions are provided at the end of the book. You can use these end-of-chapter problems to check your understanding and also to give you some experience of the 'short answer' questions used in most in-course assessments. For good measure, we have included 80 revision problems in Appendix 2.

At the end of the book you will find 23 sample coursework assignments. These should give you plenty of 'food for thought' as well as offering you some scope for further experimentation. It is not envisaged that you should complete all of these assignments, and a carefully chosen selection will normally suffice. If you are following a formal course, your teacher or lecturer will explain how these should be tackled and how they can contribute to your course assessment.

While the book assumes no previous knowledge of electronics, you need to be able to manipulate basic formulae and understand some simple trigonometry in order to follow the numerical examples. A study of mathematics to GCSE level (or equivalent) will normally be adequate to satisfy this requirement. However, for those who may need a refresher or have had previous problems with mathematics, Appendix 8 will provide you with the underpinning mathematical knowledge required.

In the later chapters of the book, a number of representative circuits (with component values) have been included together with sufficient information to allow you to adapt and modify the circuits for your own use. These circuits can be used to form the basis of your own practical investigations or they can be combined together in more complex circuits.

Preface

This latest edition brings the book up to date with coverage of several important new topics, including the use of digital storage and sound card oscilloscopes, HDL/VHDL modelling of large-scale logic systems and new chapters devoted to the popular and versatile Arduino and Raspberry-Pi microcontrollers.

Finally, you can learn a great deal from building, testing and modifying simple circuits. To do

this you will need access to a few basic tools and some minimal testing equipment. Your first purchase should be a simple multi-range meter, either digital or analogue. This instrument will allow you to measure the voltages and currents present so that you can compare them with the predicted values. If you are attending a formal course of instruction and have access to an electronics laboratory, do make full use of it!

A note for teachers and lecturers

The book is ideal for students following formal courses (e.g. GCSE, AS-, A-level, BTEC, City & Guilds, etc.) in schools, sixth-form colleges and further/higher education colleges. It is equally well suited for use as a text that can support distance or flexible learning and for those who may need a 'refresher' before studying electronics at a higher level.

While the book assumes little previous knowledge, students need to be able to manipulate basic formulae and understand some simple trigonometry to follow the numerical examples. A study of mathematics to GCSE level (or beyond) will normally be adequate to satisfy this requirement. However, an appendix has been added specifically to support students who may have difficulty with mathematics. Students will require a scientific calculator in order to tackle the end-of-chapter problems as well as the revision problems that appear at the end of the book.

We have also included 23 sample coursework assignments. These are open-ended and can be modified or extended to suit the requirements of the particular awarding body. The assignments have been divided into those that are broadly at Level 2 and those that are at Level 3. In order to give reasonable coverage of the subject, students should normally be expected to complete four or five of these assignments.

Teachers can differentiate students' work by mixing assignments from the two levels. In order to challenge students, minimal information should be given to students at the start of each assignment. The aim should be to give students 'food for thought' and encourage them to develop their own solutions and interpretation of the topic.

Where this text is to be used to support formal teaching it is suggested that the chapters should be followed broadly in the order that they appear, with the notable exception of Chapter 13. Topics from this chapter should be introduced at an early stage in order to support formal lab work. Assuming a notional delivery time of 4.5 hours per week, the material contained in this book (together with supporting laboratory exercises and assignments) will require approximately two academic terms (i.e. 24 weeks) to deliver, in which the total of 90 hours of study time should be divided equally into theory (supported by problem solving) and practical (laboratory and assignment work). The recommended four or five assignments will require about 25-30 hours of student work to complete.

When developing a teaching programme it is, of course, essential to check that you fully comply with the requirements of the awarding body concerning assessment and that the syllabus coverage is adequate.

A word about safety

When working on electronic circuits, personal safety (both yours and that of those around you) should be paramount in everything you do. Hazards can exist within many circuits – even those that, on the face of it, may appear to be totally safe. Inadvertent misconnection of a supply, incorrect earthing, reverse connection of a high-value electrolytic capacitor and incorrect component substitution can all result in serious hazards to personal safety as a consequence of fire, explosion or the generation of toxic fumes.

Potential hazards can usually be easily recognized and it is well worth making yourself familiar with them, but perhaps the most important point to make is that electricity acts very quickly and you should always think carefully before working on circuits where mains or high voltages (i.e. those over 50 V or so) are present. Failure to observe this simple precaution can result in the very real risk of electric shock.

Voltages in many items of electronic equipment, including all items which derive their power from the a.c. mains supply, are at a level which can cause sufficient current flow in the body to disrupt normal operation of the heart. The threshold will be even lower for anyone with a defective heart. Bodily contact with mains or high-voltage circuits can thus be lethal. The most critical path for electric current within the body (i.e. the one that is most likely to stop the heart) is that which exists from one hand to the other. The hand-to-foot path is also dangerous, but somewhat less so than the hand-to-hand path.

So, before you start to work on an item of electronic equipment, it is essential not only to switch off, but to disconnect the equipment at the mains by removing the mains plug. If you have to make measurements or carry out adjustments on an item of working (or 'live') equipment, a useful precaution is that of using one hand only to perform the adjustment or to make the measurement. Your 'spare' hand should be placed safely away from contact with anything metal (including the chassis of the equipment which may, or may not, be earthed).

The severity of electric shock depends upon several factors, including the magnitude of the current, whether it is alternating or direct current, and its precise path through the body. The magnitude of the current depends upon the voltage which is applied and the resistance of the body. The electrical energy developed in the body will depend upon the time for which the current flows. The duration of contact is also crucial in determining the eventual physiological effects of the shock. As a rough guide, and assuming that the voltage applied is from the 250 V, 50 Hz a.c. mains supply, the following effects are typical:

Current	Physiological effect
Less than 1 mA	Not usually noticeable
1 mA to 2 mA	Threshold of perception (a slight tingle may be felt)
2 mA to 4 mA	Mild shock (effects of current flow are felt)
4 mA to 10 mA	Serious shock (shock is felt as pain)
10 mA to 20 mA	Motor nerve paralysis may occur (unable to let go)
20 mA to 50 mA	Respiratory control inhibited (breathing may stop)
More than 50 mA	Ventricular fibrillation of heart muscle (heart failure)

A word about safety

It is important to note that the figures are quoted as a guide – there have been cases of lethal shocks resulting from contact with much lower voltages and at relatively small values of current. The upshot of all this is simply that any potential in excess of 50 V should be considered dangerous. Lesser potentials may, under unusual

circumstances, also be dangerous. As such, it is wise to get into the habit of treating all electrical and electronic circuits with great care.

Mike Tooley October 2019

Electrical fundamentals

Chapter summary

This chapter has been designed to provide you with the background knowledge required to help you understand the concepts introduced in the later chapters. If you have studied electrical science, electrical principles or electronics beyond school level then you will already be familiar with many of these concepts. If, on the other hand, you are returning to study or are a newcomer to electronics or electrical technology this chapter will help you get up to speed.

Fundamental units

You will already know that the units that we now use to describe such things as length, mass and time are standardized within the International System of Units. This SI system is based upon the seven **fundamental units** (see Table 1.1).

Derived units

All other units are derived from these seven fundamental units. These **derived units** generally have their own names and those commonly encountered in electrical circuits are summarized in Table 1.2 together with the corresponding physical quantities.

If you find the exponent notation shown in Table 1.2 a little confusing, just remember that V^{-1} is simply 1/V, s^{-1} is 1/s, m^{-2} is $1/m^{-2}$, and so on.

Example 1.1

The unit of flux density (the Tesla) is defined as the magnetic flux per unit area. Express this in terms of the fundamental units.

Solution

The SI unit of flux is the Weber (Wb). Area is directly proportional to length squared and, expressed in terms of the fundamental SI units, this is square metres (m²). Dividing the flux (Wb) by the area (m²) gives Wb/m² or Wb m². Hence, in terms of the fundamental SI units, the Tesla is expressed in Wb m².

Table 1.1 SI units

Quantity	Unit	Abbreviation
Current	ampere	А
Length	metre	m
Luminous intensity	candela	cd
Mass	kilogram	kg
Temperature	Kelvin	K
Time	second	S
Matter	mol	mol

(Note that 0 K is equal to -273 °C and an **interval** of 1 K is the same as an **interval of 1 °C.**)

Table 1.2 Electrical quantities

Quantity	Derived unit	Abbreviation	Equivalent (in terms of fundamental units)
Capacitance	Farad	F	A s V ⁻¹
Charge	Coulomb	С	As
Energy	Joule	J	N m
Force	Newton	N	kg m s ⁻¹
Frequency	Hertz	Hz	S ⁻¹
Illuminance	Lux	lx	lm m ⁻²
Inductance	Henry	Н	V s A ⁻¹
Luminous flux	Lumen	lm	cd sr
Magnetic flux	Weber	Wb	V s
Potential	Volt	V	W A ⁻¹
Power	Watt	W	J s ⁻¹
Resistance	Ohm	Ω	V A-1

Example 1.2

The unit of electrical potential, the volt (V), is defined as the difference in potential between two points in a conductor which, when carrying a current of one amp (A), dissipates a power of one watt (W). Express the volt (V) in terms of joules (J) and coulombs (C).

Solution

In terms of the derived units:

$$Volts = \frac{Watts}{Amperes} = \frac{Joules/seconds}{Amperes}$$

$$= \frac{\text{Joules}}{\text{Amperes} \times \text{seconds}} = \frac{\text{Joules}}{\text{Coulombs}}$$

Note that: watts = joules/seconds and also that amperes × seconds = coulombs

Alternatively, in terms of the symbols used to denote the units:

$$V = \frac{W}{A} = \frac{J/s}{A} = \frac{J}{As} = \frac{J}{C} = JC^{-1}$$

Hence, one volt is equivalent to one joule per coulomb.

Measuring angles

You might think it strange to be concerned with angles in electrical circuits. The reason is simply that, in analogue and a.c. circuits, signals are based on repetitive waves (often sinusoidal in shape). We can refer to a point on such a wave in one of two basic ways, either in terms of the time from the start of the cycle or in terms of the angle (a cycle starts at 0° and finishes as 360° (see Fig. 1.1)). In practice, it is often more convenient to use angles rather than time; however, the two methods of measurement are interchangeable and it's important to be able to work in either of these units.

In electrical circuits, angles are measured in either degrees or radians (both of which are strictly dimensionless units). You will doubtless already be familiar with angular measure in degrees where one complete circular revolution is equivalent to an angular change of 360°. The alternative method of measuring angles, the **radian**, is defined somewhat differently. It is the angle subtended at the centre of a circle by an arc having length which is equal to the radius of the circle (see Fig. 1.2).

You may sometimes find that you need to convert from radians to degrees, and vice versa. A complete circular revolution is equivalent to a rotation of 360° or 2π radians (note that π is approximately equal to 3.142). Thus one radian is equivalent to $360/2\pi$ degrees (or approximately 57.3°). Try to remember the following rules that will help you to convert angles expressed in degrees to radians and vice versa:

- ► From degrees to radians, divide by 57.3.
- ► From radians to degrees, multiply by 57.3.

Example 1.3

Express a quarter of a cycle revolution in terms of:

- (a) degrees;
- (b) radians.

Solution

(a) There are 360° in one complete cycle (i.e. one full revolution). Hence there are (360/4)° or 90° in one-quarter of a cycle.

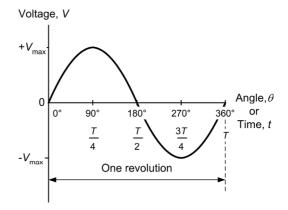


Figure 1.1 One cycle of a sine wave voltage

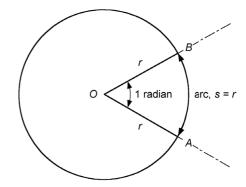


Figure 1.2 Definition of the radian

(b) There are 2π radians in one complete cycle. Thus there are $2\pi/4$ or $\pi/2$ radians in one-quarter of a cycle.

Example 1.4

Express an angle of 215° in radians.

Solution

To convert from degrees to radians, divide by 57.3. So 215° is equivalent to 215/57.3 = 3.75 radians.

Example 1.5

Express an angle of 2.5 radians in degrees.

Solution

To convert from radians to degrees, multiply by 57.3. Hence 2.5 radians is equivalent to $2.5 \times 57.3 = 143.25^{\circ}$.

Electrical units and symbols

Table 1.3 shows the units and symbols that are commonly encountered in electrical circuits. It is important to get to know these units and also be able to recognize their abbreviations and symbols. You will meet all of these units later in this chapter.

Multiples and sub-multiples

Unfortunately, many of the derived units are either too large or too small for convenient everyday use but we can make life a little easier by using a standard range of multiples and submultiples (see Table 1.4).

Example 1.6

An indicator lamp requires a current of 0.075 A. Express this in mA.

Solution

You can express the current in mA (rather than in A) by simply moving the decimal point three places to the right. Hence 0.075 A is the same as 75 mA.

Example 1.7

A medium-wave radio transmitter operates on a frequency of 1,495 kHz. Express its frequency in MHz.

Solution

To express the frequency in MHz rather than kHz we need to move the decimal point three places to the left. Hence 1,495 kHz is equivalent to 1.495 MHz.

Example 1.8

Express the value of a 27,000 pF in μ F.

Solution

To express the value in μF rather than pF we need to move the decimal point six places to the left. Hence 27,000 pF is equivalent to 0.027 μF (note that we have had to introduce an extra zero before the 2 and after the decimal point).

Table 1.3 Electrical units

Unit	Abbrev.	Symbol	Notes
Ampere	A	1	Unit of electric current (a current of 1 A flows when a charge of 1 C is transported in a time interval of 1 s)
Coulomb	С	Q	Unit of electric charge or quantity of electricity
Farad	F	С	Unit of capacitance (a capacitor has a capacitance of 1 F when a potential of 1 V across its plates produces a charge of 1 C)
Henry	Н	L	Unit of inductance (an inductor has an inductance of 1 H when an applied current changing at 1 A/s produces a potential difference of 1 V across its terminals)
Hertz	Hz	f	Unit of frequency (a signal has a frequency of 1 Hz if one complete cycle occurs in an interval of 1 s)
Joule	J	W	Unit of energy
Ohm	Ω	R	Unit of resistance
Second	S	t	Unit of time
Siemen	S	G	Unit of conductance (the reciprocal of resistance)
Tesla	Т	В	Unit of magnetic flux density (a flux density of 1 T is produced when a flux of 1 Wb is present over an area of 1 square metre)
Volt	V	V	Unit of electric potential (e.m.f. or p.d.)
Watt	W	Р	Unit of power (equivalent to 1 J of energy consumed in 1 s)
Weber	Wb	φ	Unit of magnetic flux

Table 1.4 Multiples and sub-multiples

Prefix	Abbreviation	Multiplier
tera	Т	10 ¹² (= 1 000 000 000 000)
giga	G	109 (= 1 000 000 000)
mega	М	106 (= 1 000 000)
kilo	k	103 (= 1 000)
(none)	(none)	10° (= 1)
centi	С	$10^{-2} (= 0.01)$
milli	m	10 ⁻³ (= 0.001)
micro	μ	10 ⁻⁶ (= 0.000 001)
nano	n	10 ⁻⁹ (= 0.000 000 001)
pico	р	10 ⁻¹² (= 0.000 000 000 001)

Exponent notation

Exponent notation (or **scientific notation**) is useful when dealing with either very small or very large quantities. It's well worth getting to grips with this notation as it will allow you to simplify quantities before using them in formulae.

Exponents are based on **powers of ten**. To express a number in exponent notation the number is split into two parts. The first part is usually a number in the range 0.1 to 100 while the second part is a multiplier expressed as a power of ten.

For example, 251.7 can be expressed as 2.517 \times 100, i.e. 2.517 \times 10². It can also be expressed as 0.2517 \times 1,000, i.e. 0.2517 \times 10³. In both cases the exponent is the same as the number of noughts in the multiplier (i.e. 2 in the first case and 3 in the second case). To summarize:

$$251.7 = 2.517 \times 10^2 = 0.2517 \times 10^3$$

As a further example, 0.01825 can be expressed as 1.825/100, i.e. 1.825×10^{-2} . It can also be expressed as 18.25/1,000, i.e. 18.25×10^{-3} . Again, the exponent is the same as the number of noughts but the minus sign is used to denote a fractional multiplier. To summarize:

$$0.01825 = 1.825 \times 10^{-2} = 18.25 \times 10^{-3}$$

Example 1.9

A current of 7.25 mA flows in a circuit. Express this current in amperes using exponent notation.

Solution

 $1 \text{ mA} = 1 \times 10^{-3} \text{ A} \text{ thus } 7.25 \text{ mA} = 7.25 \times 10^{-3} \text{ A}.$

Example 1.10

A voltage of 3.75×10^{-6} V appears at the input of an amplifier. Express this voltage in (a) V and (b) mV, using exponent notation.

Solution

- (a) $1 \times 10^{-6} \text{ V} = 1 \,\mu\text{V}$ so $3.75 \times 10^{-6} \,\text{V} = 3.75 \,\mu\text{V}$.
- (b) There are 1,000 μ V in 1 mV so we must divide the previous result by 1,000 in order to express the voltage in mV. So 3.75 μ V = 0.00375 mV.

Multiplication and division using exponents

Exponent notation really comes into its own when values have to be multiplied or divided. When multiplying two values expressed using exponents, you simply need to add the exponents. Here's an example:

$$(2 \times 10^2) \times (3 \times 10^6) = (2 \times 3) \times 10^{(2+6)} = 6 \times 10^8$$

Similarly, when dividing two values which are expressed using exponents, you only need to subtract the exponents. As an example:

$$(4 \times 10^6) \div (2 \times 10^4) = 4/2 \times 10^{(6-4)} = 2 \times 10^2$$

In either case it's important to remember to specify the units, multiples and sub-multiples in which you are working (e.g. A, $k\Omega$, mV, μF , etc.).

Example 1.11

A current of 3 mA flows in a resistance of 33 k Ω . Determine the voltage dropped across the resistor.

Solution

Voltage is equal to current multiplied by resistance (see page 7). Thus:

$$V = I \times R = 3 \text{ mA} \times 33 \text{ k}\Omega$$

Expressing this using exponent notation gives:

$$V = (3 \times 10^{-3}) \times (33 \times 10^{3}) \text{ V}$$

Separating the exponents gives:

$$V = 3 \times 33 \times 10^{-3} \times 10^{3} \text{ V}$$

Thus $V = 99 \times 10^{(-3+3)} = 99 \times 10^0 = 99 \times 1 = 99 \text{ V}$.

A current of 45 μ A flows in a circuit. What charge is transferred in a time interval of 20 ms?

Solution

Charge is equal to current multiplied by time (see the definition of the ampere on page 4). Thus:

$$Q = 1 t = 45 \,\mu\text{A} \times 20 \,\text{ms}$$

Expressing this in exponent notation gives:

$$Q = (45 \times 10^{-6}) \times (20 \times 10^{-3})$$
 coulomb

Separating the exponents gives:

$$Q = 45 \times 20 \times 10^{-6} \times 10^{-3}$$
 coulomb

Thus
$$Q = 900 \times 10^{(-6-3)} = 900 \times 10^{-9} = 900 \text{ nC}$$

Example 1.13

A power of 300 mW is dissipated in a circuit when a voltage of 1,500 V is applied. Determine the current supplied to the circuit.

Solution

Current is equal to power divided by voltage (see page 9). Thus:

I = P/V = 300 mW / 1,500 V amperes

Expressing this in exponent notation gives:

$$I = (300 \times 10^{-3})/(1.5 \times 10^{3}) A$$

Separating the exponents gives:

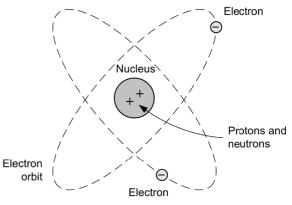
$$I = (300/1.5) \times (10^{-3}/10^{3}) A$$

$$I = 300/1.5 \times 10^{-3} \times 10^{-3} A$$

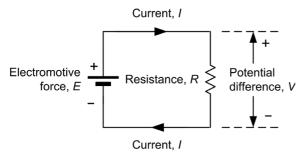
Thus, $I = 200 \times 10^{(-3-3)} = 200 \times 10^{-6} = 200 \ \mu A$

Conductors and insulators

Electric current is the name given to the flow of **electrons** (or negative charge carriers). Electrons orbit around the nucleus of atoms just as the Earth orbits around the sun (see Fig. 1.3). Electrons are held in one or more **shells**, constrained to their orbital paths by virtue of a force of attraction towards the nucleus which contains an equal number of **protons** (positive charge carriers). Since like charges repel and unlike charges attract, negatively charged electrons are attracted to the positively charged nucleus. A similar principle can be demonstrated by observing the attraction between two permanent magnets; the two north poles of the magnets will repel each other, while a


north and south pole will attract. In the same way, the unlike charges of the negative electron and the positive proton experience a force of mutual attraction.

The outer shell electrons of a **conductor** can be reasonably easily interchanged between adjacent atoms within the **lattice** of atoms of which the substance is composed. This makes it possible for the material to conduct electricity. Typical examples of conductors are metals such as copper, silver, iron and aluminium. By contrast, the outer-shell electrons of an **insulator** are firmly bound to their parent atoms and virtually no interchange of electrons is possible. Typical examples of insulators are plastics, rubber and ceramic materials.


Voltage and resistance

The ability of an energy source (e.g. a battery) to produce a current within a conductor may be expressed in terms of **electromotive force** (e.m.f.). Whenever an e.m.f. is applied to a circuit **a potential difference** (p.d.) exists. Both e.m.f. and p.d. are measured in volts (V). In many practical circuits there is only one e.m.f. present (the battery or supply) whereas a p.d. will be developed across each component present in the circuit.

The **conventional flow** of current in a circuit is from the point of more positive potential to the point of greatest negative potential (note that

Figure 1.3 A single atom of helium (H_e) showing its two electrons in orbit around its nucleus

Figure 1.4 Simple circuit to illustrate the relationship between voltage (*V*), current (*I*) and resistance (*R*). Note that the direction of conventional current flow is from positive to negative

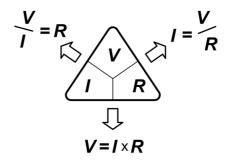
electrons move in the *opposite* direction!). **Direct current** results from the application of a direct e.m.f. (derived from batteries or a d.c. power supply). An essential characteristic of these supplies is that the applied e.m.f. does not change its polarity (even though its value might be subject to some fluctuation).

For any conductor, the current flowing is directly proportional to the e.m.f. applied. The current flowing will also be dependent on the physical dimensions (length and cross-sectional area) and material of which the conductor is composed.

The amount of current that will flow in a conductor when a given e.m.f. is applied is inversely proportional to its **resistance**. Resistance, therefore, may be thought of as an opposition to current flow; the higher the resistance the lower the current that will flow (assuming that the applied e.m.f. remains constant).

Ohm's Law

Provided that temperature does not vary, the ratio of p.d. across the ends of a conductor to the current flowing in the conductor is a constant. This relationship is known as Ohm's Law and it leads to the relationship:


$$V/I = a constant = R$$

where V is the potential difference (or voltage drop) in volts (V), I is the current in amperes (A), and R is the resistance in ohms (Ω) (see Fig. 1.4).

The formula may be arranged to make *V*, *I* or *R* the subject, as follows:

$$V = I \times R$$
, $I = V/R$ and $R = V/I$

The triangle shown in Fig. 1.5 should help you remember these three important relationships. However, it's worth noting that, when performing calculations of currents, voltages and resistances in practical circuits it is seldom necessary to work with an accuracy of better than $\pm 1\%$ simply because component tolerances are usually greater than this. Furthermore, in calculations involving Ohm's Law, it can sometimes be convenient to work in units of $k\Omega$ and mA (or $M\Omega$ and μA) in which case potential differences will be expressed directly in V.

Figure 1.5 Triangle showing the relationship between *V*, *I* and *R*

Example 1.14

A 12 Ω resistor is connected to a 6 V battery. What current will flow in the resistor?

Solution

Here we must use I = V/R (where V = 6 V and $R = 12 \Omega$):

 $I = V/R = 6 \text{ V} / 12 \Omega = 0.5 \text{ A (or 500 mA)}$

Hence a current of 500 mA will flow in the resistor.

Example 1.15

A current of 100 mA flows in a 56 Ω resistor. What voltage drop (potential difference) will be developed across the resistor?

1 Electrical fundamentals

Solution

Here we must use $V = I \times R$ and ensure that we work in units of volts (V), amperes (A) and ohms (Ω).

$$V = I \times R = 0.1 \text{ A} \times 56 \Omega = 5.6 \text{ V}$$

(Note that 100 mA is the same as 0.1 A.)

This calculation shows that a p.d. of 5.6 V will be developed across the resistor.

Example 1.16

A voltage drop of 15 V appears across a resistor in which a current of 1 mA flows. What is the value of the resistance?

Solution

$$R = V/I = 15 \text{ V} / 0.001 \text{ A} = 15,000 \Omega = 15 \text{ k}\Omega$$

Note that it is often more convenient to work in units of mA and V, which will produce an answer directly in $k\Omega$, i.e.

$$R = V/I = 15 \text{ V} / 1 \text{ mA} = 15 \text{ k}\Omega$$

Resistance and resistivity

The resistance of a metallic conductor is directly proportional to its length and inversely proportional to its area. The resistance is also directly proportional to its **resistivity** (or

specific resistance). Resistivity is defined as the resistance measured between the opposite faces of a cube having sides of 1 cm.

The resistance, *R*, of a conductor is thus given by the formula:

$$R = \rho \times l/A$$

where R is the resistance (ft), ρ is the resistivity (Ω m), l is the length (m) and A is the area (m^2).

Table 1.5 shows the electrical properties of some common metals.

Example 1.17

A coil consists of an 8 m length of annealed copper wire having a cross-sectional area of 1 mm². Determine the resistance of the coil.

Solution

We will use the formula $R = \rho l/A$.

The value of ρ for annealed copper given in Table 1.5 is $1.724 \times 10^{-8} \ \Omega m$. The length of the wire is 4 m while the area is 1 mm² or $1 \times 10^{-6} \ m^2$ (note that it is important to be consistent in using units of metres for length and square metres for area). Hence the resistance of the coil will be given by:

$$R = \frac{1.724 \times 10^{-8} \times 8}{1 \times 10^{-6}} = 13.724 \times 10^{(-8+6)}$$

Thus $R = 13.792 \times 10^{-2}$ or 0.13792Ω .

Table 1.5 Properties of some common metals

Metal	Resistivity (at 20°C) (Ωm)	Relative conductivity (copper = 1)	Temperature coefficient of resistance (per °C)
Silver	1.626 × 10 ⁻⁸	1.06	0.0041
Copper (annealed)	1.724 × 10 ⁻⁸	1.00	0.0039
Copper (hard drawn)	1.777 × 10 ⁻⁸	0.97	0.0039
Aluminium	2.803 × 10 ⁻⁸	0.61	0.0040
Mild steel	1.38 × 10 ⁻⁷	0.12	0.0045
Lead	2.14 × 10 ⁻⁷	0.08	0.0040
Nickel	8.0 × 10 ⁻⁸	0.22	0.0062

A wire having a resistivity of $1.724 \times 10^{-8} \Omega m$, length 20 m and cross-sectional area 1 mm² carries a current of 5 A. Determine the voltage drop between the ends of the wire.

Solution

First we must find the resistance of the wire (as in Example 1.17):

$$R = \frac{\rho l}{A} = \frac{1.6 \times 10^{-8} \times 20}{1 \times 10^{-6}} = 32 \times 10^{-2} = 0.32 \ \Omega$$

The voltage drop can now be calculated using Ohm's Law:

$$V = I \times R = 5A \times 0.32 \Omega = 1.6 \text{ V}$$

This calculation shows that a potential of 1.6 V will be dropped between the ends of the wire.

Energy and power

At first you may be a little confused about the difference between energy and power. Put simply, energy is the ability to do work while power is the rate at which work is done. In electrical circuits, energy is supplied by batteries or generators. It may also be stored in components such as capacitors and inductors. Electrical energy is converted into various other forms of energy by components such as resistors (producing heat), loudspeakers (producing sound energy) and light emitting diodes (producing light).

The unit of energy is the joule (J). Power is the rate of use of energy and it is measured in watts (W). A power of 1 W results from energy being used at the rate of 1 J per second. Thus:

$$P = W/t$$

where P is the power in watts (W), W is the energy in joules (J) and t is the time in seconds (s).

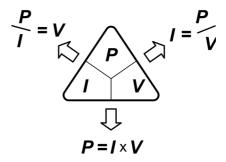
The power in a circuit is equivalent to the product of voltage and current. Hence:

$$P = I \times V$$

where P is the power in watts (W), I is the current in amperes (A) and V is the voltage in volts (V).

The formula may be arranged to make P, I or V the subject, as follows:

$$P = I \times P$$
, $I = P/V$ and $V = P/I$


The triangle shown in Fig. 1.6 should help you remember these relationships.

The relationship, $P = I \times V$, may be combined with that which results from Ohm's Law $(V = I \times R)$ to produce two further relationships. First, substituting for V gives:

$$P = I \times (I \times R) = I^2 R$$

Second, substituting for I gives:

$$P = (V/R) \times V = V^2/R$$

Figure 1.6 Triangle showing the relationship between *P*, *I* and *V*

Example 1.19

A current of 1.5 A is drawn from a 3 V battery. What power is supplied?

Solution

Here we must use $P = I \times V$ (where I = 1.5 A and V = 3 V).

$$P = 1 \times V = 1.5 \text{ A} \times 3 \text{ V} = 4.5 \text{ W}$$

Hence a power of 4.5 W is supplied.

Example 1.20

A voltage drop of 4 V appears across a resistor of 100 Ω . What power is dissipated in the resistor?

Solution

Here we use $P = V^2 / R$ (where V = 4 V and $R = 100 \Omega$).

$$P = V^2 / R = (4 \text{ V} \times 4 \text{ V}) / 100 \Omega = 0.16 \text{ W}$$

Hence the resistor dissipates a power of 0.16 W (or 160 mW).

A current of 20 mA flows in a 1 k Ω resistor. What power is dissipated in the resistor?

Solution

Here we use $P = I^2 \times R$ but, to make life a little easier, we will work in mA and $k\Omega$ (in which case the answer will be in mW).

$$P = I^2 \times R = (20 \text{ mA} \times 20 \text{ mA}) \times 1 \text{ k}\Omega = 400 \text{ mW}$$

Thus a power of 400 mW is dissipated in the 1 k Ω resistor.

Electrostatics

If a conductor has a deficit of electrons, it will exhibit a net positive charge. If, on the other hand, it has a surplus of electrons, it will exhibit a net negative charge. An imbalance in charge can be produced by friction (removing or depositing electrons using materials such as silk and fur, respectively) or induction (by attracting or repelling electrons using a second body which is, respectively, positively or negatively charged).

Force between charges

Coulomb's Law states that if charged bodies exist at two points, the force of attraction (if the charges are of opposite polarity) or repulsion (if the charges have the same polarity) will be proportional to the product of the magnitude of the charges divided by the square of their distance apart. Thus:

$$F = \frac{kQ_1Q_2}{r^2}$$

where Q_1 and Q_2 are the charges present at the two points (in coulombs), r is the distance separating the two points (in metres), F is the force (in newtons) and k is a constant depending upon the medium in which the charges exist. In vacuum or 'free space',

$$k = \frac{1}{4\pi\varepsilon_0}$$

where ε_0 is the **permittivity of free space** (8.854 × 10⁻¹² C/Nm²).

Combining the two previous equations gives:

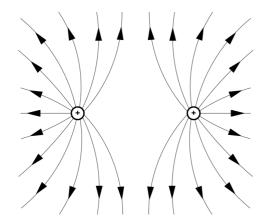
$$F = \frac{kQ_1Q_2}{4\pi \times 8.854 \times 10^{-12} r^2}$$
 newtons

Electric fields

The force exerted on a charged particle is a manifestation of the existence of an electric field. The electric field defines the direction and magnitude of a force on a charged object. The field itself is invisible to the human eye but can be drawn by constructing lines which indicate the motion of a free positive charge within the field; the number of field lines in a particular region is used to indicate the relative strength of the field at the point in question.


Figs 1.7 and 1.8 show the electric fields between charges of the same and opposite polarity while Fig. 1.9 shows the field which exists between two charged parallel plates. You will see more of this particular arrangement when we introduce capacitors in Chapter 2.

Electric field strength


The strength of an electric field (*E*) is proportional to the applied potential difference and inversely proportional to the distance between the two conductors. The electric field strength is given by:

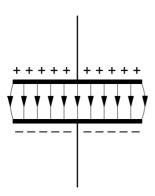
$$E = V/d$$

where E is the electric field strength (V/m), V is the applied potential difference (V) and d is the distance (m).

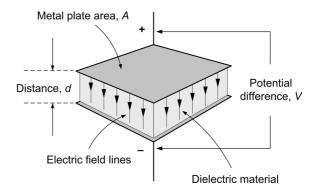
Figure 1.7 Electric field between two unlike electric charges

Figure 1.8 Electric field between two like electric charges (in this case both positive)

Two parallel conductors are separated by a distance of 25 mm. Determine the electric field strength if they are fed from a 600 V d.c. supply.


Solution

The electric field strength will be given by:


$$E = V/d = 600 / 25 \times 10^{-3} = 24 \text{ kV/m}$$

Permittivity

The amount of charge produced on the two plates shown in Fig. 1.9 for a given applied voltage will depend not only on the physical dimensions but also on the insulating dielectric material that appears between the plates. Such materials need

Figure 1.9 Electric field between two parallel plates

Figure 1.10 Parallel plates with an insulating dielectric material

to have a very high value of resistivity (they must not conduct charge) coupled with an ability to withstand high voltages without breaking down.

A more practical arrangement is shown in Fig. 1.10. In this arrangement the ratio of charge, Q, to potential difference, V, is given by the relationship:

$$\frac{Q}{V} = \frac{\varepsilon A}{d}$$

where A is the surface area of the plates (in m²), d is the separation (in m) and ε is a constant for the dielectric material known as the **absolute permittivity** of the material (sometimes also referred to as the **dielectric constant**).

The absolute permittivity of a dielectric material is the product of the permittivity of free space (ε_0) and the **relative permittivity** (ε_r) of the material. Thus:

$$\varepsilon = \varepsilon_0 \times \varepsilon_r$$
 and $\frac{Q}{V} = \frac{\varepsilon_0 \varepsilon_r A}{d}$

The **dielectric strength** of an insulating dielectric is the maximum electric field strength that can safely be applied to it before breakdown (conduction) occurs. Table 1.6 shows values of relative permittivity and dielectric strength for some common dielectric materials.

Electromagnetism

When a current flows through a conductor a magnetic field is produced in the vicinity of the conductor. The magnetic field is invisible but

Table 1.6 Properties of some common insulating dielectric materials

Dielectric material	Relative permittivity (free space = 1)	Dielectric strength (kV/mm)
Vacuum, or free space	1	∞
Air	1	3
Polythene	2.3	50
Paper	2.5 to 3.5	14
Polystyrene	2.5	25
Mica	4 to 7	160
Pyrex glass	4.5	13
Glass ceramic	5.9	40
Polyester	3.0 to 3.4	18
Porcelain	6.5	4
Titanium dioxide	100	6
Ceramics	5 to 1,000	2 to 10

its presence can be detected using a compass needle (which will deflect from its normal north—south position). If two current-carrying conductors are placed in the vicinity of one another, the fields will interact with one another and the conductors will experience a force of attraction or repulsion (depending upon the relative direction of the two currents).

Force between two currentcarrying conductors

The mutual force which exists between two parallel current-carrying conductors will be proportional to the product of the currents in the two conductors and the length of the conductors, but inversely proportional to their separation. Thus:

$$F = \frac{k I_1 I_2 I}{d}$$

where I_1 and I_2 are the currents in the two conductors (in amperes), l is the parallel length of the conductors (in metres), d is the distance separating the two conductors (in metres), F is the force (in newtons) and k is a constant

depending upon the medium in which the charges exist.

In vacuum or 'free space',

$$k = \frac{\mu_0}{2\pi}$$

where μ_0 is a constant known as the **permeability** of free space $(4\pi \times 10^{-7} \text{ or } 12.57 \times 10^{-7} \text{ H/m})$.

Combining the two previous equations gives:

$$F = \frac{\mu_0 l_1 l_2 l}{2\pi d}$$

or

$$F = \frac{4\pi \times 10^{-7} I_1 I_2 l}{2\pi d}$$

01

$$F = \frac{2 \times 10^{-7} I_{1/2} l}{d}$$
 newtons

Magnetic fields

The field surrounding a straight current-carrying conductor is shown in Fig. 1.11. The magnetic field defines the direction of motion of a free north pole within the field. In the case of Fig. 1.11, the lines of flux are concentric and the direction of the field (determined by the direction of current flow) is given by the right-hand rule.


Magnetic field strength

The strength of a magnetic field is a measure of the density of the flux at any particular point. In the case of Fig. 1.11, the field strength will be proportional to the applied current and inversely proportional to the perpendicular distance from the conductor. Thus:

$$B = \frac{kI}{d}$$

where B is the magnetic flux density (in tesla), I is the current (in amperes), d is the distance from the conductor (in metres) and k is a constant.

Assuming that the medium is vacuum or 'free space', the density of the magnetic flux will be given by:

Figure 1.11 Magnetic field surrounding a straight conductor

$$B = \frac{\mu_0 I}{2\pi d}$$

where *B* is the **flux density** (in tesla), μ_0 is the permeability of 'free space' ($4\pi \times 10^{-7}$ or 12.57 \times 10⁻⁷), *I* is the current (in amperes) and *d* is the distance from the centre of the conductor (in metres).

The flux density is also equal to the total flux divided by the area of the field. Thus:

$$B = \Phi / A$$

where Φ is the flux (in webers) and A is the area of the field (in square metres).

In order to increase the strength of the field, a conductor may be shaped into a loop (Fig. 1.12) or coiled to form a solenoid (Fig. 1.13). Note, in the latter case, how the field pattern is exactly the same as that which surrounds a bar magnet.

Example 1.23

Determine the flux density produced at a distance of 50 mm from a straight wire carrying a current of 20 A.

Solution

Applying the formula $B = \mu_0 I/2\pi d$ gives:

$$B = \frac{12.57 \times 10^{-7} \times 20}{2 \times 3.142 \times 50 \times 10^{-3}} = \frac{251.4 \times 10^{-7}}{314.2 \times 10^{-3}}$$

from which:

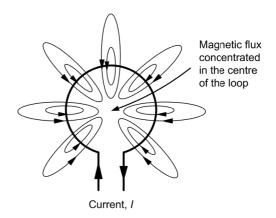
 $B = 0.8 \times 10^{-4} \text{ tesla}$

Thus $B = 80 \times 10^{-6} \text{ T or } B = 80 \text{ }\mu\text{T}.$

Example 1.24

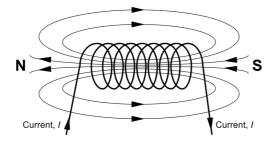
A flux density of 2.5 mT is developed in free space over an area of 20 cm². Determine the total flux.

Solution


Re-arranging the formula $B = \Phi/A$ to make Φ the subject gives $\Phi = B \times A$, thus:

 $\Phi = (2.5 \times 10^{-3}) \times (20 \times 10^{-4}) = 50 \times 10^{-7}$ webers from which $B = 5 \mu \text{Wb}$.

Magnetic circuits


Materials such as iron and steel possess considerably enhanced magnetic properties. Hence they are employed in applications where it is necessary to increase the flux density produced by an electric current. In effect, magnetic materials allow us to channel the electric flux into a 'magnetic circuit', as shown in Fig. 1.14.

In the circuit of Fig. 1.14(b) the **reluctance** of the magnetic core is analogous to the resistance

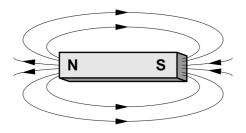


Figure 1.12 Forming a conductor into a loop increases the strength of the magnetic field in the centre of the loop

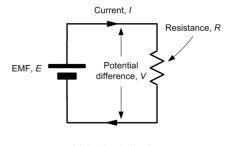
1 Electrical fundamentals

(a) Magnetic field around a solenoid

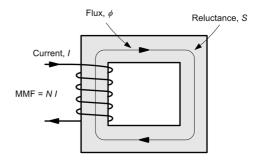
(b) Magnetic field around a permanent magnet

Figure 1.13 The magnetic field surrounding a solenoid coil resembles that of a permanent magnet

present in the electric circuit shown in Fig. 1.14(a). We can make the following comparisons between the two types of circuit (see Table 1.7).


In practice, not all of the magnetic flux produced in a magnetic circuit will be concentrated within the core and some 'leakage flux' will appear in the surrounding free space (as shown in Fig. 1.15). Similarly, if a gap appears within the magnetic circuit, the flux will tend to spread out as shown in Fig. 1.16. This effect is known as 'fringing'.

Reluctance and permeability


The reluctance of a magnetic path is directly proportional to its length and inversely proportional to its area. The reluctance is also inversely proportional to the **absolute permeability** of the magnetic material. Thus:

$$S = \frac{l}{uA}$$

where S is the reluctance of the magnetic path, l is the length of the path (in metres), A is the cross-sectional area of the path (in square metres)

(a) An electric circuit

(b) A magnetic circuit

Figure 1.14 Comparison of electric and magnetic circuits

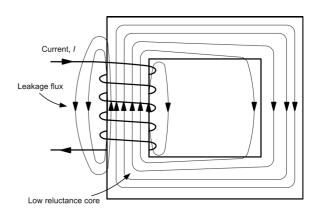
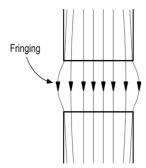



Figure 1.15 Leakage flux in a magnetic circuit

and μ is the absolute permeability of the magnetic material.

The absolute permeability of a magnetic material is the product of the permeability of free space (μ_0) and the **relative permeability** of the magnetic medium (μ_0) . Thus

$$\mu = \mu_0 \times \mu_r$$
 and $S = \frac{l}{\mu_0 \mu_r A}$

Figure 1.16 Fringing of the magnetic flux at an air gap in a magnetic circuit

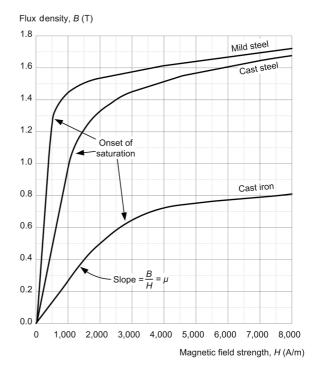
The permeability of a magnetic medium is a measure of its ability to support magnetic flux and it is equal to the ratio of flux density (B) to **magnetizing force** (H). Thus:

$$\mu = \frac{B}{H}$$

where B is the flux density (in tesla) and H is the magnetizing force (in amperes/metre). The magnetizing force (H) is proportional to the product of the number of turns and current but inversely proportional to the length of the magnetic path.

$$H = \frac{NI}{I}$$

where H is the magnetizing force (in amperes/metre), N is the number of turns, I is the current

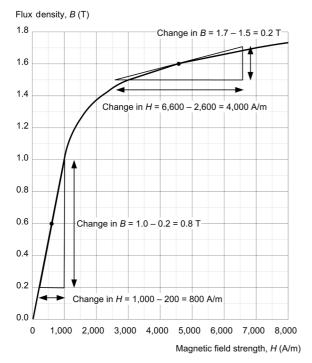

Table 1.7 Comparison of electric and magnetic circuits

Electric circuit Figure 1.14(a)	Magnetic circuit Figure 1.14(a)
Electromotive force, e.m.f.	Magnetomotive force, m.m.f. = N × /
Resistance = R	Reluctance = S
Current = I	$Flux = \Phi$
e.m.f. = current × resistance	m.m.f. = flux × reluctance
$V = I \times R$	$NI = S \Phi$

(in amperes) and l is the length of the magnetic path (in metres).

B-H curves

Fig. 1.17 shows four typical B–H (flux density plotted against permeability) curves for some common magnetic materials. If you look carefully at these curves you will notice that they flatten off due to magnetic **saturation** and that the slope of the curve (indicating the value of μ corresponding to a particular value of H) falls as the magnetizing force increases. This is important since it dictates the acceptable working range for a particular magnetic material when used in a magnetic circuit.


Figure 1.17 *B–H* curves for three ferromagnetic materials

Example 1.25

Estimate the relative permeability of cast steel (see Fig. 1.18) at (a) a flux density of 0.6 T and (b) a flux density of 1.6 T.

Solution

From Fig. 1.18, the slope of the graph at any point gives the value of μ at that point. We can

Figure 1.18 *B–H* curve for a sample of cast steel

easily find the slope by constructing a tangent at the point in question and then finding the ratio of vertical change to horizontal change.

- (a) The slope of the graph at 0.6 T is 0.6/800 = 0.75×10^{-3} Since $\mu = \mu_0 \times \mu_r$, $\mu_r = \mu / \mu_0 = 0.75 \times 10^{-3} / 12.57 \times 10^{-7}$, thus $\mu_r = 597$ at 0.6 T.
- **(b)** The slope of the graph at 1.6 T is 0.2/4,000 = 0.05×10^{-3} Since $\mu = \mu_0 \times \mu_r$, $\mu_r = \mu / \mu_0 = 0.05 \times 10^{-3}/12.57 \times 10^{-7}$, thus $\mu_r = 39.8$ at 1.6 T.

NB: This example clearly shows the effect of saturation on the permeability of a magnetic material!

Example 1.26

A coil of 800 turns is wound on a closed mild steel core having a length 600 mm and cross-sectional area 500 mm². Determine the current required to establish a flux of 0.8 mWb in the core.

Solution

Now $B = \Phi/A = (0.8 \times 10^{-3}) / (500 \times 10^{-6}) = 1.6 \text{ T}$ From Fig. 1.17, a flux density of 1.6 T will occur in mild steel when H = 3,500 A/m. The current can now be determined by re-arranging H = N I/I as follows:

$$I = \frac{H \times l}{N} = \frac{3,500 \times 0.6}{800} = 2.625 \text{ A}$$

Circuit diagrams

Finally, and just in case you haven't seen them before, we will end this chapter with a brief word about circuit diagrams. We are introducing the topic here because it's quite important to be able to read and understand simple electronic circuit diagrams before you can make sense of some of the components and circuits that you will meet later.

Circuit diagrams use standard symbols and conventions to represent the components and wiring used in an electronic circuit. Visually, they bear very little relationship to the physical layout of a circuit but, instead, they provide us with a 'theoretical' view of the circuit. In this section we show you how to find your way round simple circuit diagrams.

To be able to understand a circuit diagram you first need to be familiar with the symbols that are used to represent the components and devices. A selection of some of the most commonly used symbols are shown later, in Fig. 1.24. It's important to be aware that there are a few (thankfully quite small) differences between the symbols used in circuit diagrams of American and European origin.

As a general rule, the input to a circuit should be shown on the left of a circuit diagram and the output shown on the right. The supply (usually the most positive voltage) is normally shown at the top of the diagram and the common, 0V, or ground connection, is normally shown at the bottom. This rule is not always obeyed, particularly for complex diagrams where many signals and supply voltages may be present.

Note also that, in order to simplify a circuit diagram (and avoid having too many lines connected to the same point) multiple connections to common, 0V, or ground may be shown using the appropriate symbol (see Fig. 1.24). The same applies to supply

connections that may be repeated (appropriately labelled) at various points in the diagram.

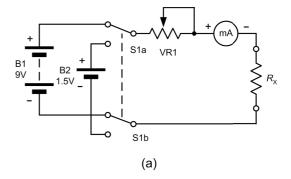
A very simple circuit diagram (a simple resistance tester) is shown in Fig. 1.19. This circuit may be a little daunting if you haven't met a circuit like it before, but you can still glean a great deal of information from the diagram even if you don't know what the individual components do.

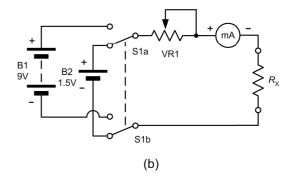
The circuit uses two batteries, B1 (a 9 V multi-cell battery) and B2 (a 1.5 V single-cell battery). The two batteries are selected by means of a double-pole, double-throw (DPDT) switch. This allows the circuit to operate from either the 9 V battery (B1) as shown in Fig. 1.19(a) or from the 1.5 V battery (B2) as shown in Fig. 1.19(b), depending on the setting of S1.

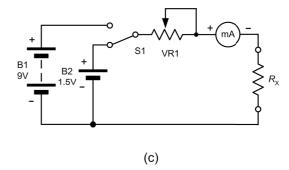
A variable resistor, VR1, is used to adjust the current supplied by whichever of the two batteries is currently selected. This current flows first through VR1, then through the milliammeter, and finally through the unknown resistor, $R_{\rm x}$. Notice how the meter terminals are labelled showing their polarity (the current flows *into* the positive terminal and *out of* the negative terminal).

The circuit shown in Fig. 1.19(c) uses a different type of switch but provides exactly the same function. In this circuit a single-pole, double-throw (SPDT) switch is used and the negative connections to the two batteries are 'commoned' (i.e. connected directly together).

Finally, Fig. 1.19(d) shows how the circuit can be re-drawn using a common 'chassis' connection to provide the negative connection between R_{χ} and the two batteries. Electrically this circuit is identical to the one shown in Fig. 1.19(c).


Practical investigation


Objective


To investigate the relationship between the resistance in a circuit and the current flowing in it.

Components and test equipment

Breadboard, digital or analogue meter with d.c. current ranges, 9 V d.c. power source (either a 9V battery or an a.c. mains adapter with a 9V 400 mA output), test leads, resistors of

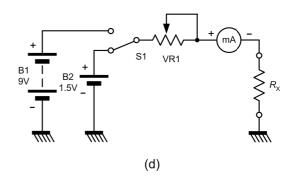


Figure 1.19 A simple circuit diagram

100 Ω , 220 Ω , 330 Ω , 470 Ω , 680 Ω and 1k Ω , connecting wire.

Procedure

Connect the circuit as shown in Fig. 1.21 and Fig. 1.22. Before switching on the d.c. supply or connecting the battery, check that the meter is set to the 200 mA d.c. current range. Switch on (or connect the battery), switch the multimeter on and read the current. Note down the current in the table below and repeat for resistance values of 220 Ω , 330 Ω , 470 Ω , 680 Ω and 1k Ω , switching off or disconnecting the battery between each measurement. Plot corresponding values of current (on the vertical axis) against resistance (on the horizontal axis) (see Fig. 1.23).

Measurements

Resistance (Ω)	Current (mA)
100	
220	
330	
470	
680	
1k	

Figure 1.20 Various types of switch. From left to right: a mains rocker switch, an SPDT miniature toggle (changeover) switch, a DPDT slide switch, an SPDT push-button (wired for use as an SPST push-button), a miniature PCB mounting DPDT push-button (with a latching action)

Conclusion

Comment on the shape of the graph. Is this what you would expect and does it confirm that the current flowing in the circuit is inversely proportional to the resistance in the circuit?

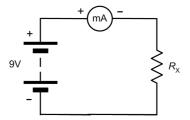


Figure 1.21 Circuit diagram

Figure 1.22 Typical wiring

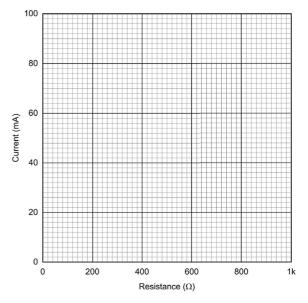


Figure 1.23 Graph layout for plotting the results

Finally, use Ohm's Law to calculate the value of each resistor and compare this with the marked value (but before doing this, you might find it useful to make an accurate measurement of the d.c. supply or battery voltage).

Important formulae introduced in this chapter

Voltage, current and resistance (Ohm's Law): (page 7)

V = IR

Resistance and resistivity:

(page 8)

 $R = \rho l / A$

Charge, current and time:

(page 6) Q = I t

Power, current and voltage:

(page 9)

P = IV

Power, voltage and resistance:

(page 9)

 $P = V^2/R$

Power, current and resistance:

(page 10)

 $P = 1^2 R$

Reluctance and permeability:

(page 14)

 $S = l / \mu A$

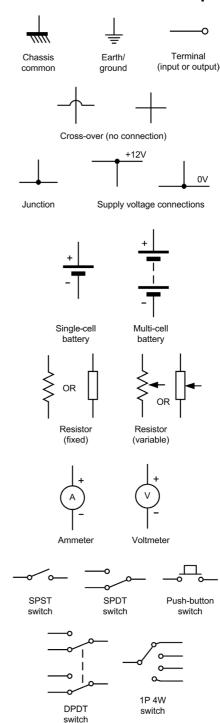
Flux and flux density:

(page 13)

 $B = \Phi / A$

Current and magnetic field intensity:

(page 15)


H = NI/l

Flux, current and reluctance:

(page 15)

 $NI = S\Phi$

Symbols introduced in this chapter

Figure 1.24 Circuit symbols introduced in this chapter

1 Electrical fundamentals

Problems

- 1.1 Which of the following are not fundamental units; amperes, metres, coulombs, joules, hertz, kilogram?
- 1.2 A commonly used unit of consumer energy is the kilowatt hour (kWh). Express this in joules (J).
- 1.3 Express an angle of 30° in radians.
- 1.4 Express an angle of 0.2 radians in degrees.
- 1.5 A resistor has a value of 39,570 Ω . Express this in kilohms ($k\Omega$).
- 1.6 An inductor has a value of 680 mH. Express this in henries (H).
- 1.7 A capacitor has a value of 0.00245 μ F. Express this in nanofarads (nF).
- 1.8 A current of 190 μ A is applied to a circuit. Express this in milliamperes (mA).
- 1.9 A signal of 0.475 mV appears at the input of an amplifier. Express this in volts using exponent notation.
- 1.10 A cable has an insulation resistance of 16.5 M Ω . Express this resistance in ohms using exponent notation.
- 1.11 Perform the following arithmetic using exponents:
 - (a) $(1.2 \times 10^3) \times (4 \times 10^3)$
 - (b) $(3.6 \times 10^6) \times (2 \times 10^{-3})$
 - (c) $(4.8 \times 10^9) \div (1.2 \times 10^6)$
 - (d) $(9.9 \times 10^{-6}) \div (19.8 \times 10^{-3})$
 - (e) $(4 \times 10^3) \times (7.5 \times 10^5) \times (2.5 \times 10^{-9})$
- 1.12 Which one of the following metals is the best conductor of electricity: aluminium, copper, silver, or mild steel? Why?
- 1.13 A resistor of 270 Ω is connected across a 9 V d.c. supply. What current will flow?
- 1.14 A current of 56 μ A flows in a 120 $k\Omega$ resistor. What voltage drop will appear across the resistor?
- 1.15 A voltage drop of 13.2 V appears across a resistor when a current of 4 mA flows in it. What is the value of the resistor?
- 1.16 A power supply is rated at 15 V, 1 A. What value of load resistor would be

- required to test the power supply at its full rated output?
- 1.17 A wirewound resistor is made from a 4 m length of aluminium wire (ρ = 2.18 × 10⁻⁸ Ω m). Determine the resistance of the wire if it has a cross-sectional area of 0.2 mm².
- 1.18 A current of 25 mA flows in a 47 Ω resistor. What power is dissipated in the resistor?
- 1.19 A 9 V battery supplies a circuit with a current of 75 mA. What power is consumed by the circuit?
- 1.20 A resistor of 150 Ω is rated at 0.5 W. What is the maximum current that can be applied to the resistor without exceeding its rating?
- 1.21 Determine the electric field strength that appears in the space between two parallel plates separated by an air gap of 4 mm if a potential of 2.5 kV exists between them.
- 1.22 Determine the current that must be applied to a straight wire conductor in order to produce a flux density of 200 μ T at a distance of 12 mm in free space.
- 1.23 A flux density of 1.2 mT is developed in free space over an area of 50 cm².
 Determine the total flux present.
- 1.24 A ferrite rod has a length of 250 mm and a diameter of 10 mm. Determine the reluctance if the rod has a relative permeability of 2,500.
- 1.25 A coil of 400 turns is wound on a closed mild steel core having a length of 400 mm and cross-sectional area of 480 mm².

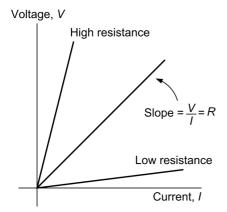
Figure 1.25 See Questions 1.26 and 1.27

- Determine the current required to establish a flux of 0.6 mWb in the core.
- 1.26 Identify the type of switch shown in Fig. 1.25.
- 1.27 Fig. 1.25 shows a simple voltmeter. If the milliammeter reads 1 mA full-scale and has negligible resistance, determine the values for R_1 to R_4 that will provide voltage ranges of 1 V, 3 V, 10 V and 30 V full-scale.

Answers to these problems appear on page 450.

Passive components

Chapter summary


This chapter introduces several of the most common types of electronic component, including resistors, capacitors and inductors. These are often referred to as **passive components** as they cannot, by themselves, generate voltage or current. An understanding of the characteristics and application of passive components is an essential prerequisite to understanding the operation of the circuits used in amplifiers, oscillators, filters and power supplies.

Resistors


The notion of resistance as opposition to current was discussed in the previous chapter. Conventional forms of resistor obey a straight line law when voltage is plotted against current (see Fig. 2.1) and this allows us to use resistors as a means of converting current into a corresponding voltage drop, and vice versa (note that doubling the applied current will produce double the voltage drop, and so on). Therefore resistors provide us with a means of controlling the currents and voltages present in electronic circuits. They can also act as loads to simulate the presence of a circuit during testing (e.g. a suitably rated resistor can be used to replace a loudspeaker when an audio amplifier is being tested).

The specifications for a resistor usually include the value of resistance expressed in ohms (Ω) , kilohms $(k\Omega)$ or megohms $(M\Omega)$, the accuracy or tolerance (quoted as the maximum permissible percentage deviation from the marked value) and the power rating (which must be equal to, or greater than, the maximum expected power dissipation).

Other practical considerations when selecting resistors for use in a particular application include temperature coefficient, noise performance, stability and ambient temperature range. Table 2.1 summarizes the properties of five of the most common types of resistor. Fig. 2.2 shows a typical selection of fixed resistors with values from 15 Ω to 4.7 k Ω .

Figure 2.1 Voltage plotted against current for three different values of resistor

Figure 2.2 A selection of resistors including highpower metal clad, ceramic wirewound, carbon and metal film types with values ranging from 15Ω to $4.7 \text{ k}\Omega$

Preferred values

The value marked on the body of a resistor is not its *exact* resistance. Some minor variation in resistance value is inevitable due to production tolerance. For example, a resistor marked 100 Ω and produced within a tolerance of $\pm 10\%$ will have a value which falls within the range 90 Ω to 110 $\Omega.$ A similar component with a tolerance of $\pm 1\%$ would have a value that falls within the range 99 Ω to 101 $\Omega.$ Thus, where accuracy is important it is essential to use close tolerance components.

Resistors are available in several series of fixed decade values, the number of values provided with each series being governed by the tolerance involved. In order to cover the full range of resistance values using resistors having a ±20% tolerance it will be necessary to provide six basic values (known as the **E6 series**). More values will be required in the series which offers a tolerance of ±10% and consequently the **E12** series provides 12 basic values. The **E24 series** for resistors of ±5% tolerance provides no fewer than 24 basic values and, as with the E6 and E12 series, decade multiples (i.e. × 1, × 10, × 100, × 1 k, $\times 10 \text{ k}$, $\times 100 \text{ k}$ and $\times 1 \text{ M}$) of the basic series. Fig. 2.3 shows the relationship between the E6, E12 and E24 series.

Power ratings

Resistor power ratings are related to operating temperatures and resistors should be derated at high temperatures. Where reliability is important

Table 2.1 Characteristics of common types of resistor

Property	Resistor type					
	Carbon film	Metal film	Metal oxide	Ceramic wirewound	Vitreous wirewound	Metal clad
Resistance range (Ω)	10 to 10 M	1 to 1 M	10 to 10 M	0.47 to 22 k	0.1 to 22 k	0.05 to 10k
Typical tolerance (%)	±5	±1	±2	±5	±5	±5
Power rating (W)	0.25 to 2	0.125 to 0.5	0.25 to 0.5	4 to 17	2 to 4	10 to 300
Temperature coefficient (ppm/°C)	-250	+50 to +100	+250	+250	+75	+50
Stability	Fair	Excellent	Excellent	Good	Good	Good
Noise performance	Fair	Excellent	Excellent	n.a.	n.a.	n.a.
Ambient temperature range (°C)	-45 to +125	-45 to +125	-45 to +125	-45 to +125	-45 to +125	-55 to +200
Typical applications	General purpose	Amplifiers, test equipment, etc., requiring low- noise high- tolerance components	General purpose	Power supplies, loads, medium- and high-power applications	General purpose	Very high power applications

resistors should be operated at well below their nominal maximum power dissipation.

Example 2.1

A resistor has a marked value of 220 Ω . Determine the tolerance of the resistor if it has a measured value of 207 Ω .

Solution

The difference between the marked and measured values of resistance (the error) is $(220 \ \Omega - 207 \ \Omega) = 13 \ \Omega$. The tolerance is given by:

Tolerance =
$$\frac{\text{error}}{\text{marked value}} \times 100\%$$

The tolerance is thus $(13/220) \times 100 = 5.9\%$.

Example 2.2

A 9 V power supply is to be tested with a 39 Ω load resistor. If the resistor has a tolerance of 10% find:

- (a) the nominal current taken from the supply;
- **(b)** the maximum and minimum values of supply current at either end of the tolerance range for the resistor.

Figure 2.3 The E6, E12 and E24 series

Solution

(a) If a resistor of exactly 39 Ω is used the current will be:

$$I = V/R = 9 \text{ V}/39 \Omega = 231 \text{ mA}$$

(b) The lowest value of resistance would be $(39 \ \Omega - 3.9 \ \Omega) = 35.1 \ \Omega$. In which case the current would be:

$$I = V/R = 9 V/35.1 \Omega = 256.4 \text{ mA}$$

At the other extreme, the highest value would be $(39 \Omega + 3.9 \Omega) = 42.9 \Omega$.

In this case the current would be:

$$I = V/R = 9 V/42.9 \Omega = 209.8 \text{ mA}$$

The maximum and minimum values of supply current will thus be 256.4 mA and 209.8 mA, respectively.

Example 2.3

A current of 100 mA (±20%) is to be drawn from a 28 V d.c. supply. What value and type of resistor should be used in this application?

Solution

The value of resistance required must first be calculated using Ohm's Law:

$$R = V/I = 28 \text{ V} / 100 \text{ mA} = 280 \Omega$$

The nearest preferred value from the E12 series is 270 Ω (which will actually produce a current of 103.7 mA (i.e. within ±4% of the desired value). If a resistor of ±10% tolerance is used, current will be within the range 94 mA to 115 mA (well within the ±20% accuracy specified).

The power dissipated in the resistor (calculated using $P = I \times V$) will be 2.9 W and thus a component rated at 3 W (or more) will be required. This would normally be a vitreous enamel-coated wirewound resistor (see Table 2.1).

Resistor markings

Carbon and metal oxide resistors are normally marked with colour codes which indicate their value and tolerance. Two methods of colour coding are in common use; one involves four coloured bands (see Fig. 2.4) while the other uses five colour bands (see Fig. 2.5).

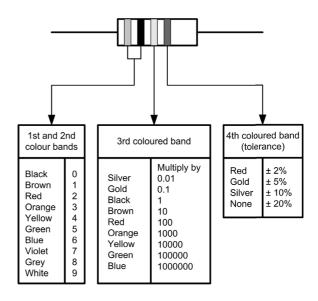


Figure 2.4 Four-band resistor colour code

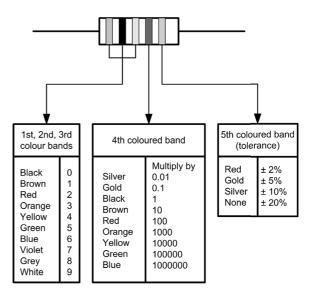


Figure 2.5 Five-band resistor colour code

Example 2.4

A resistor is marked with the following coloured stripes: brown, black, red, silver. What is its value and tolerance?

Solution

See Fig. 2.6.

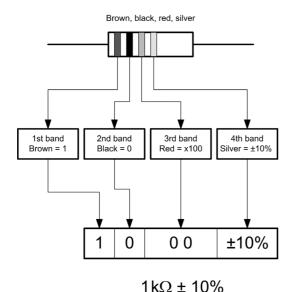


Figure 2.6 See Example 2.4

Example 2.5

A resistor is marked with the following coloured stripes: red, violet, orange, gold. What is its value and tolerance?

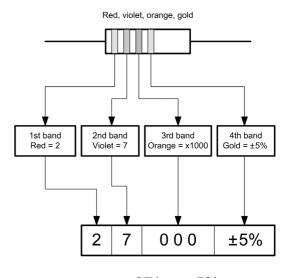
Solution

See Fig. 2.7.

Example 2.6

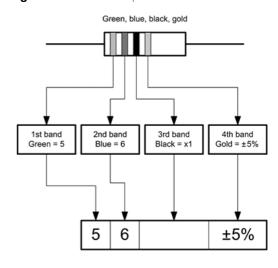
A resistor is marked with the following coloured stripes: green, blue, black, gold. What is its value and tolerance?

Solution


See Fig. 2.8.

Example 2.7

A resistor is marked with the following coloured stripes: red, green, black, black, brown. What is its value and tolerance?


Solution

See Fig. 2.9.

 $27 k\Omega \pm 5\%$

Figure 2.7 See Example 2.5

 $56 \Omega \pm 5\%$

Figure 2.8 See Example 2.6

Example 2.8

A 2.2 k Ω of ±2% tolerance is required. What fourband colour code does this correspond to?

Solution

Red (2), red (2), red (2 zeros), red (2% tolerance). Thus all four bands should be red.

Figure 2.9 See Example 2.7

BS 1852 coding

Some types of resistor have markings based on a system of coding defined in BS 1852. This system involves marking the position of the decimal point with a letter to indicate the multiplier concerned, as shown in Table 2.2. A further letter is then appended to indicate the tolerance, as shown in Table 2.3.

Table 2.2 BS 1852 resistor multiplier markings

Letter	Multiplier
R	1
K	1,000
М	1,000,000

Table 2.3 BS 1852 resistor tolerance markings

Letter	Multiplier
F	±1%
G	±2%
J	±5%
K	±10%
М	±20%

Example 2.9

A resistor is marked coded with the legend 4R7K. What is its value and tolerance?

Solution

 $4.7 \Omega \pm 10\%$

Example 2.10

A resistor is marked coded with the legend 330RG. What is its value and tolerance?

Solution

 $330 \Omega \pm 2\%$

Example 2.11

A resistor is marked coded with the legend R22M. What is its value and tolerance?

Solution

 $0.22 \Omega \pm 20\%$

Series and parallel combinations of resistors

In order to obtain a particular value of resistance, fixed resistors may be arranged in either series or parallel as shown in Figs 2.10 and 2.11.

The effective resistance of each of the series circuits shown in Fig. 2.10 is simply equal to the sum of the individual resistances. So, for the circuit shown in Fig. 2.10(a):

$$R = R_1 + R_2$$

while for Fig. 2.10(b)

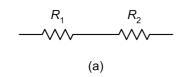
$$R = R_1 + R_2 + R_3$$

Turning to the parallel resistors shown in Fig. 2.11, the reciprocal of the effective resistance of each circuit is equal to the sum of the reciprocals of the individual resistances. Hence, for Fig. 2.11(a):

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

while for Fig. 2.12(b)

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$


In the former case, the formula can be more conveniently re-arranged as follows:

$$R = \frac{R_1 \times R_2}{R_1 + R_2}$$

You can remember this as the *product* of the two resistance values *divided by* the *sum* of the two resistance values.

Example 2.12

Resistors of 22 Ω , 47 Ω and 33 Ω are connected (a) in series and (b) in parallel. Determine the effective resistance in each case.

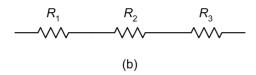
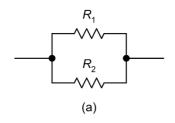



Figure 2.10 Resistors in series

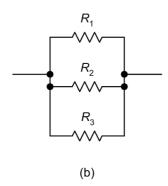


Figure 2.11 Resistors in parallel

Solution

- (a) In the series circuit $R = R_1 + R_2 + R_3$, thus $R = 22 \Omega + 47 \Omega + 33 \Omega = 102 \Omega$
- (b) In the parallel circuit:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

thus

$$\frac{1}{B} = \frac{1}{22 \Omega} + \frac{1}{47 \Omega} + \frac{1}{33 \Omega}$$

or

$$\frac{1}{R}$$
 = 0.045 + 0.021 + 0.03

from which

$$\frac{1}{R}$$
 = 0.096 = 10.42 Ω

Example 2.13

Determine the effective resistance of the circuit shown in Fig. 2.12.

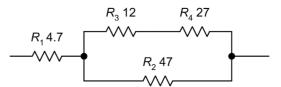


Figure 2.12 See Example 2.13

Solution

The circuit can be progressively simplified as shown in Fig. 2.13. The stages in this simplification are:

- (a) R_3 and R_4 are in series and they can be replaced by a single resistance (R_A) of (12 Ω + 27 Ω) = 39 Ω .
- **(b)** $R_{\rm A}$ appears in parallel with R_2 . These two resistors can be replaced by a single resistance ($R_{\rm B}$) of (39 Ω × 47 Ω)/(39 Ω + 47 Ω) = 21.3 Ω .
- (c) $R_{\rm B}$ appears in series with $R_{\rm 1}$. These two resistors can be replaced by a single resistance (R) of (21.3 Ω + 4.7 Ω) = 26 Ω .

Example 2.14

A resistance of 50 Ω rated at 2 W is required. What parallel combination of preferred value

resistors will satisfy this requirement? What power rating should each resistor have?

Solution

Two 100 Ω resistors may be wired in parallel to provide a resistance of 50 Ω as shown below:

$$R = \frac{R_1 \times R_2}{R_1 \times R_2} = \frac{100 \times 100}{100 + 100} = \frac{10,000}{200} = 50\Omega$$

Note from this that when two resistors of the same value are connected in parallel the resulting resistance will be half that of a single resistor.

Having shown that two 100 Ω resistors connected in parallel will provide us with a resistance of 50 Ω we now need to consider the power rating. Since the resistors are identical, the applied power will be shared equally between them. Hence each resistor should have a power rating of 1 W.

Resistance and temperature

Fig. 2.14 shows how the resistance of a metal conductor (e.g. copper) varies with temperature. Since the resistance of the material increases with temperature, this characteristic is said to exhibit a **positive temperature coefficient** (**PTC**). Not all materials have a PTC characteristic.

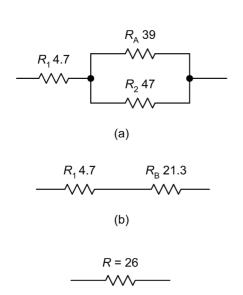


Figure 2.13 See Example 2.13

(c)

The resistance of a carbon conductor falls with temperature and it is therefore said to exhibit a **negative temperature coefficient (NTC)**.

The resistance of a conductor at a temperature, *t*, is given by the equation:

$$R_{+} = R_{0}(1 + \alpha t + \beta t^{2} + \gamma t^{3} ...)$$

where α , β , γ , etc. are constants and R_0 is the resistance at 0 °C.

The coefficients, β , γ , etc. are quite small and since we are normally only dealing with a relatively restricted temperature range (e.g. 0°C to 100°C) we can usually approximate the characteristic shown in Fig. 2.14 to the straight line law shown in Fig. 2.15. In this case the equation simplifies to:

$$R_{+} = R_{0}(1 + \alpha t)$$

where α is known as the **temperature coefficient** of resistance. Table 2.4 shows some typical values for α (note that α is expressed in $\Omega/\Omega/^{\circ}C$ or just $/^{\circ}C$).

Table 2.4 Temperature coefficient of resistance

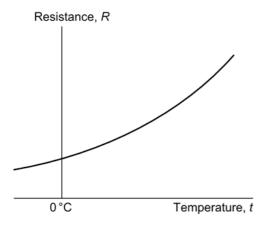
Material	Temperature coefficient of resistance, α (/°C)
Platinum	+0.0034
Silver	+0.0038
Copper	+0.0043
Iron	+0.0065
Carbon	-0.0005

Example 2.15

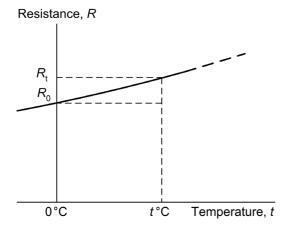
A resistor has a temperature coefficient of 0.001/°C. If the resistor has a resistance of 1.5 k Ω at 0°C, determine its resistance at 80°C.

Solution

Now


$$R_{\rm t} = R_{\rm 0}(1 + \alpha t)$$

thus


$$R_{\star} = 1.5 \text{ k}\Omega \times (1 + (0.001 \times 80))$$

Hence

$$R_{\star} = 1.5 \times 1.08 = 1.62 \text{ k} \Omega$$

Figure 2.14 Variation of resistance with temperature for a metal conductor

Figure 2.15 Straight line approximation of Fig. 2.14

Example 2.16

A resistor has a temperature coefficient of 0.0005/°C. If the resistor has a resistance of 680 Ω at 20°C, what will its resistance be at 80°C?

Solution

First we must find the resistance at 0 °C. Re-arranging the formula for $R_{\rm t}$ gives:

$$R_0 = \frac{R_t}{1 + \alpha t} = \frac{680}{1 + (0.0005 \times 20)} = \frac{680}{1 + 0.01}$$

Hence

$$R_0 = \frac{680}{1+0.01} = 673.3 \ \Omega$$

Now

$$R_{\star} = R_{0}(1 + \alpha t)$$

thus

$$R_{90} = 673.3 \times (1 + (0.0005 \times 90))$$

Hence

$$R_{\rm q0} = 673.3 \times 1.045 = 704 \Omega$$

Example 2.17

A resistor has a resistance of 40 Ω at 0 °C and 44 Ω at 100 °C. Determine the resistor's temperature coefficient.

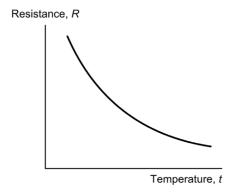
Solution

First we need to make α the subject of the formula:

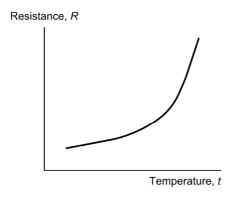
$$R_{+} = R_{0}(1 + \alpha t)$$

Now

$$\alpha = \frac{1}{t} \left(\frac{R_{t}}{R_{0}} - 1 \right) = \frac{1}{100} \left(\frac{44}{40} - 1 \right)$$


from which

$$\alpha = \frac{1}{100}(1.1-1) = \frac{1}{100} \times 0.1 = 0.001 / ^{\circ}C$$


Thermistors

With conventional resistors we would normally require resistance to remain the same over a wide range of temperatures (i.e. α should be zero). On the other hand, there are applications in which we could use the effect of varying resistance to detect a temperature change. Components that allow us to do this are known as **thermistors**. The resistance of a thermistor changes markedly with temperature and these components are widely used in temperature sensing and temperature compensating applications. Two basic types of thermistor are available, NTC and PTC (see Fig. 2.16).

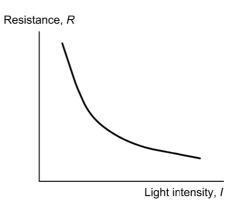
Typical NTC thermistors have resistances that vary from a few hundred (or thousand) ohms at 25 °C to a few tens (or hundreds) of ohms at 100 °C. PTC thermistors, on the other hand, usually have a resistance—temperature characteristic which remains substantially flat (typically at around 100 Ω) over the range 0 °C to around 75 °C. Above this, and at a critical temperature (usually in the range 80 °C to 120 °C)

(a) Negative temperature coefficient (NTC)

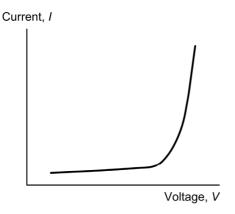
(b) Positive temperature coefficient (PTC)

Figure 2.16 Characteristics of (a) NTC and (b) PTC thermistors

their resistance rises very rapidly to values of up to, and beyond, 10 k Ω (see Fig. 2.16).


A typical application of PTC thermistors is over-current protection. Provided the current passing through the thermistor remains below the threshold current, the effects of self-heating will remain negligible and the resistance of the thermistor will remain low (i.e. approximately the same as the resistance quoted at 25 °C). Under fault conditions, the current exceeds the threshold value by a considerable margin and the thermistor starts to self-heat. The resistance then increases rapidly and, as a consequence, the current falls to the rest value. Typical values of threshold and rest currents are 200 mA and 8 mA, respectively, for a device which exhibits a nominal resistance of 25 Ω at 25 °C.

Light-dependent resistors


Light-dependent resistors (LDRs) use a semiconductor material (i.e. a material that is neither a conductor nor an insulator) whose electrical characteristics vary according to the amount of incident light. The two semiconductor materials used for the manufacture of LDRs are cadmium sulphide (CdS) and cadmium selenide (CdSe). These materials are most sensitive to light in the visible spectrum, peaking at about 0.6 μm for CdS and 0.75 μm for CdSe. A typical CdS LDR exhibits a resistance of around 1 M Ω in complete darkness and less than 1 k Ω when placed under a bright light source (see Fig. 2.17).

Voltage-dependent resistors

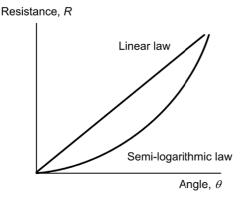
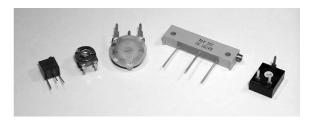

The resistance of a voltage-dependent resistor (VDR) falls very rapidly when the voltage across it exceeds a nominal value in either direction (see Fig. 2.18). In normal operation, the current flowing in a VDR is negligible; however, when the resistance falls, the current will become appreciable and a significant amount of energy will be absorbed. VDRs are used as a means of 'clamping' the voltage in a circuit to a predetermined level. When connected across the supply rails to a circuit (either a.c or d.c.) they are able to offer a measure of protection against voltage surges.

Figure 2.17 Characteristic of a light-dependent resistor (LDR)

Figure 2.18 Characteristic of a voltage-dependent resistor (VDR)

Figure 2.19 Characteristics for linear and semi-logarithmic law variable resistors


Variable resistors

Variable resistors are available in several forms including those which use carbon tracks and those which use a wirewound resistance element. In either case, a moving slider makes contact with the resistance element. Most variable resistors have three (rather than two) terminals and as such are more correctly known as **potentiometers**. Carbon potentiometers are available with linear or semi-logarithmic law tracks (see Fig. 2.19) and in rotary or slider formats. Ganged controls, in which several potentiometers are linked together by a common control shaft, are also available. Fig. 2.20 shows a selection of variable resistors.

You will also encounter various forms of preset resistors that are used to make occasional adjustments (e.g. for calibration). Various forms

Figure 2.20 A selection of common types of carbon and wirewound variable resistors/potentiometers

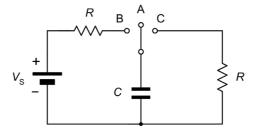
Figure 2.21 A selection of common types of standard and miniature preset resistors/ potentiometers

of preset resistor are commonly used including open carbon track skeleton presets and fully encapsulated carbon and multi-turn cermet types, as shown in Fig. 2.21.

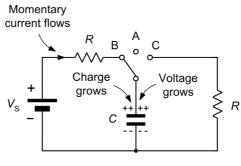
Capacitors

A capacitor is a device for storing electric charge. In effect, it is a reservoir into which charge can be deposited and then later extracted. Typical applications include reservoir and smoothing capacitors for use in power supplies, coupling a.c. signals between the stages of amplifiers, and decoupling supply rails (i.e. effectively grounding the supply rails as far as a.c. signals are concerned).

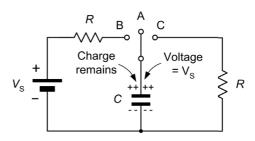
A capacitor can consist of nothing more than two parallel metal plates as shown in Fig. 1.10 on page 11. To understand what happens when a capacitor is being charged and discharged take a look at Fig. 2.22. If the switch is left open (position A), no charge will appear on the plates and in this condition there will be no electric field.


in the space between the plates nor will there be any charge stored in the capacitor.

When the switch is moved to position B, electrons will be attracted from the positive plate to the positive terminal of the battery. At the same time, a similar number of electrons will move from the negative terminal of the battery to the negative plate. This sudden movement of electrons will manifest itself in a momentary surge of current (conventional current will flow from the positive terminal of the battery towards the positive terminal of the capacitor).


Eventually, enough electrons will have moved to make the e.m.f. between the plates the same as that of the battery. In this state, the capacitor is said to be **fully charged** and an electric field will be present in the space between the two plates. If, at some later time, the switch is moved back to position A, the positive plate will be left with a deficiency of electrons while the negative plate will be left with a surplus of electrons. Furthermore, since there is no path for current to flow between the two plates the capacitor will remain charged and a potential difference will be maintained between the plates.

Now assume that the switch is moved to position C. The excess electrons on the negative plate will flow through the resistor to the positive plate until a neutral state once again exists (i.e. until there is no excess charge on either plate). In this state the capacitor is said to be **fully discharged** and the electric field between the plates will rapidly collapse. The movement of electrons during the discharging of the capacitor will again result in a momentary surge of current (current will flow from the positive terminal of the capacitor and into the resistor).


Fig. 2.23 shows the direction of current flow in the circuit of Fig. 2.22 during charging (switch in position B) and discharging (switch in position C). It should be noted that current flows momentarily in both circuits even though you may think that the circuit is broken by the gap between the capacitor plates!

(a) Capacitor initially uncharged

(b) Capacitor charging

(c) Capacitor remains charged

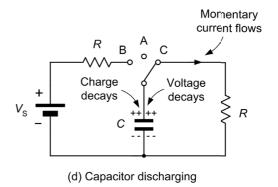
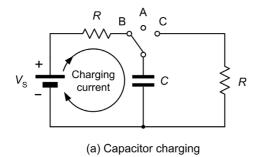
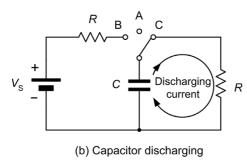




Figure 2.22 Capacitor charging and discharging

Figure 2.23 Current flow during charging and discharging

Capacitance

The unit of capacitance is the farad (F). A capacitor is said to have a capacitance of 1 F if a current of 1 A flows in it when a voltage changing at the rate of 1 V/s is applied to it. The current flowing in a capacitor will thus be proportional to the product of the capacitance, *C*, and the rate of change of applied voltage. Hence:

 $i = C \times \text{(rate of change of voltage)}$

Note that we've used a lower case *i* to represent the current flowing in the capacitor. We've done this because the current is changing and doesn't remain constant.

The rate of change of voltage is often represented by the expression dv/dt where dv represents a very small change in voltage and dt represents the corresponding small change in time. Expressing this mathematically gives:

$$i = C \frac{dV}{dt}$$

Example 2.18

A voltage is changing at a uniform rate from 10 V to 50 V in a period of 0.1 s. If this voltage is applied to a capacitor of 22 μ F, determine the current that will flow.

Solution

Now the current flowing will be given by:

 $i = C \times \text{(rate of change of voltage)}$

Thus

$$i = C \left(\frac{\text{change in voltage}}{\text{change in time}} \right) = 22 \times 10^{-6} \times \left(\frac{50 - 10}{0.1} \right)$$

From which

$$i = 22 \times 10^{-6} \times \left(\frac{40}{0.1}\right) = 22 \times 10^{-6} \times 400$$

SO

$$i = 8.8 \times 10^{-3} = 8.8 \text{ mA}$$

Charge, capacitance and voltage

The charge or **quantity of electricity** that can be stored in the electric field between the capacitor plates is proportional to the applied voltage and the capacitance of the capacitor. Thus:

$$Q = CV$$

where Q is the charge (in coulombs), C is the capacitance (in farads) and V is the potential difference (in volts).

Example 2.19

A 10 uF capacitor is charged to a potential of 250 V. Determine the charge stored.

Solution

The charge stored will be given by:

$$Q = CV = 10 \times 10^{-6} \times 250 = 2.5 \text{ mC}$$

Energy storage

The energy stored in a capacitor is proportional to the product of the capacitance and the square of the potential difference. Thus:

$$W = \frac{1}{2} C V^2$$

where W is the energy (in joules), C is the capacitance (in farads) and V is the potential difference (in volts).

Example 2.20

A capacitor of 47 μ F is required to store 4J of energy. Determine the potential difference that must be applied to the capacitor.

Solution

The foregoing formula can be re-arranged to make *V* the subject as follows:

$$V = \sqrt{\frac{E}{0.5C}} = \sqrt{\frac{2E}{C}} = \sqrt{\frac{2 \times 4}{47 \times 10^{-6}}}$$

from which

$$V = \sqrt{\frac{8}{47 \times 10^{-6}}} = \sqrt{0.170 \times 10^{6}} = 0.412 \times 10^{3} = 412 \text{ V}$$

Capacitance and physical dimensions

The capacitance of a capacitor depends upon the physical dimensions of the capacitor (i.e. the size of the plates and the separation between them) and the dielectric material between the plates. The capacitance of a conventional parallel plate capacitor is given by:

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

where C is the capacitance (in farads), ε_{\circ} is the permittivity of free space, ε_{r} is the **relative permittivity** of the dielectric medium between the plates and d is the separation between the plates (in metres).

Example 2.21

A capacitor of 1 nF is required. If a dielectric material of thickness 0.1 mm and relative permittivity 5.4 is available, determine the required plate area.

Solution

Re-arranging the formula

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

to make A the subject gives:

$$A = \frac{Cd}{\varepsilon_0 \varepsilon_r} = \frac{1 \times 10^{-9} \times 0.1 \times 10^{-3}}{8.854 \times 10^{-12} \times 5.4}$$

from which

$$A = \frac{0.1 \times 10^{-12}}{47.8116 \times 10^{-12}}$$

thus

$$A = 0.00209 \text{ m}^2 \text{ or } 20.9 \text{ cm}^2$$

In order to increase the capacitance of a capacitor, many practical components employ multiple plates (see Fig. 2.24). The capacitance is then given by:

$$C = \frac{\varepsilon_0 \varepsilon_r (n-1) A}{d}$$

where C is the capacitance (in farads), $\varepsilon_{\rm o}$ is the permittivity of free space, $\varepsilon_{\rm r}$ is the **relative permittivity** of the dielectric medium between the plates, d is the separation between the plates (in metres) and n is the total number of plates.

Figure 2.24 A multi-plate capacitor

Example 2.22

A capacitor consists of six plates each of area 20 cm² separated by a dielectric of relative permittivity 4.5 and thickness 0.2 mm. Determine the value of capacitance.

Solution

Usina

$$C = \frac{\varepsilon_0 \varepsilon_r (n-1) A}{d}$$

gives:

$$C = \frac{8.854 \times 10^{-12} \times 4.5 \times (6 - 1) \times 20 \times 10^{-4}}{0.2 \times 10^{-3}}$$

from which

$$C = \frac{3,984.3 \times 10^{-16}}{0.2 \times 10^{-3}} = 19.921 \times 10^{-10}$$

thus

C = 1.992 nF

Capacitor specifications

The specifications for a capacitor usually include the value of capacitance (expressed in microfarads, nanofarads or picofarads), the voltage rating (i.e. the maximum voltage which can be continuously applied to the capacitor under a given set of conditions) and the accuracy or tolerance (quoted as the maximum permissible percentage deviation from the marked value).

Other practical considerations when selecting capacitors for use in a particular application include temperature coefficient, leakage current, stability and ambient temperature range.

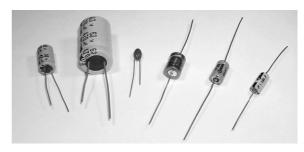

Table 2.5 summarizes the properties of five of the most common types of capacitor. Note that electrolytic capacitors require the application of a polarizing voltage in order to cause the chemical action on which they depend for their operation. The polarizing voltages used for electrolytic capacitors can range from as little as 1 V to several hundred volts depending upon the working voltage rating for the component in question.

Fig. 2.25 shows some typical non-electrolytic capacitors (including polyester, polystyrene, ceramic and mica types) while Fig. 2.26 shows

a selection of electrolytic (polarized) capacitors. An air-spaced variable capacitor is shown later in Fig. 2.34 on page 39.

Figure 2.25 A typical selection of non-electrolytic capacitors (including polyester, polystyrene, ceramic and mica types) with values ranging from 10 pF to 470 nF and working voltages from 50 V to 250 V

Figure 2.26 A typical selection of electrolytic (polarized) capacitors with values ranging from 1 μ F to 470 μ F and working voltages from 10 V to 63 V

Table 2.5 Characteristics of common types of capacitor

Property	Capacitor type				
	Ceramic	Electrolytic	Polyester	Mica	Polystyrene
Capacitance range (F)	2.2 p to 100 n	100 n to 10 m	10 n to 2.2 μ	0.47 to 22 k	10 p to 22 n
Typical tolerance (%)	±10 and ±20	-10 to +50	±10	±1	±5
Typical voltage rating (W)	50 V to 200 V	6.3 V to 400 V	100 V to 400 V	350 V	100 V
Temperature coefficient (ppm/°C)	+100 to -4700	+1000 typical	+100 to +200	+50	+250
Stability	Fair	Poor	Good	Excellent	Good
Ambient temperature range (°C)	-85 to +85	-40 to +80	-40 to +100	-40 to +125	-40 to +100
Typical applications	High-frequency and low-cost	Smoothing and decoupling	General purpose	Tuned circuits and oscillators	General purpose

Capacitor markings

The vast majority of capacitors employ written markings which indicate their values, working voltages, and tolerance. The most usual method of marking resin-dipped polyester (and other) types of capacitor involves quoting the value (μ F, nF or pF), the tolerance (often either 10% or 20%), and the working voltage (often using _ and ~ to indicate d.c. and a.c., respectively). Several manufacturers use two separate lines for their capacitor markings and these have the following meanings (see Fig. 2.27):

First line: capacitance (pF or μ F) and

tolerance (K = 10%, M = 20%)

Second line: rated d.c. voltage and code for

the dielectric material

A three-digit code is commonly used to mark monolithic ceramic capacitors. The first two digits of this code correspond to the first two digits of the value while the third digit is a multipler which gives the number of zeros to be added to give the value in picofarads. Other capacitors may use a colour code similar to that used for marking resistor values (see Fig. 2.28).

Example 2.23

A monolithic ceramic capacitor is marked with the legend '103K'. What is its value?

Solution

The value (pF) will be given by the first two digits (10) followed by the number of zeros indicated by the third digit (3). The value of the capacitor is thus 10,000 pF or 10 nF. The final letter (K) indicates that the capacitor has a tolerance of 10%.

Example 2.24

A tubular capacitor is marked with the following coloured stripes: brown, green, brown, red, brown. What is its value, tolerance and working voltage?

Solution

See Fig. 2.29.

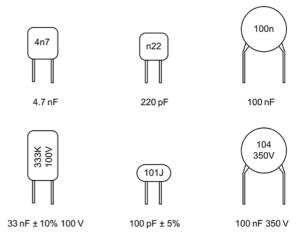


Figure 2.27 Examples of capacitor markings

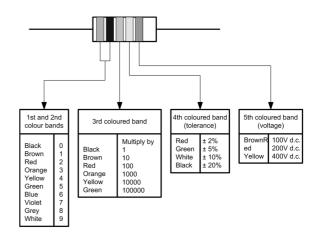


Figure 2.28 Capacitor colour code

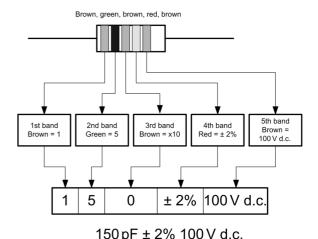


Figure 2.29 See Example 2.24

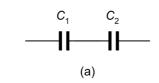
Series and parallel combination of capacitors

In order to obtain a particular value of capacitance, fixed capacitors may be arranged in either series or parallel (Figs 2.30 and 2.31). The reciprocal of the effective capacitance of each of the series circuits shown in Fig. 2.30 is equal to the sum of the reciprocals of the individual capacitances. Hence, for Fig. 2.30(a):

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

while for Fig. 2.30(b):

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$


In the former case, the formula can be more conveniently re-arranged as follows:

$$C = \frac{C_1 \times C_2}{C_1 + C_2}$$

You can remember this as the *product* of the two capacitor values *divided by* the *sum* of the two values – just as you did for two resistors in parallel.

For a parallel arrangement of capacitors, the effective capacitance of the circuit is simply equal to the sum of the individual capacitances. Hence, for Fig. 2.31(a):

$$C = C_1 + C_2$$

while for Fig. 2.31(b)
 $C = C_1 + C_2 + C_3$

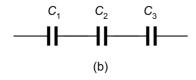


Figure 2.30 Capacitors in series

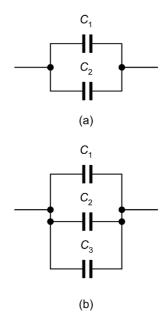


Figure 2.31 Capacitors in parallel

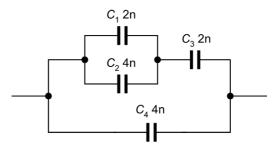
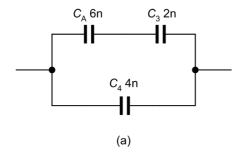


Figure 2.32 See Example 2.25


Example 2.25

Determine the effective capacitance of the circuit shown in Fig. 2.32.

Solution

The circuit of Fig. 2.32 can be progressively simplified as shown in Fig. 2.33. The stages in this simplification are:

- (a) C_1 and C_2 are in parallel and they can be replaced by a single capacitor (C_A) of (2 nF + 4 nF) = 6 nF.
- **(b)** $C_{\rm A}$ appears in series with $C_{\rm 3}$. These two resistors can be replaced by a single capacitor $(C_{\rm R})$ of $(6~{\rm nF}\times 2~{\rm nF})/(6~{\rm nF}+2~{\rm nF})=1.5~{\rm nF}.$
- (c) $C_{\rm B}$ appears in parallel with $C_{\rm 4}$. These two capacitors can be replaced by a single capacitance (C) of (1.5 nF + 4 nF) = 5.5 nF.

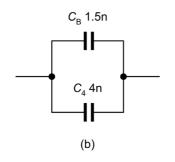


Figure 2.33 See Example 2.25

Example 2.26

A capacitance of 50 μ F (rated at 100 V) is required. What series combination of preferred value capacitors will satisfy this requirement? What voltage rating should each capacitor have?

Solution

Two 100 μ F capacitors wired in series will provide a capacitance of 50 μ F, as follows:

$$C = \frac{C_1 \times C_2}{C_1 + C_2} = \frac{100 \times 100}{100 + 100} = \frac{10,000}{200} = 50 \ \mu\text{F}$$

Since the capacitors are of equal value, the applied d.c. potential will be shared equally between them. Thus each capacitor should be rated at 50 V. Note that, in a practical circuit, we could take steps to ensure that the d.c. voltage was shared equally between the two capacitors

by wiring equal, high-value (e.g. 100 k Ω) resistors across each capacitor.

Variable capacitors

By moving one set of plates relative to the other, a capacitor can be made variable. The dielectric material used in a variable capacitor can be either air (see Fig. 2.34) or plastic (the latter tends to be more compact). Typical values for variable capacitors tend to range from about 25 pF to 500 pF. These components are commonly used for tuning radio receivers.

Inductors

Inductors provide us with a means of storing electrical energy in the form of a magnetic field. Typical applications include chokes, filters and (in conjunction with one or more capacitors) frequency selective circuits. The electrical characteristics of an inductor are determined by a number of factors including the material of the core (if any), the number of turns and the physical dimensions of the coil. Fig. 2.35 shows the construction of a typical toroidal inductor wound on a ferrite (high permeability) core.

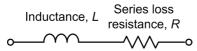

In practice every coil comprises both inductance (*L*) and a small resistance (*R*). The circuit of Fig. 2.36 shows these as two discrete components. In reality the inductance and the resistance (we often refer to this as a **loss resistance** because it's something that we don't actually want) are

Figure 2.34 An air-spaced variable capacitor. This component (used for tuning an AM radio) has two separate variable capacitors (each of 500 pF maximum) operated from a common control shaft

Figure 2.35 A practical coil contains inductance and resistance

Figure 2.36 A practical coil contains inductance and a small amount of series loss resistance

both distributed throughout the component but it is convenient to treat the inductance and resistance as separate components in the analysis of the circuit.

To understand what happens when a changing current flows through an inductor, take a look at the circuit shown in Fig. 2.37(a). If the switch is left open, no current will flow and no magnetic flux will be produced by the inductor. If the switch is closed, as shown in Fig. 2.37(b), current will begin to flow as energy is taken from the supply in order to establish the magnetic field. However, the change in magnetic flux resulting from the appearance of current creates a voltage (an **induced e.m.f.**) across the coil which opposes the applied e.m.f. from the battery.

The induced e.m.f. results from the changing flux and it effectively prevents an instantaneous rise in current in the circuit. Instead, the current increases slowly to a maximum at a rate which depends upon the ratio of inductance (L) to resistance (R) present in the circuit. After a while, a steady state condition will be reached in which the voltage across the inductor will have decayed to zero and the current will have reached a maximum value determined by the ratio of V to R (i.e. Ohm's Law). This is shown in Fig. 2.37(c).

If, after this steady state condition has been achieved, the switch is opened, as shown in

Fig. 2.37(d), the magnetic field will suddenly collapse and the energy will be returned to the circuit in the form of an induced **back e.m.f.** which will appear across the coil as the field collapses. For large values of magnetic flux and inductance this back e.m.f. can be extremely large!

Inductance

Inductance is the property of a coil which gives rise to the opposition to a change in the value of current flowing in it. Any change in the current applied to a coil/inductor will result in an induced voltage appearing across it. The unit of inductance is the henry (H) and a coil is said to have an inductance of 1 H if a voltage of 1 V is induced across it when a current changing at the rate of 1 A/s is flowing in it.

The voltage induced across the terminals of an inductor will thus be proportional to the product of the inductance (*L*) and the rate of change of applied current. Hence:

$$e = -L \times \text{(rate of change of current)}$$

Note that the minus sign indicates the polarity of the voltage, i.e. opposition to the change.

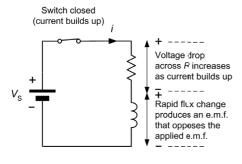
The rate of change of current is often represented by the expression di/dt where di represents a very small change in current and dt represents the corresponding small change in time. Using mathematical notation to write this we arrive at:

$$e = -L \frac{di}{dt}$$

You might like to compare this with the similar relationship that we obtained for the current flowing in a capacitor shown on page 34.


Example 2.27

A current increases at a uniform rate from 2 A to 6 A in a period of 250 ms. If this current is applied to an inductor of 600 mH, determine the voltage induced.

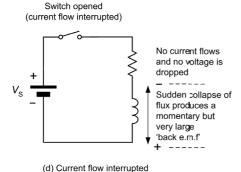

Solution

Now the induced voltage will be given by:

 $e = -L \times \text{(rate of change of current)}$



(a) No current in the inductor



(b) Current builds up

Switch remains closed

(c) Current remains constant

Figure 2.37 Flux and e.m.f. generated when a changing current is applied to an inductor

Thus

$$e = -L\left(\frac{\text{change in current}}{\text{change in time}}\right) = -60 \times 10^{-3} \times \left(\frac{6-2}{250 \times 10^{-3}}\right)$$

From which

$$e = -600 \times 10^{-3} \times \left(\frac{4}{0.25}\right) = -0.6 \times 10^{-3} \times 16$$

SO

$$e = -9.6 \text{ V}$$

Energy storage

The energy stored in an inductor is proportional to the product of the inductance and the square of the current flowing in it. Thus:

$$W = \frac{1}{2} L I^2$$

where *W* is the energy (in joules), *L* is the capacitance (in henries) and *I* is the current flowing in the inductor (in amperes).

Example 2.28

An inductor of 20 mH is required to store 2.5 J of energy. Determine the current that must be applied.

Solution

The foregoing formula can be re-arranged to make / the subject as follows:

$$I = \sqrt{\frac{E}{0.5L}} = \sqrt{\frac{2E}{L}} = \sqrt{\frac{2 \times 2.5}{20 \times 10^{-3}}}$$

From which

$$I = \sqrt{\frac{5}{20 \times 10^{-3}}} = \sqrt{0.25 \times 10^{-3}} = \sqrt{250} = 15.81 \text{ A}$$

Inductance and physical dimensions

The inductance of an inductor depends upon the physical dimensions of the inductor (e.g. the length and diameter of the winding), the number of turns and the permeability of the material of the core. The inductance of an inductor is given by:

$$L = \frac{\mu_0 \mu_r n^2 A}{I}$$

2 Passive components

where L is the inductance (in henries), μ_0 is the permeability of free space, μ_r is the relative permeability of the magnetic core, l is the mean length of the core (in metres) and A is the cross-sectional area of the core (in square metres).

Example 2.29

An inductor of 100 mH is required. If a closed magnetic core of length 20 cm, cross-sectional area 15 cm² and relative permeability 500 is available, determine the number of turns required.

Solution

First we must re-arrange the formula

$$L = \frac{\mu_0 \mu_r n^2 A}{I}$$

in order to make *n* the subject:

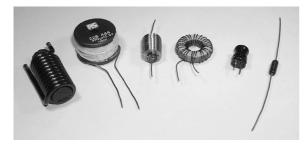
$$n = \sqrt{\frac{L \times l}{\mu_0 \mu_r n^2 A}} = \sqrt{\frac{100 \times 10^{-3} \times 20 \times 10^{-2}}{12.57 \times 10^{-7} \times 500 \times 15 \times 10^{-4}}}$$

From which

$$n = \sqrt{\frac{2 \times 10^{-2}}{94.275 \times 10^{-11}}} = \sqrt{21,215} = 146$$

Hence the inductor requires 146 turns of wire.

Inductor specifications


Inductor specifications normally include the value of inductance (expressed in henries, millihenries or microhenries), the current rating (i.e. the maximum current which can be continuously applied to the inductor under a given set of conditions), and the accuracy or tolerance (quoted as the maximum permissible percentage deviation from the marked value). Other considerations may include the temperature coefficient of the inductance (usually expressed in parts per million, p.p.m., per unit temperature change), the stability of the inductor, the d.c. resistance of the coil windings (ideally zero), the Q-factor (quality factor) of the coil and the recommended working frequency range. Table 2.6 summarizes the properties of four common types of inductor. Some typical small inductors are shown in Fig. 2.38. These have values of inductance ranging from 15 µH to 1 mH.

Inductor markings

As with capacitors, the vast majority of inductors use written markings to indicate values, working current and tolerance. Some small inductors are marked with coloured stripes to indicate their value and tolerance (in which case the standard

Table 2.6 Characteristics of common types of inductor

Property	Inductor type				
	Air cored	Ferrite cored	Ferrite pot cored	Iron cored	
Core material	Air	Ferrite rod	Ferrite pot	Laminated steel	
Inductance range (H)	50 n to 100 μ	10 μ to 1 m	1 m to 100 m	20 m to 20	
Typical d.c. resistance (Ω)	0.05 to 5	0.1 to 10	5 to 100	10 to 200	
Typical tolerance (%)	±5	±10	±10	±20	
Typical Q-factor	60	80	40	20	
Typical frequency range (Hz)	1 M to 500 M	100 k to 100 M	1 k to 10 M	50 to 10 k	
Typical applications	Tuned circuits and filters	Filters and HF transformers	LF and MF filters and transformers	Smoothing chokes and filters	

Figure 2.38 A selection of small inductors with values ranging from 15 μ H to 1 mH

colour values are used and inductance is normally expressed in microhenries).

Series and parallel combinations of inductors

In order to obtain a particular value of inductance, fixed inductors may be arranged in either series or parallel, as shown in Figs 2.39 and 2.40. The effective inductance of each of the series circuits shown in Fig. 2.39 is simply equal to the sum of the individual inductances. So, for the circuit shown in Fig. 2.39(a):

$$L = L_1 + L_2$$

while for Fig. 2.39(b)

$$L = L_1 + L_2 + L_3$$

Turning to the parallel inductors shown in Fig. 2.40, the reciprocal of the effective inductance of each circuit is equal to the sum of the reciprocals of the individual inductances. Hence, for Fig. 2.40(a):

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2}$$

while for Fig. 2.40(b)

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

In the former case, the formula can be more conveniently re-arranged as follows:

$$L = \frac{L_1 \times L_2}{L_1 + L_2}$$

You can remember this as the *product* of the two inductance values *divided* by the *sum* of the two inductance values.

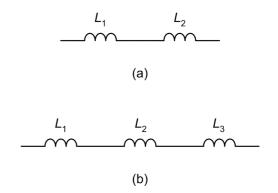
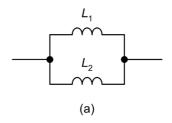



Figure 2.39 Inductors in series

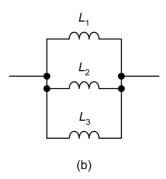


Figure 2.40 Inductors in parallel

Example 2.30

An inductance of 5 mH (rated at 2 A) is required. What parallel combination of preferred value inductors will satisfy this requirement?

Solution

Two 10 mH inductors may be wired in parallel to provide an inductance of 5 mH as shown below:

$$L = \frac{L_1 \times L_2}{L_1 + L_2} = \frac{10 \times 10}{10 + 10} = \frac{100}{20} = 5 \text{ mH}$$

Since the inductors are identical, the applied current will be shared equally between them. Hence each inductor should have a current rating of 1 A.

Example 2.31

Determine the effective inductance of the circuit shown in Fig. 2.41.

Solution

The circuit can be progressively simplified as shown in Fig. 2.42. The stages in this simplification are as follows:

- (a) L_1 and L_2 are in series and they can be replaced by a single inductance (L_A) of (60 + 60) = 120 mH.
- (b) L_A appears in parallel with L_2 . These two inductors can be replaced by a single inductor (L_B) of $(120 \times 120)/(120 + 120) = 60$ mH.
- (c) L_B appears in series with L₄. These two inductors can be replaced by a single inductance (L) of (60 + 50) = 110 mH.

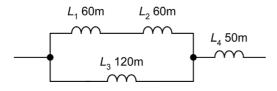
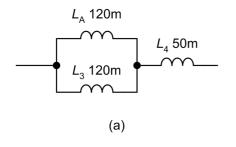



Figure 2.41 See Example 2.31

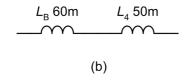


Figure 2.42 See Example 2.31

Variable inductors

A ferrite-cored inductor can be made variable by moving its core in or out of the former onto which the coil is wound. Many small inductors have threaded ferrite cores to make this possible (see Fig. 2.43). Such inductors are often used in radio and high-frequency applications where precise tuning is required.

Surface-mounted components (SMCs)

Surface-mounting technology (SMT) is now widely used in the manufacture of printed circuit boards (PCBs) for electronic equipment. SMT allows circuits to be assembled in a much smaller space than would be possible using components with conventional wire leads and pins that are mounted using through-hole techniques. It is also possible to mix the two technologies, i.e. some through-hole mounting of components and some SMCs present on the same circuit board. The following combinations are possible:

- ► SMCs on both sides of a printed circuit board
- ➤ SMC on one side of the board and conventional through-hole components (THCs) on the other
- ► A mixture of SMCs and THCs on both sides of the printed circuit board.

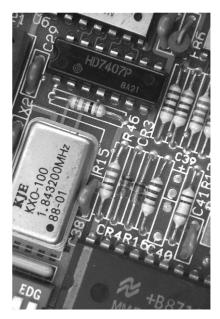
SMCs are supplied in packages that are designed for mounting directly on the surface of a PCB. To provide electrical contact with the PCB, some SMCs have contact pads on their surface. Other

Figure 2.43 An adjustable ferrite-cored inductor

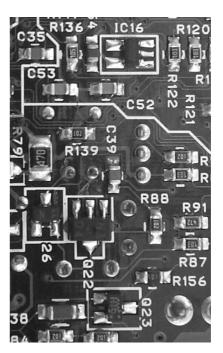
devices have contacts which extend beyond the outline of the package itself but which terminate on the surface of the PCB rather than making contact through a hole (as is the case with a conventional THC). In general, passive components (such as resistors, capacitors and inductors) are configured leadless for surface mounting, while active devices (such as transistors and integrated circuits) are available in both surface mountable types as well as lead and leadless terminations suitable for making direct contact to the pads on the surface of a PCB.

Most SMCs have a flat rectangular shape rather than the cylindrical shape that we associate with conventional wire leaded components. During manufacture of a PCB, the various SMCs are attached using re-flow soldering paste (and in some cases adhesives) which consists of particles of solder and flux together with binder, solvents and additives. They need to have good 'tack' in order to hold the components in place and remove oxides without leaving obstinate residues.

The component attachment (i.e. soldering!) process is completed using one of several techniques including convection ovens in which the PCB is passed, using a conveyor belt, through a convection oven which has separate zones for preheating, flowing and cooling, and infrared re-flow in which infra-red lamps are used to provide the source of heat.


SMCs are generally too small to be marked with colour codes. Instead, values may be marked using three digits. For example, the first two digits marked on a resistor normally specify the first two digits of the value while the third digit gives the number of zeros that should be added.

Example 2.32


In Fig. 2.45, R88 is marked '102'. What is its value?

Solution

R88 will have a value of 1,000 Ω (i.e. 10 followed by two zeros).

Figure 2.44 Conventional components mounted on a printed circuit board. Note that components such as C38, R46, etc. have leads that pass through holes in the printed circuit board

Figure 2.45 Surface mounted components (note the appearance of capacitors C35, C52 and C53, and resistors, R87, R88, R91, etc.)

Practical investigation

Objective

To investigate the resistance of series and parallel combinations of resistors.

Components and test equipment

Breadboard, digital or analogue meter with d.c. current ranges, 9 V d.c. power source (either a 9 V battery or an a.c. mains adapter with a 9 V 400 mA output), test leads, resistors of 100 Ω , 220 Ω , 330 Ω , 470 Ω , 680 Ω and 1 k Ω , connecting wire.

Procedure

Connect the resistor network and power supply (or battery) as shown in Fig. 2.46. Select the 20 V d.c. voltage range on the multimeter then measure and record the supply voltage (this should be approximately 9 V). Now break the positive connection to the circuit, change the range on the multimeter to the 20 mA d.c. current range and measure the current supplied to the circuit.

Next, measure and record the voltage dropped across each resistor (don't forget to change ranges on the multimeter when making each measurement).

Finally, break the circuit at one end of each resistor in turn, then measure and record the current flowing. Repeat the procedure for the other two resistor network circuits shown in Figs. 2.47 and 2.48.

Measurements and calculations

Record your results in a table for each network. Use the recorded values of current and voltage for each resistor to calculate the value of resistance and compare this with the marked value. Check that the measured value lies within the tolerance band for each resistor.

Calculate the resistance of each network (looking in at the supply terminals) and compare this with the resistance calculated by dividing the supply voltage by the supply current.

Conclusion

Comment on the results. Did your measured values agree with the marked values? Were these within the tolerance range for the resistors used in the investigation? If the readings were not in agreement can you suggest why?

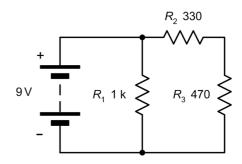


Figure 2.46 Circuit diagram – first network

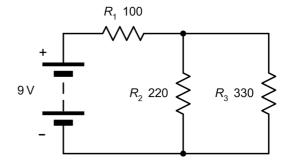


Figure 2.47 Circuit diagram – second network

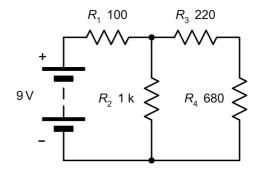


Figure 2.48 Circuit diagram – third network

Important formulae introduced in this chapter

Component tolerance:

(page 24) $Tolerance = \frac{error}{marked \ value} \times 100\%$

Resistors in series:

(page 27)

$$R = R_1 + R_2 + R_3$$

Resistors in parallel:

(page 27)

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Two resistors in parallel:

(page 28)

$$R = \frac{R_1 \times R_2}{R_1 + R_2}$$

Resistance and temperature: (page 29)

$$R_{\star} = R_{0}(1 + \alpha t)$$

Current flowing in a capacitor:

(page 34)

$$i = C \frac{dV}{dt}$$

Charge in a capacitor:

(page 34)

$$Q = C V$$

Energy stored in a capacitor:

(page 34)

$$W = \frac{1}{2} C V^2$$

Capacitance of a capacitor:

(page 35)

$$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

Capacitors in series:

(page 38)

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Two capacitors in series:

(page 38)

$$C = \frac{C_1 \times C_2}{C_1 + C_2}$$

Capacitors in parallel:

(page 38)

$$C = C_1 + C_2 + C_3$$

Induced e.m.f. in an inductor:

(page 40)

$$e = -L \frac{\mathrm{d}i}{\mathrm{d}t}$$

Energy stored in an inductor:

(page 41)

$$W = \frac{1}{2} L I^2$$

Inductance of an inductor:

(page 41)

$$L = \frac{\mu_0 \mu_r n^2 A}{l}$$

Inductors in series:

(page 43)

$$L = L_1 + L_2 + L_3$$

Inductors in parallel:

(page 43)

$$\frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

Two inductors in parallel:

(page 43)

$$L = \frac{L_1 \times L_2}{L_1 + L_2}$$

Symbols introduced in this chapter

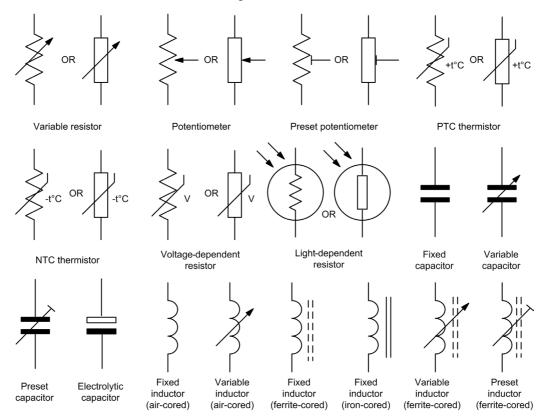


Figure 2.49 Circuit symbols introduced in this chapter

Problems

- 2.1 A power supply rated at 15 V, 0.25 A is to be tested at full rated output. What value of load resistance is required and what power rating should it have? What type of resistor is most suitable for this application and why?
- 2.2 Determine the value and tolerance of resistors marked with the following coloured bands:
 - (a) red, violet, yellow, gold
 - (b) brown, black, black, silver
 - (c) blue, grey, green, gold
 - (d) orange, white, silver, gold
 - (e) red, red, black, brown, red.
- 2.3 A batch of resistors are all marked yellow, violet, black, gold. If a resistor is selected

- from this batch, within what range would you expect its value to be?
- 2.4 Resistors of 27 Ω , 33 Ω , 56 Ω and 68 Ω are available. How can two or more of these be arranged to realize the following resistance values?
 - (a) 60Ω
 - (b) 14.9Ω
 - (c) 124Ω
 - (d) 11.7Ω
 - (e) 128Ω .
- 2.5 Three 100 Ω resistors are connected as shown in Fig. 2.50. Determine the effective resistance of the circuit.
- 2.6 Determine the effective resistance of the circuit shown in Fig. 2.51.

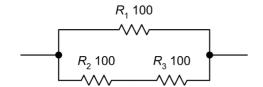


Figure 2.50 See Question 2.5

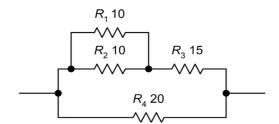


Figure 2.51 See Question 2.6

- 2.7 Determine the resistance of the resistor network shown in Fig. 2.52 looking into terminal A and B with (a) terminals C and D left open circuit and (b) terminals C and D short circuit.
- 2.8 A resistor has a temperature coefficient of 0.0008/°C. If the resistor has a resistance of 390 Ω at 0 °C, determine its resistance at 55 °C.
- 2.9 A resistor has a temperature coefficient of 0.004/°C. If the resistor has a resistance of 82 k Ω at 20 °C, what will its resistance be at 75 °C?
- 2.10 A resistor has a resistance of 218 Ω at 0 °C and 225 Ω at 100 °C. Determine the resistor's temperature coefficient.
- 2.11 Capacitors of 1 μ F, 3.3 μ F, 4.7 μ F and 10 μ F are available. How can two or more of these capacitors be arranged to realize the following capacitance values?
 - (a) 8 µF
 - (b) 11 μF
 - (c) $19 \mu F$
 - (d) $0.91 \mu F$
 - (e) $1.94 \mu F$

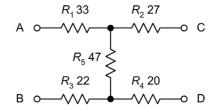


Figure 2.52 See Question 2.7

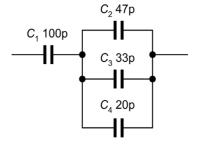


Figure 2.53 See Question 2.13

- 2.12 Three 180 pF capacitors are connected
 (a) in series and (b) in parallel. Determine
 the effective capacitance of each
 combination.
- 2.13 Determine the effective capacitance of the circuit shown in Fig. 2.53.
- 2.14 A capacitor of 330 μF is charged to a potential of 63 V. Determine the quantity of energy stored.
- 2.15 A parallel plate capacitor has plates of 0.02 m². Determine the capacitance of the capacitor if the plates are separated by a dielectric of thickness 0.5 mm and relative permittivity 5.6.
- 2.16 A capacitor is required to store 0.5 J of energy when charged from a 120 V d.c. supply. Determine the value of capacitance required.
- 2.17 The current in a 2.5 H inductor increases uniformly from zero to 50 mA in 400 ms. Determine the e.m.f. induced.

2 Passive components

- 2.18 An inductor has 200 turns of wire wound on a closed magnetic core of mean length 24 cm, cross-sectional area 10 cm² and relative permeability 650. Determine the inductance of the inductor.
- 2.19 A current of 4 A flows in a 60 mH inductor. Determine the energy stored.
- 2.20 Inductors of 22 mH and 68 mH are connected (a) in series and (b) in parallel. Determine the effective inductance in each case.

Answers to these problems appear on page 450.

D.C. circuits

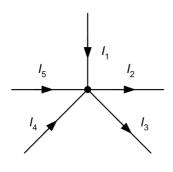
Chapter summary

In many cases, Ohm's Law alone is insufficient to determine the magnitude of the voltages and currents present in a circuit. This chapter introduces several techniques that simplify the task of solving complex circuits. It also introduces the concept of exponential growth and decay of voltage and current in circuits containing capacitance and resistance and inductance and resistance. It concludes by showing how humble *C–R* circuits can be used for shaping the waveforms found in electronic circuits. We start by introducing two of the most useful laws of electronics.

Kirchhoff's Laws

Kirchhoff's Laws relate to the algebraic sum of currents at a junction (or **node**) or voltages in a network (or **mesh**). The term 'algebraic' simply indicates that the polarity of each current or voltage drop must be taken into account by giving it an appropriate sign, either positive (+) or negative (–).

Kirchhoff's Current Law states that the algebraic sum of the currents present at a junction (node) in a circuit is zero (see Fig. 3.1).


Example 3.1

In Fig. 3.2, use Kirchhoff's Current Law to determine:

- (a) the value of current flowing between A and B
- **(b)** the value of l_2 .

Solution

(a) l_1 and l_2 both flow towards Node A so, applying our polarity convention, they must both be positive. Now, assuming that current l_5 flows between A and B and that this current flows

$$I_1 - I_2 - I_3 + I_4 + I_5 = 0$$

Convention:

Current flowing towards the junction is positive (+)
Current flowing away from the junction is negative (–)

Figure 3.1 Kirchhoff's Current Law

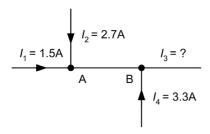


Figure 3.2 See Example 3.1

away from the junction (obvious because I_1 and I_2 both flow towards the junction) we arrive at the following Kirchhoff's Current Law equation:

$$+I_1 + I_2 - I_5 = 0$$

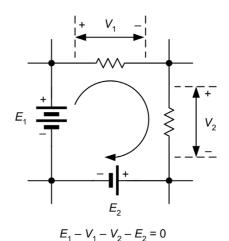
From which:

$$I_5 = I_1 + I_2 = 1.5 + 2.7 = 4.2 \text{ A}$$

(b) Moving to Node B, let's assume that I_3 flows outwards so we can say that:

$$+I_4 + I_5 - I_3 = 0$$

From which:


$$I_3 = I_4 + I_5 = 3.3 + 4.2 = 7.5 \text{ A}$$

Kirchhoff's Voltage Law states that the algebraic sum of the potential drops in a closed network (or 'mesh') is zero (see Fig. 3.3).

Example 3.2

In Fig. 3.4, use Kirchhoff's Voltage Law to determine:

- (a) the value of V_2
- **(b)** the value of E_3 .

Convention:

Move clockwise around the circuit starting with the positive terminal of the largest e.m.f.

Voltages acting in the same sense are positive (+) Voltages acting in the opposite sense are negative (–)

Figure 3.3 Kirchhoff's Voltage Law

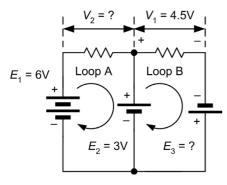


Figure 3.4 See Example 3.2

Solution

(a) In Loop A, and using the conventions shown in Fig. 3.3, we can write down the Kirchhoff's Voltage Law equations:

$$E_1 - V_2 - E_2 = 0$$

From which:

$$V_2 = E_1 - E_2 = 6 - 3 = 3 \text{ V}$$

(b) Similarly, in Loop B we can say that:

$$E_2 - V_1 + E_3 = 0$$

From which:

$$E_3 = V_1 - E_2 = 4.5 - 3 = 1.5 \text{ V}$$

Example 3.3

Determine the currents and voltages in the circuit of Fig. 3.5.

Solution

In order to solve the circuit shown in Fig. 3.5, it is first necessary to mark the currents and voltages on the circuit, as shown in Figs 3.6 and 3.7.

By applying Kirchhoff's Current Law at Node A that we've identified in Fig. 3.5:

$$+I_1 + I_2 - I_3 = 0$$

Therefore:

$$l_1 = l_3 - l_2$$
 (i

By applying Kirchhoff's Voltage Law in Loop A we obtain:

$$12 - V_1 - V_3 = 0$$

From which:

$$V_1 = 12 - V_3$$
 (ii)

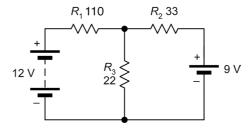


Figure 3.5 See Example 3.3

By applying Kirchhoff's Voltage Law in Loop B we obtain:

$$9 - V_2 - V_3 = 0$$

From which:

$$V_2 = 9 - V_3 \tag{iii}$$

Next we can generate three further relationships by applying Ohm's Law:

$$V_1 = I_1 R_1$$
 from which $I_1 = \frac{V_1}{R_1}$

$$V_2 = I_2 R_2$$
 from which $I_2 = \frac{V_2}{R_2}$
and $V_3 = I_3 R_3$ from which $I_3 = \frac{V_3}{R}$

Combining these three relationships with the Current Law equation (i) gives:

$$\frac{V_1}{R_1} = \frac{V_3}{R_3} - \frac{V_2}{R_2}$$

from which:

$$\frac{V_1}{110} = \frac{V_3}{22} - \frac{V_2}{33} \tag{iv}$$

Combining (ii) and (iii) with (iv) gives:

$$\frac{\left(12 - V_3\right)}{110} = \frac{V_3}{22} - \frac{\left(9 - V_3\right)}{33}$$

Multiplying both sides of the expression gives:

$$\frac{330(12-V_3)}{110} = \frac{330V_3}{22} - \frac{330(9-V_3)}{33}$$

$$3(12 - V_3) = 15V_3 - 10(9 - V_3)$$

From which:

$$36 - 3V_3 = 15V_3 - 90 + V_3$$
$$36 + 90 = 15V_3 + 10V_3 + 3V_3$$

and:

$$126 = 28V_3$$
 so $V_3 = 126/28 = 4.5 \text{ V}$

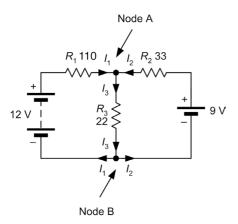


Figure 3.6 See Example 3.3

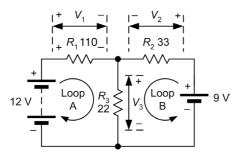


Figure 3.7 See Example 3.3

From (ii):

$$V_1 = 12 - V_3$$
 so $V_1 = 12 - 4.5 = 7.5 \text{ V}$

From (iii):

$$V_2 = 9 - V_3$$
 so $V_2 = 9 - 4.5 = 4.5 \text{ V}$

Using the Ohm's Law equations that we met earlier gives:

$$I_1 = \frac{V_1}{R_1} = \frac{7.5}{110} = 0.068 \text{ A} = 68 \text{ mA}$$

$$I_2 = \frac{V_2}{R_2} = \frac{4.5}{33} = 0.136 \text{ A} = 136 \text{ mA}$$

$$I_3 = \frac{V_3}{R_3} = \frac{4.5}{22} = 0.204 \text{ A} = 204 \text{ mA}$$

Finally, it's worth checking these results with the Current Law equation (i):

$$+I_1 + I_2 - I_3 = 0$$

Inserting our values for l_1 , l_2 and l_3 gives:

$$+0.068 + 0.136 - 204 = 0$$

Since the left- and right-hand sides of the equation are equal we can be reasonably confident that our results are correct.

The potential divider

The potential divider circuit (see Fig. 3.8) is commonly used to reduce voltages in a circuit. The output voltage produced by the circuit is given by:

$$V_{\text{out}} = V_{\text{in}} \frac{R_2}{R_1 + R_2}$$

It is, however, important to note that the output voltage ($V_{\rm out}$) will fall when current is drawn from the arrangement.

Fig. 3.9 shows the effect of **loading** the potential divider circuit. In the loaded potential divider (Fig. 3.9) the output voltage is given by:

$$V_{\text{out}} = V_{\text{in}} \frac{R_{\text{p}}}{R_{\text{1}} + R_{\text{p}}}$$

where:

$$R_{\rm p} = \frac{R_2 \times R_{\rm L}}{R_2 + R_{\rm l}}$$

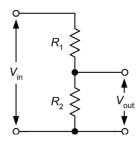


Figure 3.8 Potential divider circuit

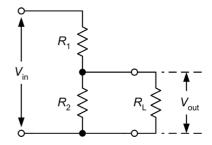


Figure 3.9 Loaded potential divider circuit

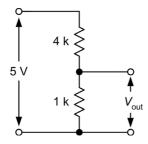


Figure 3.10 See Example 3.4

Example 3.4

The potential divider shown in Fig. 3.10 is used as a simple **voltage calibrator**. Determine the output voltage produced by the circuit:

- (a) when the output terminals are left open-circuit (i.e. when no load is connected); and
- (b) when the output is loaded by a resistance of 10 k Ω .

Solution

(a) In the first case we can simply apply the formula:

$$V_{\text{out}} = V_{\text{in}} \frac{R_2}{R_1 + R_2}$$

where $V_{\rm in}$ = 5 V, $R_{\rm 1}$ = 4 k Ω and $R_{\rm 2}$ = 1 k Ω . Hence:

$$V_{\text{out}} = 5 \times \frac{1}{4+1} = 1 \text{ V}$$

(b) In the second case we need to take into account the effect of the 10 $k\Omega$ resistor connected to the output terminals of the potential divider.

First we need to find the equivalent resistance of the parallel combination of $R_{\rm 2}$ and $R_{\rm L}$:

$$R_{\rm p} = \frac{R_2 \times R_{\rm L}}{R_2 + R_{\rm i}} = \frac{1 \times 10}{1 + 10} = \frac{10}{11} = 0.909 \text{ k}\Omega$$

Then we can determine the output voltage from:

$$V_{\text{out}} = V_{\text{in}} \frac{R_{\text{p}}}{R_{1} + R_{\text{p}}} = 5 \times \frac{0.909}{4 + 0.909} = 0.925 \text{ V}$$

The current divider

The current divider circuit (see Fig. 3.11) is used to divert a known proportion of the current

flowing in a circuit. The output current produced by the circuit is given by:

$$I_{\text{out}} = I_{\text{in}} \frac{R_1}{R_1 + R_2}$$

It is, however, important to note that the output current (I_{out}) will fall when the load connected to the output terminals has any appreciable resistance.

Example 3.5

A moving coil meter requires a current of 1 mA to provide full-scale deflection. If the meter coil has a resistance of 100 Ω and is to be used as a milliammeter reading 5 mA full-scale, determine the value of parallel shunt resistor required.

Solution

This problem may sound a little complicated so it is worth taking a look at the **equivalent circuit** of the meter (Fig. 3.12) and comparing it with the current divider shown in Fig. 3.11.

We can apply the current divider formula, replacing $I_{\rm out}$ with $I_{\rm m}$ (the meter full-scale

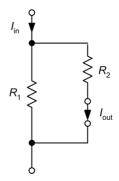


Figure 3.11 Current divider circuit

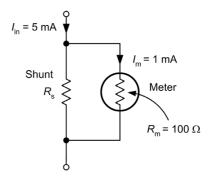


Figure 3.12 See Example 3.5

deflection current) and R_2 with $R_{\rm m}$ (the meter resistance). R_1 is the required value of shunt resistor, $R_{\rm e}$. Hence:

$$I_{\text{out}} = I_{\text{in}} \frac{R_{\text{s}}}{R_{\text{s}} + R_{\text{m}}}$$

Re-arranging the formula gives:

$$I_{m} \times (R_{s} + R_{m}) = I_{in} \times R_{s}$$

thus

$$I_{\rm m} R_{\rm s} + I_{\rm m} R_{\rm m} = I_{\rm in} R_{\rm s}$$

or

$$I_{\rm in} R_{\rm s} - I_{\rm m} R_{\rm s} = I_{\rm m} R_{\rm m}$$

from which

$$R_{\rm s}(I_{\rm in}-I_{\rm m})=I_{\rm m}R_{\rm m}$$

SO

$$R_{\rm s} = \frac{I_{\rm m}R_{\rm m}}{I_{\rm in} - I_{\rm m}}$$

Now $I_{\rm in}$ = 1 mA, $R_{\rm m}$ = 100 Ω and $I_{\rm in}$ = 5 mA, thus:

$$R_{\rm s} = \frac{1 \times 100}{5 - 1} = \frac{100}{4} = 25 \ \Omega$$

The Wheatstone bridge

The Wheatstone bridge forms the basis of a number of useful electronic circuits including several that are used in instrumentation and measurement.

The basic form of Wheatstone bridge is shown in Fig. 3.13. The voltage developed between A and B will be zero when the voltage between A and Y is the same as that between B and Y. In effect, R_1 and R_2 constitute a potential divider, as do R_3 and R_4 .

The bridge will be **balanced** (and $V_{\rm AB} = 0$) when the ratio of $R_1:R_2$ is the same as the ratio $R_3:R_4$. Hence, at balance:

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

A practical form of Wheatstone bridge that can be used for measuring unknown resistances is shown in Fig. 3.14.

In this practical form of Wheatstone bridge, R_1 and R_2 are called the **ratio arms** while one arm (that occupied by R_3 in Fig. 3.13) is replaced by a

calibrated variable resistor. The unknown resistor, R_{\star} , is connected in the fourth arm. At balance:

$$\frac{R_1}{R_2} = \frac{R_v}{R_x} \qquad \text{thus} \qquad R_x = \frac{R_2}{R_1} \times R_v$$

Example 3.6

A Wheatstone bridge is based on the circuit shown in Fig. 3.14. If R_1 and R_2 can each be switched so that they have values of either 100 Ω or 1 k Ω and $R_{\rm v}$ is variable between 10 Ω and 10 k Ω , determine the range of resistance values that can be measured.

Solution

The maximum value of resistance that can be measured will correspond to the largest ratio of R_2 : R_1 (i.e. when R_2 is 1 k Ω and R_1 is 100 Ω) and the highest value of R_V (i.e. 10 k Ω). In this case:

$$R_{\rm x} = \frac{1,000}{100} \times 10,000 = 100,000 = 100 \text{ k}\Omega$$

The minimum value of resistance that can be measured will correspond to the smallest ratio of R_2 : R_1 (i.e. when R_1 is 100 Ω and R_1 is 1 k Ω) and the smallest value of R_V (i.e. 10 Ω). In this case:

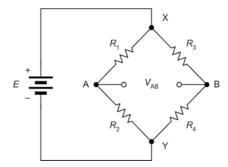


Figure 3.13 Basic Wheatstone bridge circuit

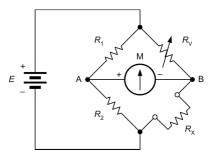


Figure 3.14 See Example 3.6

$$R_{\rm x} = \frac{100}{1,000} \times 10 = 0.1 \times 10 = 1 \ \Omega$$

Hence the range of values that can be measured extends from 1 Ω to 100 k Ω .

Thévenin's Theorem

Thévenin's Theorem allows us to replace a complicated network of resistances and voltage sources with a simple equivalent circuit comprising a single **voltage source** connected in series with a single resistance (see Fig. 3.15).

The single voltage source in the Thévenin equivalent circuit, $V_{\rm oc}$, is simply the voltage that appears between the terminals when nothing is connected to it. In other words, it is the *open-circuit* voltage that would appear between A and B.

The single resistance that appears in the Thévenin equivalent circuit, *R*, is the resistance that would be seen *looking into* the network between A and B when all of the voltage sources (assumed perfect) are replaced by *short-circuit* connections. Note that if the voltage sources are not perfect (i.e. if they have some internal resistance) the equivalent circuit must be constructed on the basis that each voltage source is replaced by its own internal resistance.

Once we have values for V_{∞} and R, we can determine how the network will behave when it is connected to a load (i.e. when a resistor is connected across the terminals A and B).

Example 3.7

Fig. 3.16 shows a Wheatstone bridge. Determine the current that will flow in a 100 Ω load connected between terminals A and B.

Solution

First we need to find the Thévenin equivalent of the circuit. To find $V_{\rm oc}$ we can treat the bridge arrangement as two potential dividers.

The voltage across R_2 will be given by:

$$V = 10 \times \frac{R_2}{R_1 + R_2} = 10 \times \frac{600}{500 + 600} = 5.454 \text{ V}$$

Hence the voltage at A relative to Y, $V_{\rm AY}$, will be 5.454 V.

The voltage across R_{4} will be given by:

$$V = 10 \times \frac{R_4}{R_3 + R_4} = 10 \times \frac{400}{500 + 400} = 4.444 \text{ V}$$

Hence the voltage at B relative to Y, $V_{\rm BY}$, will be 4.444 V.

The voltage $V_{\rm AB}$ will be the difference between $V_{\rm AY}$ and $V_{\rm BY}$. This, the open-circuit output voltage, $V_{\rm AB}$, will be given by:

$$V_{AB} = V_{AY} - V_{BY} = 5.454 - 4.444 = 1.01 \text{ V}$$

Next we need to find the Thévenin equivalent resistance looking in at A and B. To do this, we can redraw the circuit, replacing the battery (connected between X and Y) with a short-circuit, as shown in Fig. 3.17.

The Thévenin equivalent resistance is given by the relationship:

$$R = \frac{R_1 \times R_2}{R_1 + R_2} + \frac{R_3 \times R_4}{R_3 + R_4} = \frac{500 \times 600}{500 + 600} + \frac{500 \times 400}{500 + 400}$$

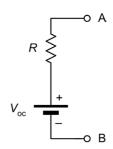


Figure 3.15 Thévenin equivalent circuit

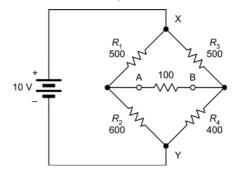


Figure 3.16 See Example 3.7

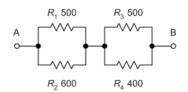


Figure 3.17 See Example 3.7

From which:

$$R = \frac{300,000}{1,100} + \frac{200,000}{900} = 272.7 + 222.2 = 494.9 \ \Omega$$

The Thévenin equivalent circuit is shown in Fig. 3.18. To determine the current in a 100 Ω load connected between A and B, we can simply add a 100 Ω load to the Thévenin equivalent

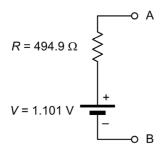


Figure 3.18 Thévenin equivalent of Fig. 3.16

Figure 3.19 Determining the current when the Thévenin equivalent circuit is loaded

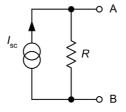


Figure 3.20 Norton equivalent circuit

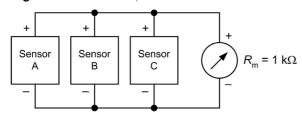


Figure 3.21 See Example 3.8

circuit, as shown in Fig. 3.19. By applying Ohm's Law in Fig. 3.19 we get:

$$I = \frac{V_{oc}}{R + 100} = \frac{1.01}{494.9 + 100} = \frac{1.01}{594.9} = 1.698 \text{ mA}$$

Norton's Theorem

Norton's Theorem provides an alternative method of reducing a complex network to a simple equivalent circuit. Unlike Thévenin's Theorem, Norton's Theorem makes use of a current source rather than a voltage source. The Norton equivalent circuit allows us to replace a complicated network of resistances and voltage sources with a simple equivalent circuit comprising a single constant current source connected in parallel with a single resistance (see Fig. 3.20).

The constant current source in the Norton equivalent circuit, $I_{sc'}$ is simply the *short-circuit* current that would flow if A and B were to be linked directly together. The resistance that appears in the Norton equivalent circuit, R, is the resistance that would be seen *looking into* the network between A and B when all of the voltage sources are replaced by *short-circuit* connections. Once again, it is worth noting that if the voltage sources have any appreciable internal resistance, the equivalent circuit must be constructed on the basis that each voltage source is replaced by its own internal resistance.

As with the Thévenin equivalent, we can determine how a network will behave by obtaining values for I_{sc} and R.

Example 3.8

Three temperature sensors having the following characteristics shown in the table below are connected in parallel, as shown in Fig. 3.21.

Sensor	Α	В	С
Output voltage (open circuit)	20 mV	30 mV	10 mV
Internal resistance	5 kΩ	3 kΩ	2 kΩ

Determine the voltage produced when the arrangement is connected to a moving-coil meter having a resistance of 1 k Ω .

Solution

First we need to find the Norton equivalent of the circuit. To find $I_{\rm sc}$ we can determine the short circuit current from each sensor and add them together.

For sensor A:

$$I = \frac{V}{R} = \frac{20 \text{ mV}}{5 \text{ k}\Omega} = 4 \text{ } \mu A$$

For sensor B:

$$I = \frac{V}{R} = \frac{30 \text{ mV}}{3 \text{ k}\Omega} = 10 \text{ }\mu\text{A}$$

For sensor C:

$$I = \frac{V}{R} = \frac{10 \text{ mV}}{2 \text{ k}\Omega} = 5 \text{ } \mu A$$

The total current, $I_{sc'}$ will be given by:

$$I_{sc} = 4 \mu A + 10 \mu A + 5 \mu A = 19 \mu A$$

Next we need to find the Norton equivalent resistance. To do this, we can redraw the circuit showing each sensor replaced by its internal resistance, as shown in Fig. 3.22.

The equivalent resistance of this arrangement (think of this as the resistance seen *looking into* the circuit in the direction of the arrow shown in Fig. 3.22) is given by:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5,000} + \frac{1}{3,000} + \frac{1}{2,000}$$

where R_1 = 5 k Ω , R_2 = 3 k Ω , R_3 = 2 k Ω . Hence:

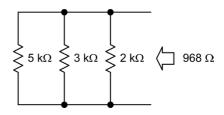
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{5,000} + \frac{1}{3,000} + \frac{1}{2,000}$$

or

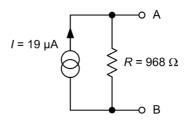
$$\frac{1}{R}$$
 = 0.0002 + 0.00033 + 0.0005 = 0.00103

from which:

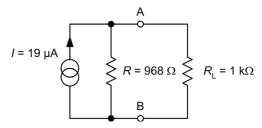
$$R = 968 \Omega$$


The Norton equivalent circuit is shown in Fig. 3.23. To determine the voltage in a 1 k Ω moving coil meter connected between A and B, we can make use of the Norton equivalent circuit by simply adding a 1 k Ω resistor to the circuit and applying Ohm's Law, as shown in Fig. 3.24.

The voltage appearing across the moving coil meter in Fig. 3.25 will be given by:


$$V = I_{sc} \times \frac{R \times R_{m}}{R + R_{m}} = 19 \ \mu\text{A} \times \frac{1,000 \times 968}{1,000 + 968}$$

hence:


$$V = 19 \ \mu \text{A} \times 492 \ \Omega = 9.35 \ \text{mV}$$

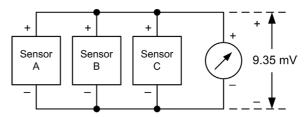

Figure 3.22 Determining the equivalent resistance in Fig. 3.21

Figure 3.23 Norton equivalent of the circuit in Fig. 3.21

Figure 3.24 Determining the output voltage when the Norton equivalent circuit is loaded with 1 $k\Omega$

Figure 3.25 The voltage drop across the meter is found to be 9.35 mV

C-R circuits

Networks of capacitors and resistors (known as C-R circuits) form the basis of many timing and pulse-shaping circuits and are thus often found in practical electronic circuits.

Charging

A simple C-R circuit is shown in Fig. 3.26. In this circuit C is charged through R from a constant voltage source, V_s . The voltage, v_c , across the (initially uncharged) capacitor voltage will rise exponentially as shown in Fig. 3.27. At the same time, the current in the circuit, i, will fall, as shown in Fig. 3.28.

The rate of growth of voltage with time (and decay of current with time) will be dependent upon the product of capacitance and resistance. This value is known as the time constant of the circuit. Hence:

Time constant,
$$t = C \times R$$

where C is the value of capacitance (F), R is the resistance (Ω) and t is the time constant (s).

The voltage developed across the charging capacitor, v_c , varies with time, t, according to the relationship:

$$v_{c} = V_{s} \left(1 - e^{-\frac{t}{CR}} \right)$$

where $v_{\rm c}$ is the capacitor voltage, $V_{\rm s}$ is the d.c. supply voltage, t is the time and CR is the time constant of the circuit (equal to the product of capacitance, C, and resistance, R).

The capacitor voltage will rise to approximately 63% of the supply voltage, V_s , in a time interval equal to the time constant.

At the end of the next interval of time equal to the time constant (i.e. after an elapsed time equal to 2CR) the voltage will have risen by 63% of the remainder, and so on. In theory, the capacitor will never become fully charged. However, after a period of time equal to 5CR, the capacitor voltage will to all intents and purposes be equal to the supply voltage. At this point the capacitor voltage will have risen to 99.3% of its final value and we can consider it to be fully charged.

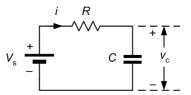


Figure 3.26 A C-R circuit in which C is charged through R

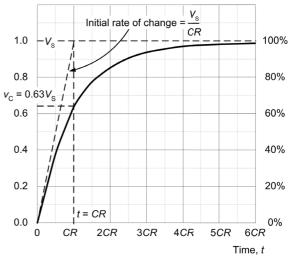


Figure 3.27 Exponential growth of capacitor voltage, v_c , in Fig. 3.26

Current, i

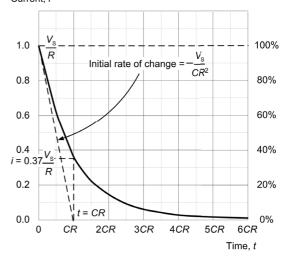


Figure 3.28 Exponential decay of current, i, in Fig. 3.26

During charging, the current in the capacitor, *i*, varies with time, *t*, according to the relationship:

$$i = \frac{V_s}{R} e^{-\frac{t}{CR}}$$

where $V_{\rm s}$ is the d.c. supply voltage, t is the time, R is the series resistance and C is the value of capacitance.

The current will fall to approximately 37% of the initial current in a time equal to the time constant. At the end of the next interval of time equal to the time constant (i.e. after a total time of 2*CR* has elapsed) the current will have fallen by a further 37% of the remainder, and so on.

Example 3.9

An initially uncharged 1 μ F capacitor is charged from a 9 V d.c. supply via a 3.3 M Ω resistor. Determine the capacitor voltage 1 s after connecting the supply.

Solution

The formula for exponential growth of voltage in the capacitor is:

$$v_{c} = V_{s} \left(1 - e^{-\frac{t}{CR}} \right)$$

Here we need to find the capacitor voltage, v_{c} , when $V_{s} = 9$ V, t = 1 s, C = 1 μF and R = 3.3 M Ω . The time constant, CR, will be given by:

$$CR = 1 \times 10^{-6} \times 3.3 \times 10^{6} = 3.3 \text{ s}$$

Thus:

$$v_{c} = 9\left(1 - e^{-\frac{t}{3.3}}\right)$$

and

$$v_c = 9(1-0.738) = 9 \times 0.262 = 2.358 \text{ V}$$

Example 3.10

A 100 μF capacitor is charged from a 350 V d.c. supply through a series resistance of 1 k Ω . Determine the initial charging current and the current that will flow 50 ms and 100 ms after connecting the supply. After what time is the capacitor considered to be fully charged?

Solution

At t = 0 the capacitor will be uncharged ($v_c = 0$) and all of the supply voltage will appear across the series resistance. Thus, at t = 0:

$$i = \frac{V_s}{R} = \frac{350}{1000} = 0.35 \,\text{A}$$

When t = 50 ms, the current will be given by:

$$i = \frac{V_{\rm s}}{R} e^{-\frac{t}{CR}}$$

where $V_{\rm s}$ = 350 V, t = 50 ms, C = 100 $\mu {\rm F}$ and R = 1 k Ω . Hence:

$$i = \frac{350}{1,000} e^{-\frac{0.05}{0.1}} = 0.35 e^{-0.5} = 0.35 \times 0.607 = 0.21 A$$

When t = 100 ms (using the same equation but with t = 0.1 s) the current is given by:

$$i = \frac{350}{1,000} e^{-\frac{0.1}{0.1}} = 0.35 e^{-1} = 0.35 \times 0.368 = 0.129 A$$

The capacitor can be considered to be fully charged when $t = 5CR = 5 \times 100 \times 10^{-6} \times 1 \times 10^{3}$ = 0.5 s. Note that, at this point, the capacitor voltage will have reached 99% of its final value.

Figure 3.29 *C–R* circuits are widely used in electronics. In this oscilloscope, for example, a rotary switch is used to select different C-R combinations in order to provide the various timebase ranges (adjustable from 500 ms/cm to 1 μ s/cm). Each C-R time constant corresponds to a different timebase range

Discharge

Having considered the situation when a capacitor is being charged, let's consider what happens when an already charged capacitor is discharged.

When the fully charged capacitor from Fig. 3.24 is connected as shown in Fig. 3.30, the capacitor will discharge through the resistor, and the capacitor voltage, v_c , will fall exponentially with time, as shown in Fig. 3.31.

The current in the circuit, i, will also fall, as shown in Fig. 3.32. The rate of discharge (i.e. the rate of decay of voltage with time) will once again be governed by the time constant of the circuit, $C \times R$.

The voltage developed across the discharging capacitor, $v_{\rm C}$, varies with time, t, according to the relationship:

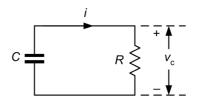
$$v_c = V_c e^{-\frac{t}{CR}}$$

where $V_{s'}$ is the supply voltage, t is the time, C is the capacitance and R is the resistance.

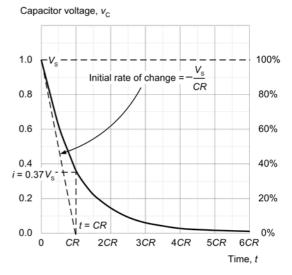
The capacitor voltage will fall to approximately 37% of the initial voltage in a time equal to the time constant. At the end of the next interval of time equal to the time constant (i.e. after an elapsed time equal to 2*CR*) the voltage will have fallen by 37% of the remainder, and so on.

In theory, the capacitor will **never** become fully discharged. However, after a period of time equal to 5*CR*, the capacitor voltage will to all intents and purposes be zero.

At this point the capacitor voltage will have fallen below 1% of its initial value. We can consider it to be fully discharged.


As with charging, the current in the capacitor, *i*, varies with time, *t*, according to the relationship:

$$i = \frac{V_s}{R} e^{-\frac{t}{CR}}$$


where $V_{s'}$ is the supply voltage, t is the time, C is the capacitance and R is the resistance.

The current will fall to approximately 37% of the initial value of current, $V_{\rm s}/R$, in a time equal to the time constant.

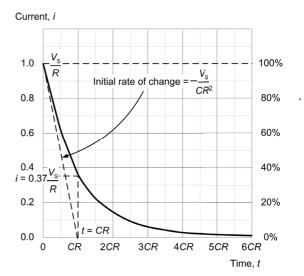

At the end of the next interval of time equal to the time constant (i.e. after a total time of 2*CR* has

Figure 3.30 A C-R circuit in which C is initially charged and then discharges through R

Figure 3.31 Exponential decay of capacitor voltage, v_c , in Fig. 3.30

Figure 3.32 Exponential decay of current, *i*, in Fig. 3.30

elapsed) the voltage will have fallen by a further 37% of the remainder, and so on.

Example 3.11

A 10 μ F capacitor is charged to a potential of 20 V and then discharged through a 47 k Ω resistor. Determine the time taken for the capacitor voltage to fall below 10 V.

Solution

The formula for exponential decay of voltage in the capacitor is:

$$v_{\rm c} = V_{\rm s} e^{-\frac{t}{CR}}$$

where $V_s = 20 \text{ V}$ and $CR = 10 \,\mu\text{F} \times 47 \,\text{k}\Omega = 0.47 \,\text{s}$.

We need to find t when $v_{\rm C}$ = 10 V. Re-arranging the formula to make t the subject gives:

$$t = -CR \times \ln\left(\frac{v_{\rm C}}{V_{\rm S}}\right)$$

thus

$$t = -0.47 \times \ln\left(\frac{10}{20}\right) = -0.47 \times \ln(0.5)$$

or

$$t = -0.47 \times -0.693 = 0.325 \text{ s}$$

In order to simplify the mathematics of exponential growth and decay, Table 3.1 provides an alternative tabular method that may be used to determine the voltage and current in a *C–R* circuit.

Example 3.12

A 150 μF capacitor is charged to a potential of 150 V. The capacitor is then removed from the charging source and connected to a 2 $M\Omega$ resistor. Determine the capacitor voltage 1 minute later.

Solution

We will solve this problem using Table 3.1 rather than the exponential formula.

First we need to find the time constant:

$$C \times R = 150 \,\mu\text{F} \times 2 \,\text{M}\Omega = 300 \,\text{s}$$

Next we find the ratio of t to CR:

After 1 minute, t = 60 s therefore the ratio of t to CR is 60/300 or 0.2. Table 3.1 shows that

when t/CR = 0.2, the ratio of instantaneous value to final value (k in Table 3.1) is 0.8187.

Thus

$$v_0/V_0 = 0.8187$$

or

$$v_c = 0.8187 \times V_s = 0.8187 \times 150 \text{V} = 122.8 \text{ V}$$

Table 3.1 Exponential growth and decay

t/CR or t/(L/R)	k (growth)	k (decay)	
0.0	0.0000	1.0000	
0.1	0.0951	0.9048	
0.2	0.1812	0.8187 (1)	
0.3	0.2591	0.7408	
0.4	0.3296	0.6703	
0.5	0.3935	0.6065	
0.6	0.4511	0.5488	
0.7	0.5034	0.4965	
0.8	0.5506	0.4493	
0.9	0.5934	0.4065	
1.0	0.6321	0.3679	
1.5	0.7769	0.2231	
2.0	0.8647 (2)	0.1353	
2.5	0.9179	0.0821	
3.0	0.9502	0.0498	
3.5	0.9698	0.0302	
4.0	0.9817	0.0183	
4.5	0.9889	0.0111	
5.0	0.9933	0.0067	

Notes:

- (1) See Example 3.12
- (2) See Example 3.16

k is the ratio of the value at time, t, to the final value (e.g. v_{o} / V_{o})

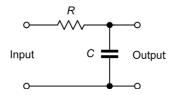
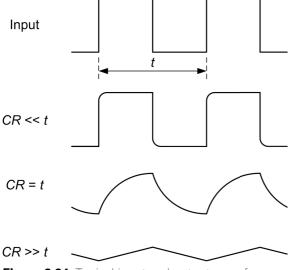
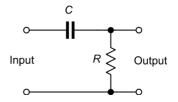
Waveshaping with C-R networks

One of the most common applications of *C–R* networks is in waveshaping circuits. The circuits shown in Figs 3.33 and 3.35 function as simple square-to-triangle and square-to-pulse converters by, respectively, **integrating** and **differentiating** their inputs.

The effectiveness of the simple integrator circuit shown in Fig. 3.33 depends on the ratio of time constant, $C \times R$, to periodic time, t. The larger this ratio is, the more effective the circuit will be as an integrator. The effectiveness of the circuit of Fig. 3.33 is illustrated by the input and output waveforms shown in Fig. 3.34.

Similarly, the effectiveness of the simple differentiator circuit shown in Fig. 3.35 also depends on the ratio of time constant $C \times R$, to periodic time, t. The smaller this ratio is, the more effective the circuit will be as a differentiator.

The effectiveness of the circuit of Fig. 3.35 is illustrated by the input and output waveforms shown in Fig. 3.36.

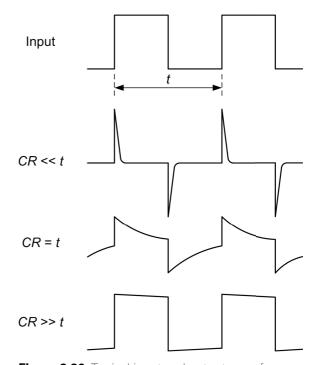

Figure 3.33 A C-R integrating circuit

Figure 3.34 Typical input and output waveforms for the integrating circuit shown in Figure 3.33

Figure 3.35 A *C–R* differentiating circuit

Figure 3.36 Typical input and output waveforms for the integrating circuit shown in Fig. 3.35

Example 3.13

A circuit is required to produce a train of alternating positive and negative pulses of short duration from a square wave of frequency 1 kHz. Devise a suitable *C–R* circuit and specify suitable values.

Solution

Here we require the services of a differentiating circuit along the lines of that shown in Fig. 3.35. In order that the circuit operates effectively as a differentiator, we need to make the time constant, $C \times R$, very much less than the periodic time of the input waveform (1 ms).

Assuming that we choose a medium value for R of, say, 10 k Ω , the maximum value which

we could allow *C* to have would be that which satisfies the equation:

$$C \times R = 0.1 t$$

where $R = 10 \text{ k}\Omega$ and t = 1 ms. Thus

$$C = \frac{0.1t}{R} = \frac{0.1 \times 1 \text{ ms}}{10 \text{ k}\Omega} = 0.1 \times 10^{-3} \times 10^{-4} = 1 \times 10^{-8} \text{ F}$$

or

$$C = 10 \times 10^{-9} F = 10 nF$$

In practice, any value equal or less than 10 nF would be adequate. A very small value (say less than 1 nF) will, however, generate pulses of a very narrow width.

Example 3.14

A circuit is required to produce a triangular waveform from a square wave of frequency 1 kHz. Devise a suitable *C-R* arrangement and specify suitable values.

Solution

This time we require an integrating circuit like that shown in Fig. 3.33. In order that the circuit operates effectively as an integrator, we need to make the time constant, $C \times R$, very much less than the periodic time of the input waveform (1 ms).

Assuming that we choose a medium value for R of, say, 10 k Ω , the minimum value which we could allow C to have would be that which satisfies the equation:

$$C \times R = 10 t$$

where $R = 10 \text{ k}\Omega$ and t = 1 ms. Thus

$$C = \frac{10t}{R} = \frac{10 \times 1 \text{ ms}}{10 \text{ k}\Omega} = 10 \times 10^{-3} \times 10^{-4} = 1 \times 10^{-6} \text{ F}$$

or

$$C = 1 \times 10^{-6} \text{ F} = 1 \mu\text{F}$$

In practice, any value equal or greater than 1 μ F would be adequate. A very large value (say, more than 10 μ F) will, however, generate a triangular wave which has a very small amplitude. To put this in simple terms, although the waveform might be what you want there's not a lot of it!

L-R circuits

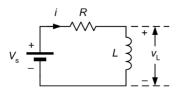
Networks of inductors and resistors (known as L-R circuits) can also be used for timing and pulse shaping. In comparison with capacitors, however, inductors are somewhat more difficult to manufacture and are consequently more expensive.

Inductors are also prone to losses and may also require screening to minimize the effects of stray magnetic coupling. Inductors are, therefore, generally unsuited to simple timing and waveshaping applications.

Fig. 3.37 shows a simple L-R network in which an inductor is connected to a constant voltage supply. When the supply is first connected, the current, i, will rise exponentially with time, as shown in Fig. 3.38. At the same time, the inductor voltage, V_L , will fall, as shown in Fig. 3.39. The rate of change of current with time will depend upon the ratio of inductance to resistance and is known as the **time constant**. Hence:

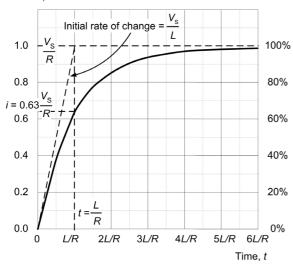
Time constant, t = L/R

where L is the value of inductance (H), R is the resistance (Ω), and t is the time constant (s).


The current flowing in the inductor, *i*, varies with time, *t*, according to the relationship:

$$i = \frac{V_{s}}{R} \left(1 - e^{-\frac{tR}{L}} \right)$$

where V_s is the d.c. supply voltage, R is the resistance of the inductor and L is the inductance.


The current, i, will initially be zero and will rise to approximately 63% of its maximum value (i.e. V_s/R) in a time interval equal to the time constant. At the end of the next interval of time equal to the time constant (i.e. after a total time of 2L/R has elapsed) the current will have risen by a further 63% of the remainder, and so on.

In theory, the current in the inductor will never become equal to $V_{\rm s}/R$. However, after a period of time equal to 5*L/R*, the current will to all intents and purposes be equal to $V_{\rm s}/R$. At this point the current in the inductor will have risen to 99.3% of its final value.

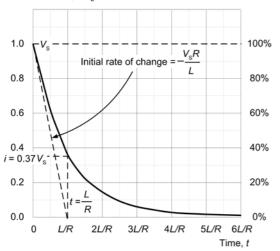

Figure 3.37 A L-R circuit in which C is initially charged and then discharges through R

Figure 3.38 Exponential growth of current, *i*, in Fig. 3.37

Figure 3.39 Exponential decay of voltage, $v_{\rm L}$, in Fig. 3.37

The voltage developed across the inductor, v_L , varies with time, t, according to the relationship:

$$v_{L} = V_{s} e^{-\frac{tR}{L}}$$

where $V_{\rm s}$ is the d.c. supply voltage, R is the resistance of the inductor and L is the inductance.

The inductor voltage will fall to approximately 37% of the initial voltage in a time equal to the time constant.

At the end of the next interval of time equal to the time constant (i.e. after a total time of 2*L/R* has elapsed) the voltage will have fallen by a further 37% of the remainder, and so on.

Example 3.15

A coil having inductance 6 H and resistance 24 Ω is connected to a 12 V d.c. supply. Determine the current in the inductor 0.1 s after the supply is first connected.

Solution

The formula for exponential growth of current in the coil is:

$$i = \frac{V_s}{R} \left(1 - e^{-\frac{tR}{L}} \right)$$

where $V_s = 12 \text{ V}$, L = 6 H and $R = 24 \Omega$.

We need to find i when t = 0.1 s

$$i = \frac{12}{24} \left(1 - e^{-\frac{0.1 \times 24}{6}} \right) = 0.5 \left(1 - e^{-0.4} \right) = 0.5 (1 - 0.67)$$

thus

$$i = 0.5 \times 0.33 = 0.165 \text{ A}$$

In order to simplify the mathematics of exponential growth and decay, Table 3.1 provides an alternative tabular method that may be used to determine the voltage and current in an *L-R* circuit.

Example 3.16

A coil has an inductance of 100 mH and a resistance of 10 Ω . If the inductor is connected to a 5 V d.c. supply, determine the inductor voltage 20 ms after the supply is first connected.

Solution

We will solve this problem using Table 3.1 rather than the exponential formula.

First we need to find the time constant:

$$L/R = 0.1 \text{ H}/10 \Omega = 0.01 \text{ s}$$

Next we find the ratio of t to L/R.

When t = 20 ms the ratio of t to L/R is 0.02/0.01 or 2. Table 3.1 shows that when t/(L/R) = 2, the ratio of instantaneous value to final value (k) is 0.8647. Thus

$$v_{\rm L}/V_{\rm s} = 0.8647$$
 or
$$v_{\rm L} = 0.8647 \times V_{\rm s} = 0.8647 \times 5 \ {\rm V} = 4.32 {\rm V}$$

Practical investigation

Objective

To investigate the charge and discharge of a capacitor.

Components and test equipment

Breadboard, 9 V d.c. power source (either a PP9 9 V battery or an a.c. mains adapter with a 9 V 400 mA output), digital multimeter with test leads, resistors of 100 k Ω , 220 k Ω and 47 k Ω , capacitor of 1,000 μ F, insulated wire links (various lengths), assorted crocodile leads, short lengths of black, red and green insulated solid wire. A watch or clock with a seconds display will also be required for timing.

Procedure

Connect the charging circuit shown in Fig. 3.40 with $R=100~\mathrm{k}\Omega$ and $C=1,000~\mathrm{\mu}F$. Place a temporary shorting link across the capacitor. Set the meter to the 20 V d.c. range and remove the shorting link. Measure and record the capacitor voltage at 25 s intervals over the range 0 to 250 s after removing the shorting link. Record your result in a table showing capacitor voltage against time. Repeat with $R=220~\mathrm{k}\Omega$ and $R=47~\mathrm{k}\Omega$.

Connect the discharging circuit shown in Fig. 3.41 with $R=100~\text{k}\Omega$ and $C=1,000~\mu\text{F}$. Leave the link in place for a few seconds after the supply voltage has been switched on, then remove the link.

Measure and record the capacitor voltage at 25 s intervals over the range 0 to 250 s from removing the link. Record your result in a table showing capacitor voltage against time. Repeat with $R = 220 \text{ k}\Omega$ and $R = 47 \text{ k}\Omega$.

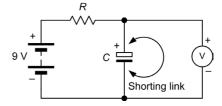


Figure 3.40 Circuit diagram - charging

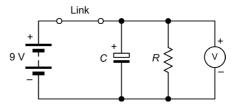


Figure 3.41 Circuit diagram - discharging

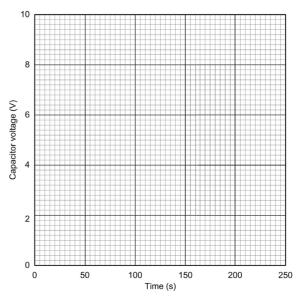


Figure 3.42 Graph layout for plotting the results

Measurements and calculations

Plot graphs of voltage (on the vertical axis) against time (on the horizontal axis) using the graph layout shown in Fig. 3.42.

Calculate the time constant for each combination of resistance and capacitance that you used in the investigation.

Conclusion

Comment on the shape of the graphs. Is this what you would expect? For each combination of resistance and capacitance, estimate the time constant from the graph. Compare these values with the calculated values. If they are not the same suggest possible reasons for the difference.

Formulae introduced in this chapter

Kirchhoff's Current Law:

(page 52)

Algebraic sum of currents = 0

Kirchhoff's Voltage Law:

(page 52)

Algebraic sum of e.m.f.s = algebraic sum of voltage drops

Potential divider:

(page 54)

$$V_{\text{out}} = V_{\text{in}} \frac{R_2}{R_1 + R_2}$$

Current divider:

(page 55)

$$I_{\text{out}} = I_{\text{in}} \frac{R_1}{R_1 + R_2}$$

Wheatstone bridge:

(page 56)

$$\frac{R_1}{R_2} = \frac{R_3}{R_4}$$

and

$$R_{x} = \frac{R_{2}}{R_{1}} \times R_{v}$$

Time constant of a *C–R* circuit: (page 60)

$$t = CR$$

Capacitor voltage (charge): (page 60)

$$v_{c} = V_{s} \left(1 - e^{-\frac{t}{CR}} \right)$$

Capacitor current (charge): (page 61)

$$i = \frac{V_{\rm s}}{R} e^{-\frac{t}{CR}}$$

Capacitor voltage (discharge): (page 62)

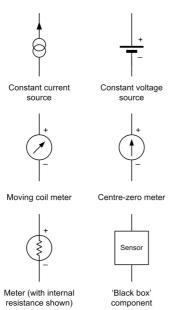
$$v_{c} = V_{s} e^{-\frac{t}{CR}}$$

Capacitor current (discharge): (page 62)

$$i = \frac{V_s}{R} e^{-\frac{t}{CR}}$$

Time constant of an *L–R* circuit: (page 65)

$$t = L/R$$


Inductor current (growth): (page 65)

$$i = \frac{V_{s}}{R} \left(1 - e^{-\frac{tR}{L}} \right)$$

Inductor voltage (decay): (page 66)

$$v_{L} = V_{s} e^{-\frac{tR}{L}}$$

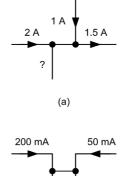

Symbols introduced in this chapter

Figure 3.43 Circuit symbols introduced in this chapter

Problems

- 3.1 A power supply is rated at 500 mA maximum output current. If the supply delivers 150 mA to one circuit and 75 mA to another, how much current would be available for a third circuit?
- 3.2 A 15 V d.c. supply delivers a total current of 300 mA. If this current is shared equally between four circuits, determine the resistance of each circuit.
- 3.3 Determine the unknown current in each circuit shown in Fig. 3.44.
- 3.4 Determine the unknown voltage in each circuit shown in Fig. 3.45.
- 3.5 Determine all currents and voltages in Fig. 3.46.
- 3.6 Two resistors, one of $120~\Omega$ and one of $680~\Omega$, are connected as a potential divider across a 12~V supply. Determine the voltage developed across each resistor.
- 3.7 Two resistors, one of 15 Ω and one of 5 Ω , are connected in parallel. If a current of 2 A is applied to the combination,

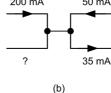
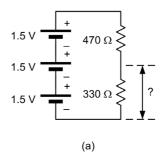



Figure 3.44 See Question 3.3

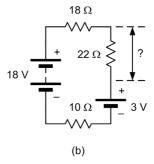
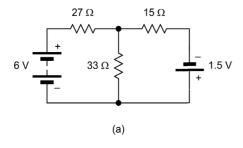



Figure 3.45 See Question 3.4

determine the current flowing in each resistor.

3.8 A switched attenuator comprises five $1 \text{ k}\Omega$ resistors wired in series across a 5V d.c. supply. If the output voltage is selected by means of a single-pole four-way switch, sketch a circuit and determine the voltage produced for each switch position.

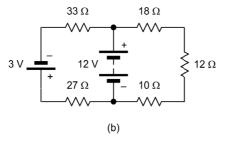


Figure 3.46 See Question 3.5

- 3.9 A capacitor of 1 μF is charged from a 15 V d.c. supply via a 100 k Ω resistor. How long will it take for the capacitor voltage to reach 5 V?
- 3.10 A capacitor of 22 μF is charged to a voltage of 50 V. If the capacitor is then discharged using a resistor of 100 k Ω , determine the time taken for the capacitor voltage to reach 10 V.
- 3.11 An initially uncharged capacitor is charged from a 200 V d.c. supply through a 2 $M\Omega$ resistor. If it takes 50 s for the capacitor voltage to reach 100 V, determine the value of capacitance.
- 3.12 A coil has an inductance of 2.5 H and a resistance of 10 Ω . If the coil is connected to a 5 V d.c. supply, determine the time taken for the current to grow to 200 mA.
- 3.13 Determine the Thévenin equivalent of the circuit shown in Fig. 3.47.
- 3.14 Determine the Norton equivalent of the circuit shown in Fig. 3.48.
- 3.15 The Thévenin equivalent of a network is shown in Fig. 3.49. Determine (a) the short-circuit output current and (b) the output voltage developed across a load of $200~\Omega$.

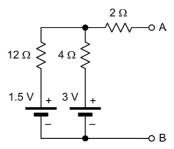


Figure 3.47 See Question 3.13

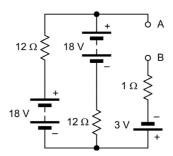


Figure 3.48 See Question 3.14

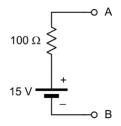


Figure 3.49 See Question 3.15

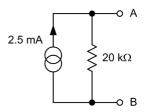


Figure 3.50 See Question 3.16

3.16 The Norton equivalent of a network is shown in Fig. 3.50. Determine (a) the open-circuit output voltage and (b) the output voltage developed across a load of $5 \text{ k}\Omega$.

Answers to these problems appear on page 450.

Alternating voltage and current

Chapter summary

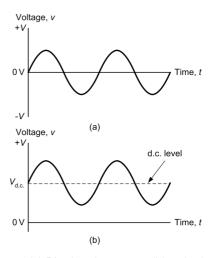
This chapter introduces basic alternating current theory. We discuss the terminology used to describe alternating waveforms and the behaviour of resistors, capacitors and inductors when an alternating current is applied to them. The chapter concludes by introducing another useful component, the transformer.

Alternating versus direct current

Direct currents are currents which, even though their magnitude may vary, essentially flow only in one direction. In other words, direct currents are **unidirectional**. Alternating currents, on the other hand, are **bidirectional** and continuously reverse their direction of flow. The polarity of the e.m.f. which produces an alternating current must consequently also be changing from positive to negative, and vice versa.

Alternating currents produce alternating potential differences (voltages) in the circuits in which they flow. Furthermore, in some circuits alternating voltages may be superimposed on direct voltage levels (see Fig. 4.1). The resulting voltage may be unipolar (i.e. always positive or always negative) or bipolar (i.e. partly positive and partly negative).

Waveforms and signals


A graph showing the variation of voltage or current present in a circuit is known as a **waveform**. There are many common types of waveform encountered in electrical circuits, including sine (or sinusoidal), square, triangle, ramp or sawtooth (which may be either positive or negative going), and pulse.

Complex waveforms, like speech and music, usually comprise many components at different frequencies. **Pulse waveforms** are often categorized as either repetitive or non-repetitive (the former comprises a pattern of pulses that repeats regularly while the latter comprises pulses which constitute a unique event). Some common waveforms are shown in Fig. 4.2.

Signals can be conveyed using one or more of the properties of a waveform and sent using wires, cables, optical and radio links. Signals can also be processed in various ways using amplifiers, modulators, filters, etc. Signals are also classified as either **analogue** (continuously variable) or **digital** (based on discrete states).

Frequency

The frequency of a repetitive waveform is the number of cycles of the waveform which occur in unit time. Frequency is expressed in hertz, Hz,

Figure 4.1 (a) Bipolar sine wave; (b) unipolar sine wave (superimposed on a **d.c. level**)

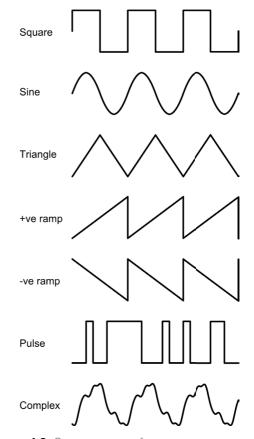


Figure 4.2 Common waveforms

and a frequency of 1 Hz is equivalent to one cycle per second. Hence, if a voltage has a frequency of 400 Hz, 400 cycles of it will occur in every second.

The equation for the voltage shown in Fig. 4.1(a) at a time, *t*, is:

$$v = V_{\text{max}} \sin(2\pi ft)$$

while that in Fig. 4.1(b) is:

$$v = V_{\text{d.c.}} + V_{\text{max}} \sin(2\pi ft)$$

where v is the instantaneous voltage, $V_{\rm max}$ is the maximum (or peak) voltage of the sine wave, $V_{\rm d.c.}$ is the d.c. offset (where present) and f is the frequency of the sine wave.

Example 4.1

A sine wave voltage has a maximum value of 20 V and a frequency of 50 Hz. Determine the instantaneous voltage present (a) 2.5 ms and (b) 15 ms from the start of the cycle.

Solution

We can find the voltage at any instant of time using:

$$v = V_{max} \sin(2\pi ft)$$

where $V_{\text{max}} = 20 \text{ V}$ and f = 50 Hz.

In (a), t = 2.5 ms, hence:

$$v = 20 \sin (2\pi \times 50 \times 0.0025) = 20 \sin (0.785)$$

$$= 20 \times 0.707 = 14.14 \text{ V}$$

In (b), t = 15 ms, hence:

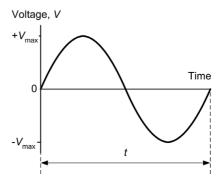
$$v = 20 \sin (2\pi \times 50 \times 0.0015) = 20 \sin (4.71)$$

$$= 20 \times -1 = -20 \text{ V}$$

Periodic time

The periodic time (or **period**) of a waveform is the time taken for one complete cycle of the wave (see Fig. 4.3). The relationship between periodic time and frequency is thus:

$$t = 1 / f$$
 or $f = 1 / t$


where t is the periodic time (in s) and f is the frequency (in Hz).

Example 4.2

A waveform has a frequency of 400 Hz. What is the periodic time of the waveform?

Solution

$$t = 1 / f = 1/400 = 0.0025$$
 s (or 2.5 ms)

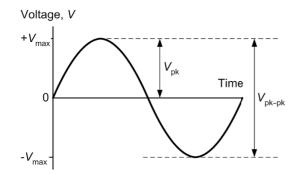
Figure 4.3 One cycle of a sine wave voltage showing its **periodic time**

Example 4.3

A waveform has a periodic time of 40 ms. What is its frequency?

Solution

$$f = \frac{1}{t} = \frac{1}{40 \times 10^{-3}} = \frac{1}{0.04} = 25 \text{ Hz}$$


Average, peak, peak-peak, and r.m.s. values

The average value of an alternating current which swings symmetrically above and below zero will be zero when measured over a long period of time. Hence average values of currents and voltages are invariably taken over one complete half-cycle (either positive or negative) rather than over one complete full-cycle (which would result in an average value of zero).

The **amplitude** (or **peak value**) of a waveform is a measure of the extent of its voltage or current excursion from the resting value (usually zero).

The **peak-to-peak value** for a wave which is symmetrical about its resting value is twice its peak value (see Fig. 4.4).

The **r.m.s.** (or **effective**) **value** of an alternating voltage or current is the value which would produce the same heat energy in a resistor as a direct voltage or current of the same magnitude. Since the r.m.s. value of a waveform is very much dependent upon its shape, values are only meaningful when dealing with a waveform of known shape. Where the shape of a waveform is

Figure 4.4 One cycle of a sine wave voltage showing its **peak** and **peak–peak** values

Table 4.1 Multiplying factors for average, peak, peak–peak and r.m.s. values

Given quantity	Wanted quantity			
	Average	Peak	Peak-peak	r.m.s.
Average	1	1.57	3.14	1.11
Peak	0.636	1	2	0.707
Peak-peak	0.318	0.5	1	0.353
r.m.s.	0.9	1.414	2.828	1

not specified, r.m.s. values are normally assumed to refer to sinusoidal conditions.

For a given waveform, a set of fixed relationships exist between average, peak, peak–peak, and r.m.s. values. The required multiplying factors are summarized for sinusoidal voltages and currents in Table 4.1.

Example 4.4

A sinusoidal voltage has an r.m.s. value of 240 V. What is the peak value of the voltage?

Solution

The corresponding multiplying factor (found from Table 4.1) is 1.414. Hence:

$$V_{\rm pk} = 1.414 \times V_{\rm rms} = 1.414 \times 240 = 339.4 \text{ V}$$

Example 4.5

An alternating current has a peak–peak value of 50 mA. What is its r.m.s. value?

Solution

The corresponding multiplying factor (found from Table 4.1) is 0.353. Hence:

$$I_{\text{r.m.s.}} = 0.353 \times V_{\text{pk-pk}} = 0.353 \times 0.05 = 0.0177 \text{ A}$$

(or 17.7 mA).

Example 4.6

A sinusoidal voltage of 10 V pk–pk is applied to a resistor of 1 k Ω . What value of r.m.s. current will flow in the resistor?

Solution

This problem must be solved in two stages. First we will determine the peak–peak current in the resistor and then we shall convert this value into a corresponding r.m.s. quantity.

Since
$$I = \frac{V}{R}$$
 we can infer that $I_{pk-pk} = \frac{V_{pk-pk}}{R}$

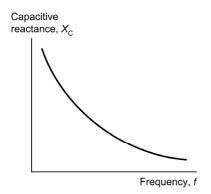
From which
$$I_{pk-pk} = \frac{10}{1.000} = 0.01 = 10 \text{ mA pk-pk}$$

The required multiplying factor (peak–peak to r.m.s.) is 0.353. Thus:

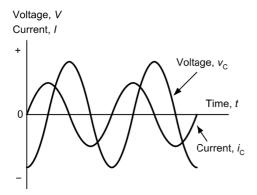
$$I_{\text{r.m.s.}} = 0.353 \times I_{\text{pk-pk}} = 0.353 \times 10 = 3.53 \text{ mA}$$

Reactance

When alternating voltages are applied to capacitors or inductors the magnitude of the current flowing will depend upon the value of capacitance or inductance and on the frequency of the voltage. In effect, capacitors and inductors oppose the flow of current in much the same way as a resistor. The important difference is that the effective resistance (or reactance) of the component varies with frequency (unlike the case of a resistor where the magnitude of the current does not change with frequency).


Capacitive reactance

The reactance of a capacitor is defined as the ratio of applied voltage to current and, like resistance, it is measured in ohms. The reactance of a capacitor is inversely proportional to both the value of capacitance and the frequency of the applied voltage. Capacitive reactance can be found by applying the following formula:


$$X_{\rm C} = \frac{1}{2\pi fC}$$

where X_c is the reactance (in ohms), f is the frequency (in hertz), and C is the capacitance (in farads).

Capacitive reactance falls as frequency increases, as shown in Fig. 4.5. The applied voltage, $V_{\rm c}$, and current, $I_{\rm c}$, flowing in a pure capacitive reactance will differ in phase by an angle of 90° or $\pi/2$ radians (the **current leads the voltage**). This relationship is illustrated in the current and voltage waveforms (drawn to a common time scale) shown in Fig. 4.6 and as a **phasor diagram** shown in Fig. 4.7.

Figure 4.5 Variation of reactance with frequency for a capacitor

Figure 4.6 Voltage and current waveforms for a pure capacitor (the current leads the voltage by 90°)

Figure 4.7 Phasor diagram for a pure capacitor

Example 4.7

Determine the reactance of a 1 μ F capacitor at (a) 100 Hz and (b) 10 kHz.

Solution

This problem is solved using the expression:

$$X_{\rm C} = \frac{1}{2\pi fC}$$

(a) At 100 Hz

$$X_{\rm C} = \frac{1}{2\pi \times 100 \times 1 \times 10^{-6}} = \frac{0.159}{10^{-4}} = 1.59 \times 10^3$$

٥r

$$X_c = 1.59 \text{ k}\Omega$$

(b) At 10 kHz

$$X_{\rm C} = \frac{1}{2\pi \times 1 \times 10^4 \times 1 \times 10^{-6}} = \frac{0.159}{10^{-2}} = 0.159 \times 10^2$$

Or

$$X_{c} = 15.9 \ \Omega$$

Example 4.8

A 100 nF capacitor is to form part of a filter connected across a 240 V 50 Hz mains supply. What current will flow in the capacitor?

Solution

First we must find the reactance of the capacitor:

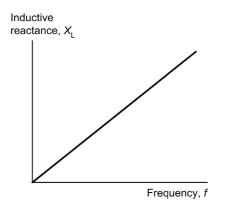
$$X_{\rm C} = \frac{1}{2\pi \times 50 \times 100 \times 10^{-9}} = 31.8 \times 10^3 = 31.8 \text{ k}\Omega$$

The r.m.s. current flowing in the capacitor will thus be:

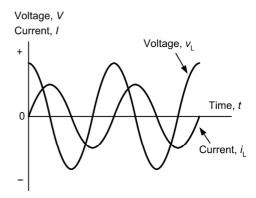
$$I_{\rm C} = \frac{V_{\rm C}}{X_{\rm C}} = \frac{240}{31.8 \times 10^3} = 7.5 \times 10^{-3} = 7.5 \text{ mA}$$

Inductive reactance

The reactance of an inductor is defined as the ratio of applied voltage to current and, like resistance, it is measured in ohms. The reactance of an inductor is directly proportional to both the value of inductance and the frequency of the applied voltage. Inductive reactance can be found by applying the formula:


$$X_1 = 2\pi f L$$

where X_L is the reactance in Ω , f is the frequency in Hz and L is the inductance in H.


Inductive reactance increases linearly with frequency as shown in Fig. 4.8. The applied voltage, V_L , and current, I_L , developed across a pure inductive reactance will differ in phase by an angle of 90° or $\pi/2$ radians (the **current lags the voltage**). This relationship is illustrated in the current and voltage waveforms (drawn to a common time scale) shown in Fig. 4.9 and as a **phasor diagram** shown in Fig. 4.10.

Example 4.9

Determine the reactance of a 10 mH inductor at (a) 100 Hz and (b) at 10 kHz.

Figure 4.8 Variation of reactance with frequency for an inductor

Figure 4.9 Voltage and current waveforms for a pure inductor (the voltage leads the current by 90°)

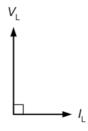


Figure 4.10 Phasor diagram for a pure inductor

Solution

(a) at 100 Hz

$$X_1 = 2\pi \times 100 \times 10 \times 10^{-3} = 6.28 \Omega$$

(b) At 10 kHz

$$X_1 = 2\pi \times 10 \times 10^3 \times 10 \times 10^{-3} = 628 \Omega$$

Example 4.10

A 100 mH inductor of negligible resistance is to form part of a filter which carries a current of 20 mA at 400 Hz. What voltage drop will be developed across the inductor?

Solution

The reactance of the inductor will be given by:

$$X_1 = 2\pi \times 400 \times 100 \times 10^{-3} = 251 \Omega$$

The r.m.s. voltage developed across the inductor will be given by:

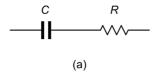
$$V_{\rm I} = I_{\rm I} \times X_{\rm I} = 20 \text{ mA} \times 251 \Omega = 5.02 \text{ V}$$

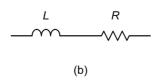
In this example, it is important to note that we have assumed that the d.c. resistance of the

inductor is negligible by comparison with its reactance. Where this is not the case, it will be necessary to determine the **impedance** of the component and use this to determine the voltage drop.

Impedance

Fig. 4.11 shows two circuits which contain both resistance and reactance. These circuits are said to exhibit impedance (a combination of resistance and reactance) which, like resistance and reactance, is measured in ohms.


The impedance of the circuits shown in Fig. 4.11 is simply the ratio of supply voltage, $V_{\rm S}$, to supply current, $I_{\rm S}$. The impedance of the simple C-R and L-R circuits shown in Fig. 4.11 can be found by using the impedance triangle shown in Fig. 4.12. In either case, the impedance of the circuit is given by:


$$Z = \sqrt{R^2 + X^2}$$

and the phase angle (between $V_{\rm S}$ and $I_{\rm S}$) is given by:

$$\phi = \tan^{-1}\left(\frac{X}{R}\right)$$

where Z is the impedance (in ohms), X is the reactance, either capacitive or inductive (expressed in ohms), R is the resistance (in ohms) and ϕ is the phase angle in radians.

Figure 4.11 (a) *C* and *R* in series (b) *L* and *R* in series (note that both circuits exhibit an impedance)

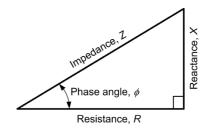


Figure 4.12 The impedance triangle

Example 4.11

A 2 μ F capacitor is connected in series with a 100 Ω resistor across a 115 V 400 Hz a.c. supply. Determine the impedance of the circuit and the current taken from the supply.

Solution

First we must find the reactance of the capacitor, $X_{\rm c}$:

$$X_{\rm C} = \frac{1}{2\pi fC} = \frac{1}{6.28 \times 400 \times 2 \times 10^{-6}} = \frac{10^6}{5,024} = 199 \ \Omega$$

Now we can find the impedance of the *C–R* series circuit:

$$Z = \sqrt{R^2 + X^2} = \sqrt{199^2 + 100^2} = \sqrt{49,601} = 223 \ \Omega$$

The current taken from the supply can now be found:

$$I_{\rm S} = \frac{V_{\rm S}}{Z} = \frac{115}{223} = 0.52 \text{ A}$$

Power factor

The power factor in an a.c. circuit containing resistance and reactance is simply the ratio of true power to apparent power. Hence:

$$power factor = \frac{true power}{apparent power}$$

The **true power** in an a.c. circuit is the power which is actually dissipated in the resistive component. Thus:

true power =
$$I_S^2 \times R$$
 (watts)

The **apparent power** in an a.c. circuit is the power which is apparently consumed by the circuit and is the product of the supply current and supply voltage (note that this is not the same as

the power which is actually dissipated as heat). Hence:

apparent power = $I_{\rm S} \times V_{\rm S}$ (volt-amperes) Hence

power factor =
$$\frac{I_S^2 \times R}{I_S \times V_S} = \frac{I_S^2 \times R}{I_S \times (I_S \times Z)} = \frac{R}{Z}$$

From Fig. 4.12,
$$\frac{R}{7} = \cos \phi$$

Hence the power factor of a series a.c. circuit can be found from the cosine of the phase angle.

Example 4.12

A **choke** (a form of inductor) having an inductance of 150 mH and resistance of 250 Ω is connected to a 115 V 400 Hz a.c. supply. Determine the power factor of the choke and the current taken from the supply.

Solution

First we must find the reactance of the inductor,

$$X_1 = 2\pi \times 400 \times 0.15 = 376.8 \Omega$$

We can now determine the power factor from:

power factor =
$$\frac{R}{Z} = \frac{250}{376.8} = 0.663$$

The impedance of the choke, Z, will be given by:

$$Z = \sqrt{R^2 + X^2} = \sqrt{376.8^2 + 250^2} = 452 \Omega$$

Finally, the current taken from the supply will be:

$$I_{\rm S} = \frac{V_{\rm S}}{Z} = \frac{115}{452} = 0.254 \text{ A}$$

L-C circuits

Two forms of L–C circuit are illustrated in Fig. 4.13. Fig. 4.13(a) is a **series resonant** circuit while Fig. 4.13(b) constitutes a **parallel resonant** circuit. The impedance of both circuits varies in a complex manner with frequency.

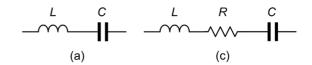
The impedance of the series circuit in Fig. 4.13(a) is given by:

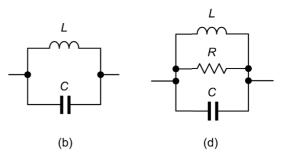
$$Z = \sqrt{X_{\rm L}^2 - X_{\rm C}^2}$$

where Z is the impedance of the circuit (in ohms), and $X_{\rm c}$ are the reactances of the inductor

and capacitor, respectively (both expressed in ohms).

The phase angle (between the supply voltage and current) will be $+\pi/2$ rad (i.e. $+90^{\circ}$) when $X_{\rm L} > X_{\rm C}$ (above resonance) or $-\pi/2$ rad (or -90°) when $X_{\rm C} > X_{\rm L}$ (below resonance).


At a particular frequency (known as the **series resonant frequency**) the reactance of the capacitor, $X_{\rm c}$, will be equal in magnitude (but of opposite sign) to that of the inductor, $X_{\rm L}$. Due to this effective cancellation of the reactance, the impedance of the series resonant circuit will be zero at resonance. The supply current will have a maximum value at resonance (infinite in the case of a perfect series resonant circuit supplied from an ideal voltage source!).


The impedance of the parallel circuit in Fig. 4.13 is given by:

$$Z = \frac{X_{L} \times X_{C}}{\sqrt{X_{L}^{2} - X_{C}^{2}}}$$

where Z is the impedance of the circuit (in Ω), and $X_{\rm L}$ and $X_{\rm C}$ are the reactances of the inductor and capacitor, respectively (both expressed in Ω).

The phase angle (between the supply voltage and current) will be $+\pi/2$ rad (i.e. $+90^{\circ}$) when $X_{\rm L} > X_{\rm C}$ (above resonance) or $-\pi/2$ rad (or -90°) when $X_{\rm C} > X_{\rm L}$ (below resonance).

Figure 4.13 Series resonant and parallel resonant *L–C* and *L–C–R* circuits

At a particular frequency (known as the **parallel resonant frequency**) the reactance of the capacitor, $X_{\rm c}$, will be equal in magnitude (but of opposite sign) to that of the inductor, $X_{\rm L}$. At resonance, the denominator in the formula for impedance becomes zero and thus the circuit has an infinite impedance at resonance. The supply current will have a minimum value at resonance (zero in the case of a perfect parallel resonant circuit).

L-C-R circuits

Two forms of L–C–R network are illustrated in Figs 4.13; Fig. 4.13(c) is series resonant while Fig. 4.13(d) is parallel resonant. As in the case of their simpler L–C counterparts, the impedance of each circuit varies in a complex manner with frequency.

The impedance of the series circuit of Fig. 4.13(c) is given by:

$$Z = \sqrt{R^2 + \left(X_{L} - X_{C}\right)^2}$$

where Z is the impedance of the series circuit (in ohms), R is the resistance (in Ω), $X_{\rm L}$ is the inductive reactance (in Ω) and $X_{\rm C}$ is the capacitive reactance (also in Ω). At resonance the circuit has a minimum impedance (equal to R).

The phase angle (between the supply voltage and current) will be given by:

$$\phi = \tan^{-1} \left(\frac{X_{L} - X_{C}}{R} \right)$$

The impedance of the parallel circuit of Fig. 4.13(d) is given by:

$$Z = \frac{R \times X_{\perp} \times X_{C}}{\sqrt{\left(X_{\perp}^{2} - X_{C}^{2}\right) + R^{2}\left(X_{\perp} - X_{C}\right)^{2}}}$$

where Z is the impedance of the series circuit (in ohms), R is the resistance (in Ω), X_L is the inductive reactance (in Ω) and X_C is the capacitive reactance (also in Ω). At resonance the circuit has a minimum impedance (equal to R).

The phase angle (between the supply voltage and current) will be given by:

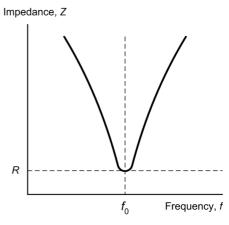
$$\phi = \tan^{-1} \frac{R(X_{L} - X_{C})}{X_{L} \times X_{C}}$$

Resonance

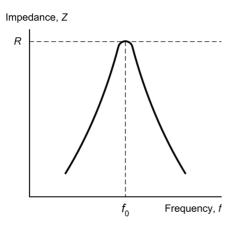
The frequency at which the impedance is minimum for a series resonant circuit or maximum in the case of a parallel resonant circuit is known as the resonant frequency. The resonant frequency is given by:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

where f_0 is the resonant frequency (in hertz), L is the inductance (in henries) and C is the capacitance (in farads).


Typical impedance-frequency characteristics for series and parallel tuned circuits are shown in Figs 4.14 and 4.15.

The series *L–C–R* tuned circuit has a minimum impedance at resonance (equal to *R*) and thus maximum current will flow. The circuit is consequently known as an **acceptor circuit**.


The parallel L-C-R tuned circuit has a maximum impedance at resonance (equal to R) and thus minimum current will flow. The circuit is consequently known as a **rejector circuit**.

Quality factor

The quality of a resonant (or tuned) circuit is measured by its Q-factor. The higher the Q-factor, the sharper the response (narrower bandwidth), conversely the lower the Q-factor, the flatter the response (wider bandwidth), see Fig. 4.16. In the case of the series tuned circuit, the Q-factor

Figure 4.14 Impedance versus frequency for a series *L–C–R* **acceptor circuit**

Figure 4.15 Impedance versus frequency for a parallel *L–C–R* **rejector circuit**

will increase as the resistance, *R*, decreases. In the case of the parallel tuned circuit, the *Q*-factor will increase as the resistance, *R*, increases. The response of a tuned circuit can be modified by incorporating a resistance of appropriate value either to 'dampen' (low-*Q*) or 'sharpen' (high-*Q*) the response. The relationship between bandwidth and *Q*-factor is:

Bandwidth =
$$f_2 - f_1 = \frac{f_0}{Q}$$
 and $Q = \frac{2\pi f_0 L}{R}$

where f_2 and f_1 are respectively the upper and lower cut-off (or **half-power**) frequencies (in hertz), f_0 is the resonant frequency (in hertz), and Q is the Q-factor.

Example 4.13

A parallel *L–C* circuit is to be resonant at a frequency of 400 Hz. If a 100 mH inductor is available, determine the value of capacitance required.

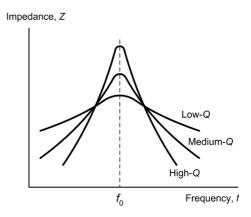
Solution

Re-arranging the formula

$$f = \frac{1}{2\pi\sqrt{LC}}$$

to make C the subject gives:

$$C = \frac{1}{f_0^2 \left(2\pi\right)^2 L}$$


Thus

$$C = \frac{1}{400^2 \times 39.4 \times 100 \times 10^{-3}} = 1.58 \times 10^{-6} = 1.58 \ \mu\text{F}$$

This value can be made from preferred values using a 2.2 μ F capacitor connected in series with a 5.6 μ F capacitor.

Example 4.14

A series L–C–R circuit comprises an inductor of 20 mH, a capacitor of 10 nF, and a resistor of 100 Ω . If the circuit is supplied with a sinusoidal signal of 1.5 V at a frequency of 2 kHz, determine the current supplied and the voltage developed across the resistor.

Figure 4.16 Effect of *Q*-factor on the response of a parallel resonant circuit (the response is similar, but inverted, for a series resonant circuit)

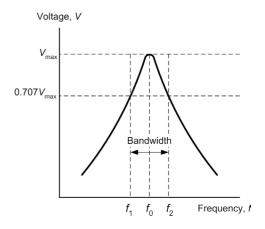


Figure 4.17 Bandwidth of a tuned circuit

Solution

First we need to determine the values of inductive reactance, X_1 , and capacitive reactance X_2 :

$$X_1 = 2\pi \ f \ L = 6.28 \times 2 \times 10^3 \times 20 \times 10^{-3} = 251 \ \Omega$$

$$X_{\rm C} = \frac{1}{2\pi fC} = \frac{1}{6.28 \times 2 \times 10^3 \times 100 \times 10^{-9}} = 796.2 \ \Omega$$

The impedance of the series circuit can now be calculated:

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = \sqrt{100^2 + (251.2 - 796.2)^2}$$

From which:

$$Z = \sqrt{10,000 + 297,025} = \sqrt{307,025} = 554 \Omega$$

The current flowing in the series circuit will be given by:

$$I = \frac{V}{Z} = \frac{1.5}{554} = 0.0027 = 2.7 \text{ mA}$$

The voltage developed across the resistor can now be calculated using:

$$V = IR = 2.7 \text{ mA} \times 100 \Omega = 270 \text{ mV}$$

Transformers

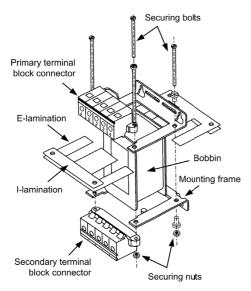
Transformers provide us with a means of coupling a.c. power or signals from one circuit to another. Voltage may be **stepped-up** (secondary voltage greater than primary voltage) or **stepped-down** (secondary voltage less than primary voltage). Since no increase in power is possible (transformers are passive components like resistors, capacitors and inductors) an increase in secondary voltage can only be achieved at

the expense of a corresponding reduction in secondary current, and vice versa (in fact, the secondary power will be very slightly less than the primary power due to losses within the transformer). Typical applications for transformers include stepping-up or stepping-down mains voltages in power supplies, coupling signals in AF amplifiers to achieve impedance matching and to isolate d.c. potentials associated with active components.

The electrical characteristics of a transformer are determined by a number of factors including the core material and physical dimensions. The specifications for a transformer usually include the rated primary and secondary voltages and currents, the required power rating (i.e. the maximum power, usually expressed in volt-amperes, VA) which can be continuously delivered by the transformer under a given set of conditions, the frequency range for the

Figure 4.18 A selection of transformers with power ratings from 0.1 VA to 100 VA

Table 4.2 Characteristics of common types of transformer


Property	Transformer core type			
	Air cored	Ferrite cored	Iron cored (audio)	Iron cored (power)
Core material/construction	Air	Ferrite ring or pot	Laminated steel	Laminated steel
Typical frequency range (Hz)	30 M to 1 G	10 k to 10 M	20 to 20 k	50 to 400
Typical power rating (VA)	(see note)	1 to 200	0.1 to 50	3 to 500
Typical regulation	(see note)	(see note)	(see note)	5% to 15%
Typical applications	RF tuned circuits and filters	Filters and HF transformers, switched mode power supplies	Smoothing chokes and filters, audio matching	Power supplies

Note: Not usually important for this type of transformer

4 Alternating voltage and current

Figure 4.19 Parts of a typical iron-cored power transformer prior to assembly

Figure 4.20 Construction of a typical iron-cored transformer

component (usually stated as upper and lower working frequency limits) and the **regulation** of a transformer (usually expressed as a percentage of full-load). This last specification is a measure of the ability of a transformer to maintain its rated output voltage under load.

Table 4.2 summarizes the properties of three common types of transformer. Figure 4.20 shows the construction of a typical iron-cored power transformer.

Voltage and turns ratio

The principle of the transformer is illustrated in Fig. 4.21. The primary and secondary windings are wound on a common low-reluctance magnetic core. The alternating flux generated by the primary winding is therefore coupled into the secondary winding (very little flux escapes due to leakage). A sinusoidal current flowing in the primary winding produces a sinusoidal flux. At any instant the flux in the transformer is given by the equation:

$$\phi = \phi_{\text{max}} \sin(2\pi ft)$$

where ϕ_{\max} is the maximum value of flux (in webers), f is the frequency of the applied current (in hertz), and t is the time (in seconds).

The r.m.s. value of the primary voltage, $V_{\rm p}$, is given by:

$$V_{\rm p} = 4.44 f N_{\rm p} \phi_{\rm max}$$

Similarly, the r.m.s. value of the secondary voltage, V_s , is given by:

$$V_{\rm s} = 4.44 f N_{\rm s} \phi_{\rm max}$$

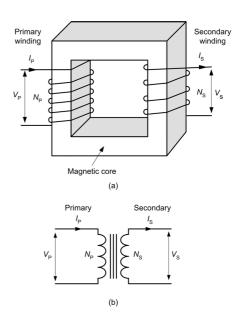


Figure 4.21 The transformer principle

Now

$$\frac{V_{\rm P}}{V_{\rm S}} = \frac{N_{\rm P}}{N_{\rm S}}$$

where $N_{\rm p}/N_{\rm s}$ is the **turns ratio** of the transformer. Assuming that the transformer is loss-free, primary and secondary powers ($P_{\rm p}$ and $P_{\rm s}$, respectively) will be identical. Hence:

$$P_{\rm p} = P_{\rm S}$$
 thus $V_{\rm p} \times I_{\rm p} = V_{\rm S} \times I_{\rm S}$

Hence

$$\frac{V_{\rm P}}{V_{\rm S}} = \frac{I_{\rm S}}{I_{\rm P}}$$
 and $\frac{I_{\rm S}}{I_{\rm P}} = \frac{N_{\rm P}}{N_{\rm S}}$

Finally, it is sometimes convenient to refer to a **turns-per-volt** rating for a transformer. This rating is given by:

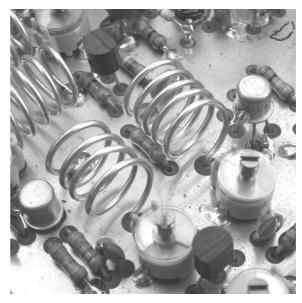
turns-per-volt =
$$\frac{N_P}{V_P} = \frac{N_S}{V_S}$$

Example 4.15

A transformer has 2,000 primary turns and 120 secondary turns. If the primary is connected to a 220 V r.m.s. a.c. mains supply, determine the secondary voltage.

Solution

Re-arranging $\frac{V_{\rm p}}{V_{\rm S}} = \frac{N_{\rm p}}{N_{\rm S}}$ gives:


$$V_{\rm S} = \frac{N_{\rm S} \times V_{\rm P}}{N_{\rm P}} = \frac{120 \times 220}{2,000} = 13.2 \text{ V}$$

Example 4.16

A transformer has 1,200 primary turns and is designed to operate with a 200 V a.c. supply. If the transformer is required to produce an output of 10 V, determine the number of secondary turns required. Assuming that the transformer is loss-free, determine the input (primary) current for a load current of 2.5 A.

Solution

Re-arranging $\frac{V_P}{V_O} = \frac{N_P}{N_O}$ gives:

Figure 4.22 Resonant air-cored transformer arrangement. The two inductors are tuned to resonance at the operating frequency (145 MHz) by means of the two small preset capacitors

Figure 4.23 This small 1:1 ratio toroidal transformer forms part of a noise filter connected in the input circuit of a switched mode power supply. The transformer is wound on a ferrite core and acts as a choke, reducing the high-frequency noise that would otherwise be radiated from the mains supply wiring

$$N_{\rm S} = \frac{N_{\rm P} \times V_{\rm S}}{V_{\rm P}} = \frac{1,200 \times 10}{200} = 60 \text{ turns}$$

Re-arranging $\frac{I_{\rm S}}{I_{\rm P}} = \frac{N_{\rm P}}{N_{\rm S}} \text{ gives:}$
 $N_{\rm S} = \frac{N_{\rm S} \times I_{\rm S}}{N_{\rm P}} = \frac{200 \times 2.5}{1,200} = 0.42 \text{ A}$

Practical investigation

Objective

To investigate reactance in an a.c. circuit.

Components and test equipment

Breadboard, digital or analogue meters with a.c. voltage and current ranges, sine wave signal generator (with an output impedance of 50 Ω or less), 1 μF capacitor, 60 mH inductor (with low series loss resistance), test leads, connecting wire.

Procedure

Connect the circuit shown in Fig. 4.24 (capacitive reactance). Set the voltmeter and ammeter respectively to the 2 V and 20 mA ranges. Set the signal generator to produce a sine wave output at 100 Hz.

Adjust the signal generator output voltage so that the voltmeter reads exactly 1 V before measuring and recording the current (this should be less than 1 mA). Repeat this measurement at frequencies from 200 Hz to 1 kHz in steps of 100 Hz. At each step, check that the voltage is exactly 1 V (adjust if necessary).

Connect the circuit shown in Fig. 4.25 (inductive reactance). As before, set the voltmeter and ammeter to the 2 V and 20 mA ranges and set the signal generator to produce a sine wave output at 100 Hz.

Adjust the signal generator output for a voltage of exactly 1 V before measuring and recording the current. Repeat this measurement at frequencies from 200 Hz to 1 kHz in steps of 100 Hz. At each

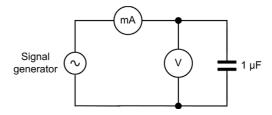


Figure 4.24 Circuit diagram – capacitive reactance

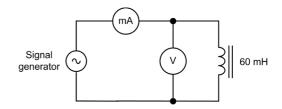


Figure 4.25 Circuit diagram - inductive reactance

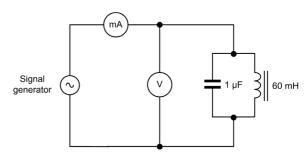


Figure 4.26 Circuit diagram – resonant circuit

step, check that the voltage is exactly 1 V (adjust the signal generator output if necessary).

Connect the circuit shown in Fig. 4.26 (resonant circuit). As before, set the voltmeter and ammeter respectively to the 2 V and 20 mA ranges. Set the signal generator to produce a sine wave output at 100 Hz.

Adjust the signal generator output voltage so that the voltmeter reads exactly 1 V before measuring and recording the current. Repeat this measurement at frequencies from 200 Hz to 1 kHz in steps of 100 Hz. At each step, check that the voltage is exactly 1 V (adjust if necessary). Note the frequency at which the current takes a minimum value.

Measurements and calculations

Record your results in a table showing values of $I_{\rm C}$, $I_{\rm L}$ and $I_{\rm S}$ at each frequency from 100 Hz to 1 kHz. Plot graphs showing how the current in each circuit varies over the frequency range 100 Hz to 1 kHz using the graph layout shown in Fig. 4.27. Calculate the resonant frequency of the L-C circuit shown in Fig. 4.26.

Conclusion

Comment on the shape of each graph. Is this what you would expect (recall that the current flowing in the circuit will be proportional to the reciprocal of the reactance)? Compare the measured resonant frequency with the calculated value. If they are not the same, suggest reasons for any difference.

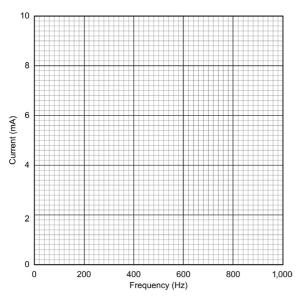


Figure 4.27 Graph layout for plotting the results

Important formulae introduced in this chapter

Sine wave voltage:

(page 73)

$$v = V_{max} \sin(2\pi ft)$$

Sine wave voltage superimposed on a d.c. level: (page 73)

$$v = V_{ds} + V_{max} \sin(2\pi ft)$$

Frequency and periodic time:

(page 73)

$$t = 1 / f$$
 or $f = 1 / t$

Peak and r.m.s. values for a sine wave: (page 74)

$$V_{\rm nk} = 1.414 \times V_{\rm rms}$$

$$V_{rms} = 0.707 \times V_{pk}$$

Capacitive reactance:

(page 75)

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Inductive reactance:

(page 76)

$$X_i = 2\pi f L$$

Impedance of C-R or L-R in series: (page 77)

$$Z = \sqrt{R^2 + X^2}$$

Phase angle for *C–R* or *L–R* in series: (page 77)

$$\phi = \tan^{-1}\left(\frac{X}{R}\right)$$

Power factor:

(pages 77 and 78)

$$power factor = \frac{true power}{apparent power}$$

power factor =
$$\frac{R}{Z} = \cos \phi$$

Resonant frequency of a tuned circuit: (page 79)

$$f = \frac{1}{2\pi\sqrt{LC}}$$

Bandwidth of a tuned circuit: (page 80)

Bandwidth =
$$f_2 - f_1 = \frac{f_0}{Q}$$

Q-factor for a series tuned circuit: (page 80)

$$Q = \frac{2\pi f_0 L}{R}$$

Flux in a transformer:

(page 82)

$$\phi = \phi_{\text{max}} \sin(2\pi f t)$$

Transformer voltages: (page 82)

$$V_{\rm p} = 4.44 f N_{\rm p} \phi_{\rm max}$$

$$V_{\rm S} = 4.44 f N_{\rm S} \phi_{\rm max}$$

Voltage and turns ratio: (page 83)

$$\frac{V_{\rm P}}{V_{\rm S}} = \frac{N_{\rm P}}{N_{\rm S}}$$

Current and turns ratio: (page 83)

$$\frac{I_{\rm S}}{I_{\rm P}} = \frac{N_{\rm P}}{N_{\rm S}}$$

Turns-per-volt: (page 83)

turns-per-volt =
$$\frac{N_{\rm P}}{V_{\rm p}} = \frac{N_{\rm S}}{V_{\rm s}}$$

Symbols introduced in this chapter

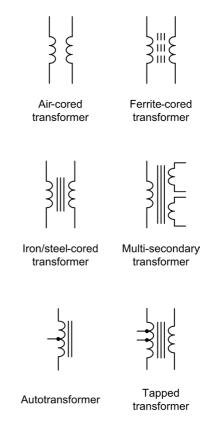
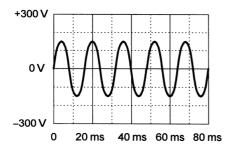
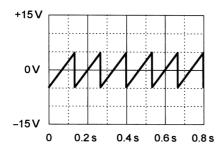




Figure 4.28 Circuit symbols introduced in this chapter

Problems

- 4.1 A sine wave has a frequency of 250 Hz and an amplitude of 50 V. Determine its periodic time and r.m.s. value.
- 4.2 A sinusoidal voltage has an r.m.s. value of 240 V and a period of 16.7 ms. What is the frequency and peak value of the voltage?
- 4.3 Determine the frequency and peak–peak values of each of the waveforms shown in Fig. 4.29.
- 4.4 A sine wave has a frequency of 100 Hz and an amplitude of 20 V. Determine the instantaneous value of voltage (a) 2 ms and (b) 9 ms from the start of a cycle.

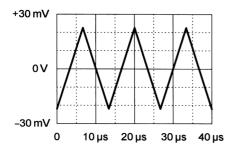
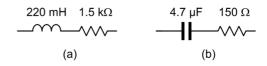



Figure 4.29 See Question 4.3

- 4.5 A sinusoidal current of 20 mA pk–pk flows in a resistor of 1.5 k Ω . Determine the r.m.s. voltage applied.
- 4.6 Determine the reactance of a 220 nF capacitor at (a) 20 Hz and (b) 5 kHz.
- 4.7 A 47 nF capacitor is connected across the 240 V 50 Hz mains supply. Determine the r.m.s. current flowing in the capacitor.
- 4.8 Determine the reactance of a 33 mH inductor at (a) 50 Hz and (b) 7 kHz.
- 4.9 A 10 mH inductor of negligible resistance is used to form part of a filter connected in series with a 50 Hz mains supply. What voltage drop will appear across the inductor when a current of 1.5 A is flowing?

- 4.10 A 10 uF capacitor is connected in series with a 500 Ω resistor across a 110 V 50 Hz a.c. supply. Determine the impedance of the circuit and the current taken from the supply.
- 4.11 A choke having an inductance of 1 H and resistance of 250 Ω is connected to a 220 V 60 Hz a.c. supply. Determine the power factor of the choke and the current taken from the supply.
- 4.12 A series-tuned *L–C* network is to be resonant at a frequency of 1.8 kHz. If a 60 mH inductor is available, determine the value of capacitance required.
- 4.13 Determine the impedance at 1 kHz of each of the circuits shown in Fig. 4.30.
- 4.14 A parallel resonant circuit employs a fixed inductor of 22 μ H and a variable tuning capacitor. If the maximum and minimum values of capacitance are respectively 20 pF and 365 pF, determine the effective tuning range for the circuit.
- 4.15 A series L-C-R circuit comprises an inductor of 15mH (with negligible resistance), a capacitor of 220 nF and a resistor of 100 Ω . If the circuit is supplied with a sinusoidal signal of 15 V at a frequency of 2 kHz, determine the current supplied and the voltage developed across the capacitor.
- 4.16 A 470 μ H inductor has a resistance of 20 Ω . If the inductor is connected in series with a capacitor of 680 pF, determine the resonant frequency, Q-factor and bandwidth of the circuit.

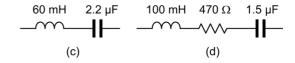


Figure 4.30 See Question 4.13

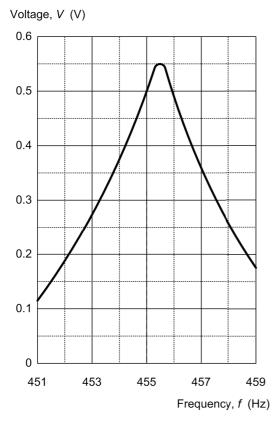


Figure 4.31 See Question 4.17

- 4.17 The graph shown in Fig. 4.31 was obtained during measurements on a high-*Q* filter. Determine the following parameters for the filter:
 - (a) resonant frequency
 - (b) bandwidth
 - (c) Q-factor.
- 4.18 The circuit shown in Fig. 4.32 is fed from a 2 V constant voltage source. At what frequency will the supply current be a minimum and what will the current be at this frequency? What current will flow in the inductor and capacitor at this frequency?
- 4.19 Identify the component shown in Fig. 4.33. Explain how this component operates and state a typical application for it.

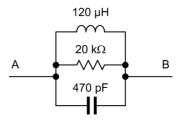


Figure 4.32 See Question 4.18

Figure 4.33 See Question 4.19

- 4.20 A transformer has 1,600 primary turns and 120 secondary turns. If the primary is connected to a 240 V r.m.s. a.c. mains supply, determine the secondary voltage.
- 4.21 A transformer has 800 primary turns and 60 secondary turns. If the secondary is connected to a load resistance of 15 Ω , determine the value of primary voltage required to produce a power of 22.5 W in the load (assume that the transformer is loss-free).
- 4.22 A transformer has 440 primary turns and operates from a 110 V a.c. supply. The transformer has two secondary windings each rated at 12 V 20 VA. Determine:
 - (a) the turns-per-volt rating
 - (b) the secondary turns (each winding)
 - (c) the secondary current (each winding)
 - (d) the full-load primary current.

Answers to these problems appear on pages 450 and 451.

Semiconductors

Chapter summary

This chapter introduces devices that are made from materials that are neither conductors nor insulators. These **semiconductor** materials form the basis of diodes, thyristors, triacs, transistors and integrated circuits. We start this chapter with a brief introduction to the principles of semiconductors before going on to examine the characteristics of each of the most common types of semiconductor.

5 Semiconductors

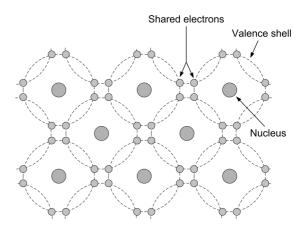
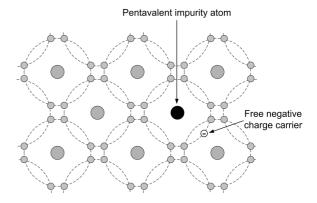
In Chapter 1 we described the simplified structure of an atom and showed that it contains both negative charge carriers (electrons) and positive charge carriers (protons). Electrons each carry a single unit of negative electric charge while protons each exhibit a single unit of positive charge. Since atoms normally contain an equal number of electrons and protons, the net charge present will be zero. For example, if an atom has 11 electrons, it will also contain 11 protons. The end result is that the negative charge of the electrons will be exactly balanced by the positive charge of the protons.

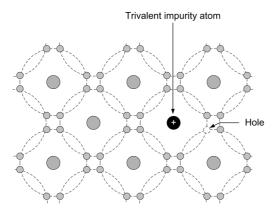
Electrons are in constant motion as they orbit around the nucleus of the atom. Electron orbits are organized into shells. The maximum number of electrons present in the first shell is 2, in the second shell 8, and in the third, fourth and fifth shells it is 18, 32 and 50, respectively. In electronics only the electron shell furthermost from the nucleus of an atom is important. It is important to note that the movement of electrons only involves those present in the outer **valence shell**

If the valence shell contains the maximum number of electrons possible the electrons are rigidly bonded together and the material has the properties of an insulator. If, however, the valence shell does not have its full complement of electrons, the electrons can be easily loosened from their orbital bonds, and the material has the properties associated with an electrical conductor.

An isolated silicon atom contains four electrons in its valence shell. When silicon atoms combine to form a solid crystal, each atom positions itself between four other silicon atoms in such a way that the valence shells overlap from one atom to another. This causes each individual valence electron to be shared by two atoms, as shown in Fig. 5.1. By sharing the electrons between four adjacent atoms each individual silicon atom appears to have eight electrons in its valence shell. This sharing of valence electrons is called **covalent bonding**.

In its pure state, silicon is an insulator because the covalent bonding rigidly holds all of the electrons, leaving no free (easily loosened) electrons to conduct current. If, however, an


Figure 5.1 Lattice showing covalent bonding

atom of a different element (i.e. an **impurity**) is introduced that has five electrons in its valence shell, a surplus electron will be present, as shown in Fig. 5.2. These **free electrons** become available for use as **charge carriers** and they can be made to move through the lattice by applying an external potential difference to the material.

Similarly, if the impurity element introduced into the pure silicon lattice has three electrons in its valence shell, the absence of the fourth electron needed for proper covalent bonding will produce a number of gaps into which electrons can fit, as shown in Fig. 5.3. These gaps are referred to as **holes**. Once again, current will flow when an external potential difference is applied to the material.

Figure 5.2 Free negative charge carriers (electrons) produced by introducing a pentavalent impurity

Figure 5.3 Holes produced by introducing a trivalent impurity

Regardless of whether the impurity element produces surplus electrons or holes, the material will no longer behave as an insulator, neither will it have the properties that we normally associate with a metallic conductor. Instead, we call the material a **semiconductor** – the term simply indicates that the substance is no longer a good insulator or a good conductor but is somewhere in between!

The process of introducing an atom of another (impurity) element into the lattice of an otherwise pure material is called **doping**. When the pure material has been doped with an impurity with five electrons in its valence shell (i.e. a **pentavalent impurity**) it will become an **N-type** material. If, however, the pure material is doped with an impurity having three electrons in its valence shell (i.e. a **trivalent impurity**) it will become a **P-type** material. N-type semiconductor material contains an excess of negative charge carriers, and P-type material contains an excess of positive charge carriers.

Semiconductor diodes

When a junction is formed between N-type and P-type semiconductor materials, the resulting device is called a diode. This component offers an extremely low resistance to current flow in one direction and an extremely high resistance to current flow in the other. This characteristic allows the diode to be used in applications that

require a circuit to behave differently according to the direction of current flowing in it.

An ideal diode would pass an infinite current in one direction and no current at all in the other direction. In addition, the diode would start to conduct current when the smallest of voltages was present. In practice, a small voltage must be applied before conduction takes place. Furthermore, a small **leakage current** will flow in the **reverse direction**. This leakage current is usually a very small fraction of the current that flows in the **forward direction**.

If the P-type semiconductor material is made positive relative to the N-type material by an amount greater than its **forward threshold voltage** (about 0.6 V if the material is silicon and 0.2 V if the material is germanium), the diode will freely pass current. If, on the other hand, the P-type material is made negative relative to the N-type material, virtually no current will flow unless the applied voltage exceeds the maximum (breakdown) voltage that the device can withstand. Note that a normal diode will be destroyed if its **reverse breakdown voltage** is exceeded.

A semiconductor junction diode is shown in Fig. 5.4. The connection to the P-type material is referred to as the **anode** while that to the N-type material is called the **cathode**. With no externally applied potential, electrons from the N-type material will cross into the P-type region and fill some of the vacant holes. This action will result in the production of a region either side of the junction in which there are no free charge carriers. This zone is known as the **depletion region**.

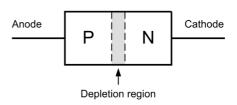


Figure 5.4 A P-N junction diode

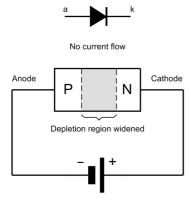

5 Semiconductors

Fig. 5.5(a) shows a junction diode in which the anode is made positive with respect to the cathode. In this **forward-biased** condition, the diode freely passes current. Figure 5.5(b) shows a diode with the cathode made positive with respect to the cathode. In this **reverse-biased** condition, the diode passes a negligible amount of current. In the freely conducting forward-biased state, the diode acts rather like a closed switch. In the reverse-biased state, the diode acts like an open switch.

If a positive voltage is applied to the P-type material, the free positive charge carriers will be repelled and they will move away from the positive potential towards the junction. Likewise,

Anode PN Cathode PN Depletion region removed

(a) Forward biased P-N junction

(b) Reverse biased P-N junction

Figure 5.5 Forward- and reverse-biased P-N junction

the negative potential applied to the N-type material will cause the free negative charge carriers to move away from the negative potential towards the junction.

When the positive and negative charge carriers arrive at the junction, they will attract one another and combine (recall that unlike charges attract). As each negative and positive charge carrier combine at the junction, a new negative and positive charge carrier will be introduced to the semiconductor material from the voltage source. As these new charge carriers enter the semiconductor material, they will move towards the junction and combine. Thus, current flow is established and it will continue for as long as the voltage is applied.

As stated earlier, the **forward threshold voltage** must be exceeded before the diode will conduct. The forward threshold voltage must be high enough to completely remove the depletion layer and force charge carriers to move across the junction. With silicon diodes, this forward threshold voltage is approximately 0.6 V to 0.7 V. With germanium diodes, the forward threshold voltage is approximately 0.2 V to 0.3 V.

Fig. 5.6 shows typical characteristics for small germanium and silicon diodes. It is worth noting

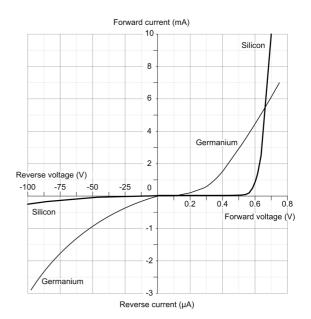


Figure 5.6 Typical diode characteristics

that diodes are limited by the amount of forward current and reverse voltage they can withstand. This limit is based on the physical size and construction of the diode.

In the case of a reverse-biased diode, the P-type material is negatively biased relative to the N-type material. In this case, the negative potential applied to the P-type material attracts the positive charge carriers, drawing them away from the junction. Likewise, the positive potential applied to the N-type material attracts the negative charge carriers away from the junction. This leaves the junction area depleted; virtually no charge carriers exist. Therefore, the junction area becomes an insulator, and current flow is inhibited. The reverse bias potential may be increased to the reverse breakdown voltage for which the particular diode is rated. As in the case of the maximum forward current rating, the reverse breakdown voltage is specified by the manufacturer. The reverse breakdown voltage is usually very much higher than the forward threshold voltage. A typical general-purpose diode may be specified as having a forward threshold voltage of 0.6 V and a reverse breakdown voltage of 200 V. If the latter is exceeded, the diode may suffer irreversible damage. It is also worth noting that, where diodes are designed for use as rectifiers, manufacturers often quote peak inverse voltage (PIV) or maximum reverse repetitive voltage (V_{RRM}) rather than maximum reverse breakdown voltage.

Fig. 5.7 shows a test circuit for obtaining diode characteristics (note that the diode must be reverse connected in order to obtain the reverse characteristic).

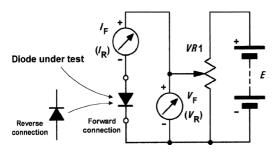
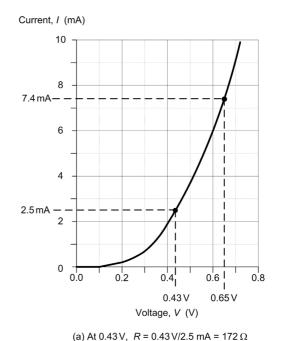


Figure 5.7 Diode test circuit

Example 5.1

The characteristic shown in Fig. 5.8 refers to a germanium diode. Determine the resistance of the diode when (a) the forward current is 2.5 mA and (b) when the forward voltage is 0.65 V.

Solution


(a) When $I_F = 2.5$ mA the corresponding value of V_F can be read from the graph. This shows that $V_F = 0.43$ V. The resistance of the diode at this point on the characteristic will be given by:

$$R = \frac{V_F}{I_F} = \frac{0.43 \text{ V}}{2.5 \text{ mA}} = 172 \Omega$$

(b) When $V_F = 0.65$ V the corresponding value of I_F can be read from the graph. This shows that $I_F = 7.4$ mA. The resistance of the diode at this point on the characteristic will be given by:

$$R = \frac{V_F}{I_r} = \frac{0.65 \text{ V}}{7.4 \text{ mA}} = 88 \Omega$$

This example shows how the resistance of a diode does not remain constant but instead changes according to the point on the characteristic at which it is operating.

(b) At 0.65 V, $R = 0.65 \text{ V}/7.4 \text{ mA} = 88 \Omega$

Figure 5.8 See Example 5.1

Diode types

Diodes are often divided into **signal** or **rectifier** types according to their principal field of application. Signal diodes require consistent forward characteristics with low forward voltage drop. Rectifier diodes need to be able to cope with high values of reverse voltage and large values of forward current, consistency of characteristics is of secondary importance in such applications. Table 5.1 summarizes the characteristics of some common semiconductor diodes while a selection of diodes are shown in Fig. 5.9.

Zener diodes

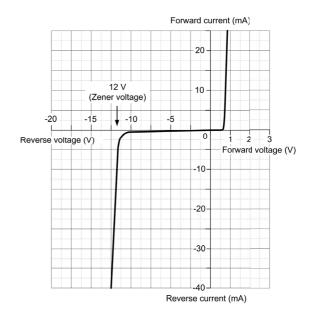

Zener diodes are heavily doped silicon diodes which, unlike normal diodes, exhibit an abrupt reverse breakdown at relatively low voltages (typically less than 6 V). A similar effect occurs in less heavily doped diodes. These **avalanche diodes** also exhibit a rapid breakdown with

Figure 5.9 A selection of diodes including power and bridge rectifiers, thyristors, signal and zener diodes

negligible current flowing below the avalanche voltage and an increasingly large current flowing once the avalanche voltage has been reached. For avalanche diodes, this breakdown voltage usually occurs at voltages above 6 V. In practice, however, both types of diode are referred to as zener diodes. A typical characteristic for a 12 V zener diode is shown in Fig. 5.10.

Whereas reverse breakdown is a highly undesirable effect in circuits that use conventional diodes, it can be extremely useful in the case of zener diodes where the breakdown voltage is precisely known. When a diode is undergoing reverse breakdown and provided its maximum

Figure 5.10 Typical characteristic for a 12 V zener diode

Table 5.1 Characteristics of some common semiconductor diodes

Device	Material	PIV	I _F max.	I _R max.	Application
1N4148	Silicon	100 V	76 mA	25 nA	General purpose
1N914	Silicon	100 V	75 mA	25 nA	General purpose
AA113	Germanium	60 V	10 mA	200 μΑ	RF detector
OA47	Germanium	25 V	110 mA	100 μΑ	Signal detector
OA91	Germanium	115 V	50 mA	275 μΑ	General purpose
1N4001	Silicon	50 V	1 A	10 μΑ	Low-voltage rectifier
1N5404	Silicon	400 V	3 A	10 μΑ	High-voltage rectifier
BY127	Silicon	1,250 V	1 A	10 μΑ	High-voltage rectifier

ratings are not exceeded the voltage appearing across it will remain substantially constant (equal to the nominal zener voltage) regardless of the current flowing. This property makes the zener diode ideal for use as a **voltage regulator** (see Chapter 6).

Zener diodes are available in various families (according to their general characteristics, encapsulation and power ratings) with reverse breakdown (zener) voltages in the E12 and E24 series (ranging from 2.4 V to 91 V). Table 5.2 summarizes the characteristics of common zener diodes.

Figure 5.11 shows a test circuit for obtaining zener diode characteristics. The circuit is shown with the diode connected in the forward direction and it must be reverse connected in order to obtain the reverse characteristic. Finally, it is important to note that, when used as a voltage regulator, the cathode connection is the more positive terminal.

Variable capacitance diodes

The capacitance of a reverse-biased diode junction will depend on the width of the depletion layer

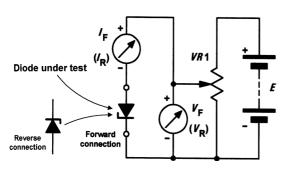
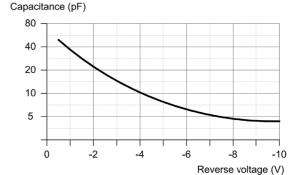



Figure 5.11 Zener diode test circuit

which, in turn, varies with the reverse voltage applied to the diode. This allows a diode to be used as a voltage controlled capacitor. Diodes that are specially manufactured to make use of this effect (and which produce comparatively large changes in capacitance for a small change in reverse voltage) are known as variable capacitance diodes (or **varicaps**). Such diodes are used (often in pairs) to provide tuning in radio and TV receivers. A typical characteristic for a variable capacitance diode is shown in Fig. 5.12. Table 5.3 summarizes the characteristics of several common variable capacitance diodes.

Thyristors

Thyristors (or **silicon controlled rectifiers**) are three-terminal devices which can be used for switching and a.c. power control. Thyristors can switch very rapidly from a conducting to a non-conducting state. In the off state, the thyristor exhibits negligible leakage current, while in the on state the device exhibits very low resistance. This

Figure 5.12 Typical characteristic for a variable capacitance diode

Table 5.2 Characteristics of some common zener diodes

BZY88 series	Miniature glass encapsulated diodes rated at 500 mW (at 25°C). Zener voltages range from 2.7 V to 15 V (voltages are quoted for 5 mA reverse current at 25°C)
BZX61 series	Encapsulated alloy junction rated at 1.3W (25°C ambient). Zener voltages range from 7.5 V to 72 V
BZX85 series	Medium-power glass-encapsulated diodes rated at 1.3 W and offering zener voltages in the range 5.1 V to 62 V
BZY93 series	High-power diodes in stud mounting encapsulation. Rated at 20 W for ambient temperatures up to 75°C. Zener voltages range from 9.1 V to 75 V
1N5333 series	Plastic encapsulated diodes rated at 5 W. Zener voltages range from 3.3 V to 24 V

Table 5.3 Characteristics of several common types of variable capacitance diode

Туре	Capacitance (at 4V)	Capacitance ratio	Q-factor
1N5450	33 pF	2.6 (4 V to 60 V)	350
MV1404	50 pF	>10 (2 V to 10 V)	200
MV2103	10 pF	2 (4 V to 60 V)	400
MV2115	100 pF	2.6 (4 V to 60 V)	100

Table 5.4 Characteristics of several common types of thyristor

Туре	<i>I_F</i> ave. (A)	V _{RRM} (V)	V _{GT} (V)	I _{GT} (mA)
2N4444	5.1	600	1.5	30
BT106	1	700	3.5	50
BT152	13	600	1	32
BTY79-400R	6.4	400	3	30
TIC106D	3.2	400	1.2	0.2
TIC126D	7.5	400	2.5	20

results in very little power loss within the thyristor even when appreciable power levels are being controlled. Once switched into the conducting state, the thyristor will remain conducting (i.e. it is latched in the on state) until the forward current is removed from the device. In d.c. applications this necessitates the interruption (or disconnection) of the supply before the device can be reset into its non-conducting state. Where the device is used with an alternating supply, the device will automatically become reset whenever the main supply reverses. The device can then be triggered on the next half-cycle having correct polarity to permit conduction. Like their conventional silicon diode counterparts, thyristors have anode and cathode connections; control is applied by means of a gate terminal (see Fig. 5.13). The device is triggered into the conducting (on state) by means of the application of a current pulse to this terminal. The effective triggering of a thyristor requires a gate trigger pulse having a fast rise time derived from a low-resistance source. Triggering can become erratic when insufficient gate current is available or when the gate current changes slowly. Table 5.4 summarizes the characteristics of several common thyristors.

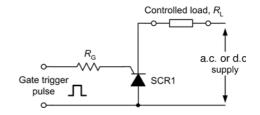
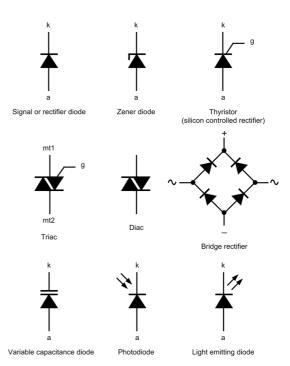



Figure 5.13 Method of triggering a thyristor

Figure 5.14 Symbols used for various types of diode

Triacs

Triacs are a refinement of the thyristor which, when triggered, conduct on both positive and negative half-cycles of the applied voltage. Triacs have three terminals known as main-terminal one (MT1), main-terminal two (MT2) and gate (G), as shown in Fig. 5.14. Triacs can be triggered by both positive and negative voltages applied between G and MT1 with positive and negative voltages present at MT2, respectively. Triacs thus provide **full-wave control** and offer superior performance in a.c. power control applications when compared with thyristors which only provide **half-wave control**. Table 5.5 summarizes

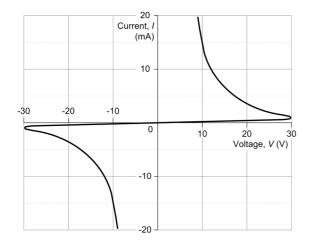


Figure 5.15 Typical diac characteristic

the characteristics of several common triacs. In order to simplify the design of triggering circuits, triacs are often used in conjunction with diacs (equivalent to a bi-directional zener diode). A typical **diac** conducts heavily when the applied voltage exceeds approximately 30 V in either direction. Once in the conducting state, the resistance of the diac falls to a very low value and thus a relatively large value of current will flow. The characteristic of a typical diac is shown in Fig. 5.15.

Light emitting diodes

Light emitting diodes (LEDs) can be used as general-purpose indicators and, compared with conventional filament lamps, operate from significantly smaller voltages and currents. LEDs are also very much more reliable than filament lamps. Most LEDs will provide a reasonable level of light output when a forward current of between 5 mA and 20 mA is applied.

LEDs are available in various formats, with the round types being most popular. Round LEDs are commonly available in the 3 mm and 5 mm (0.2 inch) diameter plastic packages; LEDs are also available in a 5 mm \times 2 mm rectangular format. The viewing angle for round LEDs tends to be in the region of 20° to 40°, whereas for rectangular types this is increased to around 100°. Table 5.6 summarizes the characteristics of several common types of LED.

Table 5.5 Characteristics of some common triacs

Туре	/ _т (А)	V _{RRM} (V)	ν _{gτ} (V)	I _{GT} (mA)
2N6075	4	600	2.5	5
BT139	15	600	1.5	5
TIC206M	4	600	2	5
TIC226M	8	600	2	50

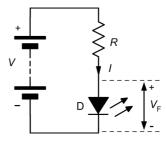


Figure 5.16 Use of a current limiting resistor with an LED

In order to limit the forward current of an LED to an appropriate value, it is usually necessary to include a fixed resistor in series with an LED indicator, as shown in Fig. 5.16. The value of the resistor may be calculated from:

$$R = \frac{V - V_{\rm F}}{I}$$

where $V_{\rm F}$ is the forward voltage drop produced by the LED and V is the applied voltage. Note that it is usually safe to assume that $V_{\rm F}$ will be 2 V and choose the nearest preferred value for R.

Example 5.2

An LED is to be used to indicate the presence of a 21 V d.c. supply rail. If the LED has a nominal forward voltage of 2.2 V, and is rated at a current of 15 mA, determine the value of series resistor required.

Solution

Here we can use the formula:

$$R = \frac{21 \text{ V} - 2.2 \text{ V}}{15 \text{ mA}} = \frac{18.8 \text{ V}}{15 \text{ mA}} = 1.25 \text{ k}\Omega$$

Table 5.6 Characteristics of some common types of LED

Resistance (Ω)	LED type					
	Miniature	Standard	High efficiency	High intensity		
Diameter (mm)	3	5	5	5		
Maximum forward current (mA)	40	30	30	30		
Typical forward current (mA)	12	10	7	10		
Typical forward voltage drop (V)	2.1	2.0	1.8	2.2		
Maximum reverse voltage (V)	5	3	5	5		
Maximum power dissipation (mW)	150	100	27	135		
Peak wavelength (nm)	690	635	635	635		

The nearest preferred value is 1.2 k Ω . The power dissipated in the resistor will be given by:

$$P = I \times V = 15 \text{ mA} \times 18.8 \text{ V} = 280 \text{ mW}$$

Hence the resistor should be rated at 0.33 W, or greater.

Diode coding

The European system for classifying semiconductor diodes involves an alphanumeric code which employs either two letters and three figures (general-purpose diodes) or three letters and two figures (special-purpose diodes). Table 5.7 shows how diodes are coded. Note that the cathode connection of most wire-ended diodes is marked with a stripe.

Example 5.3

Identify each of the following diodes:

- (a) AA113
- **(b)** BB105
- (c) BZY88C4V7.

Solution

Diode (a) is a general-purpose germanium diode. Diode (b) is a silicon variable capacitance diode. Diode (c) is a silicon zener diode having ±5% tolerance and 4.7 V zener voltage.

Bipolar junction transistors

Transistor is short for transfer resistor, a term which provides something of a clue as to how the device operates; the current flowing in the output

Table 5.7 The European system of diode coding

First lett	ter – semiconductor material:
A Gerr	manium
B Silico	on
C Galli	um arsenide, etc.
D Phot	todiodes, etc.
Second	letter – application:
A Gen	eral-purpose diode
B Varia	able-capacitance diode
E Tunr	nel diode
P Phot	odiode
Q Ligh	t emitting diode
T Cont	rolled rectifier
X Vara	ctor diode
Y Pow	er rectifier
Z Zene	er diode
application	tter – in the case of diodes for specialized ons, the third letter does not generally have any r significance
(which a	odes – zener diodes have an additional letter opears after the numbers) which denotes the e of the zener voltage. The following letters are
A ±1%	
B ±2%	
C ±5%)
D ±10	%
	odes also have additional characters which the zener voltage (e.g. 9V1 denotes 9.1 V).

circuit is determined by the current flowing in the input circuit. Since transistors are three-terminal devices, one electrode must remain common to both the input and the output.

Transistors fall into two main categories: bipolar junction transistors (BJTs) and field effect transistors (FETs), and are also classified according to the semiconductor material employed (silicon or germanium) and to their field of application (e.g. general-purpose, switching, high-frequency, etc.). Various classes of transistor are available according to the application concerned (see Table 5.8).

BJT operation

Bipolar junction transistors generally comprise NPN or PNP junctions of either **silicon** (**Si**) or **germanium** (**Ge**) material (see Figs 5.17 and 5.18). The junctions are, in fact, produced in a single slice of silicon by diffusing impurities through a photographically reduced mask. Silicon transistors are superior when compared with germanium transistors in the vast majority of applications (particularly at high temperatures) and thus germanium devices are very rarely encountered.

Figures 5.19(a) and 5.19(b), respectively, show a simplified representation of NPN and PNP transistors together with their circuit symbols. In either case the electrodes are labelled **collector**, **base** and **emitter**. Note that each junction within the transistor, whether it be collector–base or base–emitter, constitutes a P–N junction. Figures 5.20(a) and 5.20(b), respectively, show the normal bias voltages applied to NPN and PNP transistors. Note that the base–emitter junction is forward biased and the collector–base junction is reverse biased. The base region is, however, made very

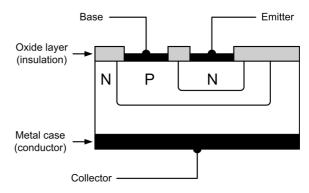


Figure 5.17 NPN transistor construction

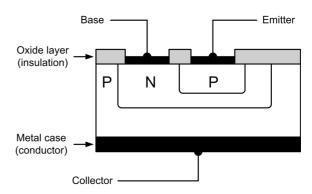
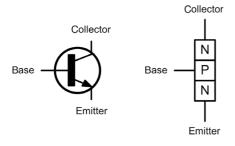



Figure 5.18 PNP transistor construction

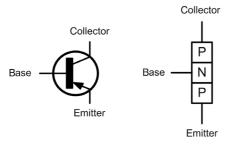
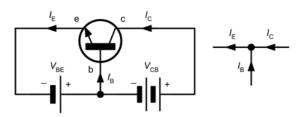
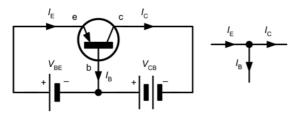

narrow so that carriers are swept across it from emitter to collector and only a relatively small current flows in the base. To put this into context, the current flowing in the emitter circuit is typically 100 times greater than that flowing in the base. The direction of conventional current flow is from emitter to collector in the case of a PNP

Table 5.8 Classes of transistor

Classification	Typical applications
Low-frequency	Transistors designed specifically for audio and low-frequency linear applications (below 100 kHz)
High-frequency	Transistors designed specifically for radio and wideband linear applications (100 kHz and above)
Power	Transistors that operate at significant power levels (such devices are often sub-divided into audio and radio frequency types)
Switching	Transistors designed for switching applications (including power switching)
Low-noise	Transistors that have low-noise characteristics and which are intended primarily for the amplification of low-amplitude signals
High-voltage	Transistors designed specifically to handle high voltages
Driver	Transistors that operate at medium power and voltage levels and which are often used to precede a final (power) stage which operates at an appreciable power level



(a) NPN bipolar junction transistor (BJT)



(b) PNP bipolar junction transistor (BJT)

Figure 5.19 Symbols and simplified models for (a) NPN and (b) PNP bipolar junction transistors

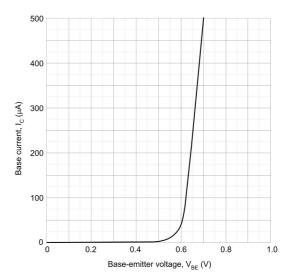
(a) NPN bipolar junction transistor (BJT)

(b) PNP bipolar junction transistor (BJT)

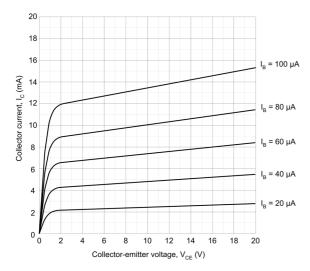
Figure 5.20 Bias voltages and current flow for (a) NPN and (b) PNP bipolar junction transistors

transistor, and collector to emitter in the case of an NPN device. The equation that relates current flow in the collector, base and emitter currents is:

$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$


where $I_{\rm E}$ is the emitter current, $I_{\rm B}$ is the base current and $I_{\rm C}$ is the collector current (all expressed in the same units).

Bipolar transistor characteristics


The characteristics of a transistor are often presented in the form of a set of graphs relating voltage and current present at the transistor's terminals.

A typical **input characteristic** ($I_{\rm B}$ plotted against $V_{\rm BE}$) for a small-signal general-purpose NPN transistor operating in common-emitter mode (see Chapter 7) is shown in Fig. 5.21. This characteristic shows that very little base current flows until the base—emitter voltage ($V_{\rm BE}$) exceeds 0.6 V. Thereafter, the base current increases rapidly (this characteristic bears a close resemblance to the forward part of the characteristic for a silicon diode, see Fig. 5.6).

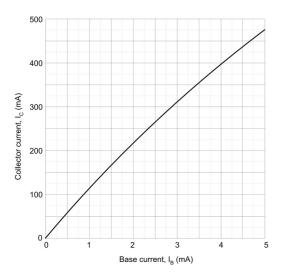

Fig. 5.22 shows a typical **output characteristic** ($I_{\rm C}$ plotted against $V_{\rm CE}$) for a small-signal general-purpose NPN transistor operating in commonemitter mode (see Chapter 7). This characteristic

Figure 5.21 Typical input characteristic for a small-signal NPN BJT operating in common-emitter mode

Figure 5.22 Typical family of output (collector) characteristics for a small-signal NPN BJT operating in common-emitter mode

Figure 5.23 Typical transfer characteristic for a small-signal NPN BJT operating in common-emitter mode

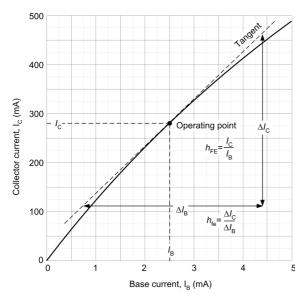
comprises a family of curves, each relating to a different value of base current ($I_{\rm B}$). It is worth taking a little time to get familiar with this characteristic as we shall be putting it to good use in Chapter 7. In particular, it is important to note the 'knee' that occurs at values of $V_{\rm CE}$ of about 2 V. Also, note how the curves become flattened above this value, with the collector current ($I_{\rm C}$) not changing very greatly for a comparatively large change in collector–emitter voltage ($V_{\rm CE}$).

Finally, a typical **transfer characteristic** ($I_{\rm C}$ plotted against $I_{\rm B}$) for a small-signal general purpose NPN transistor operating in common-emitter mode (see Chapter 7) is shown in Fig. 5.23. This characteristic shows an almost linear relationship between collector current and base current (i.e. doubling the value of base current produces double the value of collector current, and so on). This characteristic is reasonably independent of the value of collector-emitter voltage ($V_{\rm CE}$) and thus only a single curve is used.

Current gain

The current gain offered by a transistor is a measure of its effectiveness as an amplifying device. The most commonly quoted parameter is that which relates to **common-emitter mode**. In this mode, the input current is applied to the base and the output current appears in the collector (the emitter is effectively common to both the input and output circuits).

The common-emitter current gain is given by:


$$h_{\rm FE} = \frac{I_{\rm C}}{I_{\rm B}}$$

where $h_{\rm FE}$ is the **hybrid parameter** which represents **large signal (d.c.) forward current gain**, $I_{\rm C}$ is the collector current and $I_{\rm B}$ is the base current. When small (rather than large) signal operation is considered, the values of $I_{\rm C}$ and $I_{\rm B}$ are incremental (i.e. small changes rather than static values). The current gain is then given by:

$$h_{\rm fe} = \frac{\Delta I_{\rm C}}{\Delta I_{\rm B}}$$

where $h_{\rm fe}$ is the **hybrid parameter** which represents **small signal (a.c.) forward current gain**, $\Delta I_{\rm C}$ is the change in collector current which results from a corresponding change in base current, $\Delta I_{\rm R}$.

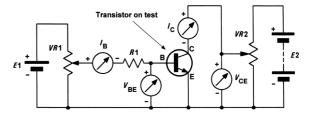

Values of $h_{\rm FE}$ and $h_{\rm fe}$ can be obtained from the transfer characteristic ($I_{\rm C}$ plotted against $I_{\rm B}$) as shown in Figs 5.23 and 5.24. Note that $h_{\rm FE}$ is found from corresponding **static values** while $h_{\rm fe}$ is found by measuring the slope of the graph. Also note that, if the transfer characteristic is linear, there is little (if any) difference between $h_{\rm FE}$ and $h_{\rm fe}$.

Figure 5.24 Determining the static and small-signal values of current gain ($h_{\rm FE}$ and $h_{\rm fe}$ respectively) from the transfer characteristic. In this particular example $h_{\rm FE} = 280$ / 2.5 = 112 while $h_{\rm fe} = 350$ / 3.65 = 96

It is worth noting that current gain $(h_{\rm fe})$ varies with collector current. For most small-signal transistors, $h_{\rm fe}$ is a maximum at a collector current in the range 1 mA and 10 mA. Furthermore, current gain falls to very low values for power transistors when operating at very high values of collector current. Another point worth remembering is that most transistor parameters (particularly common-emitter current gain, $h_{\rm fe}$) are liable to wide variation from one device to the next. It is, therefore, important to design circuits on the basis of the minimum value for $h_{\rm fe}$ in order to ensure successful operation with a variety of different devices.

Transistor parameters are listed in Table 5.9, while Table 5.10 shows the characteristics of several common types of bipolar transistor. Finally, Fig. 5.25 shows a test circuit for obtaining NPN transistor characteristics (the arrangement for a PNP transistor is similar but all meters and supplies are reversed). A typical BJT data sheet is shown in Fig. 5.26.

Figure 5.25 NPN transistor test circuit (the arrangement for a PNP transistor is similar but all meters and supplies must be reversed)

Example 5.4

A transistor operates with $I_{\rm C}$ = 30 mA and $I_{\rm R}$ = 600 μ A. Determine the value of $I_{\rm E}$ and $h_{\rm FE}$.

Solution

The value of $I_{\rm F}$ can be calculated from $I_{\rm C}$ + $I_{\rm B}$, thus:

$$I_{\rm F} = 30 + 0.6 = 30.6 \, \text{mA}$$

The value of $h_{\rm FE}$ can be found from $h_{\rm FE}$ = $I_{\rm C}$ /I_{\rm B}, thus:

$$h_{\rm EE} = I_{\rm C}/I_{\rm R} = 30/0.6 = 50$$

Example 5.5

A transistor operates with a collector current of 97 mA and an emitter current of 98 mA. Determine the value of base current and common-emitter current gain.

Solution

Since $I_E = I_C + I_B$, the base current will be given by:

$$I_{\rm R} = I_{\rm F} - I_{\rm C} = 98 - 97 = 1 \text{ mA}$$

The common-emitter current gain $(h_{\rm FE})$ will be given by:

$$h_{\rm EE} = I_{\rm C}/I_{\rm R} = 97/1 = 97$$

Example 5.6

An NPN transistor is to be used in a regulator circuit in which a collector current of 1.5 A is to be controlled by a base current of 50 mA. What value of $h_{\rm FE}$ will be required?

If the device is to be operated with $V_{\rm CE}$ = 6 V, which transistor selected from Table 5.10 would be appropriate for this application and why?

2N3702

PNP General Purpose Amplifier

- · This device designed for use as general purpose amplifier and switches requiring collector currents to 300mA.
- · Sourced from Process 68.
- · See PN200 for Characteristics.

1. Emitter 2. Collector 3. Base

PNP Epitaxial Silicon Transistor

Absolute Maximum Ratings* Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	-25	V
V_{CBO}	Collector-Base Voltage	-40	V
V _{EBO}	Emitter-Base Voltage	-5.0	V
I _C	Collector Current - Continuous	-500	mA
T _J , T _{ST}	Operating and Storage Junction Temperature Range	-55 ~ +150	°C

^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units			
Off Characteristics									
BV _{(BR)CEO}	Collector-Emitter Breakdown Voltage	I _C = -10mA, I _B = 0	-25			V			
BV _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = -100μA, I _E = 0	-40			V			
BV _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = -100μA, I _C = 0	-5.0			V			
I _{CBO}	Collector Cut-off Current	V _{CB} = -20V, I _E = 0			-100	nA			
I _{EBO}	Emitter Cut-off Current	V _{EB} = -3.0V, I _C = 0			-100	nA			
On Charact	eristics *		_		-				
h _{FE}	DC Current Gain	V _{CE} = -5.0V, I _C = -50mA	60		300				
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = -50mA, I _B = -5.0mA			-0.25	V			
V _{BE} (sat)	Base-Emitter Saturation Voltage	V _{CE} = -5.0V, I _C = -50mA	-0.6		-1.0	V			
Small Signal Characteristics									
C _{ob}	Current Gain Bandwidth Product	V _{CB} = -10V, f = 1.0MHz			12	pF			
f _T	Output Capacitance	I _E = -50mA, V _{CE} = -5.0V	100			MHz			
* Pulse Test: Puls	e ≤ 300us. Duty Cycle ≤ 2.0%		-			-			

Thermal Characteristics TA=25°C unless otherwise noted

Symbol	Parameter	Max.	Units
PD	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	°C/W

©2002 Fairchild Semiconductor Corporation

Figure 5.26 Extract from the data sheet for a 2N3702 BJT (courtesy of Fairchild Semiconductor)

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Table 5.9 Bipolar transistor parameters

Parameter	Meaning
I _c max.	The maximum value of collector current
V _{CEO} max.	The maximum value of collector-emitter voltage with the base terminal left open-circuit
V _{CBO} max.	The maximum value of collector-base voltage with the base terminal left open-circuit
P _t max.	The maximum total power dissipation
$h_{\scriptscriptstyle{ extsf{FE}}}$	The large-signal (static) common-emitter current gain
h _{fe}	The small-signal (dynamic) common-emitter current gain
h _{fe} max.	The maximum value of small-signal common-emitter current gain
h _{FE} min.	The minimum value of small-signal common-emitter current gain
h _{ie}	The small-signal input resistance (see Chapter 7)
h _{oe}	The small-signal output conductance (see Chapter 7)
h _{re}	The small-signal reverse current transfer ratio (see Chapter 7)
f _t typ.	The transition frequency (i.e. the frequency at which the small-signal common-emitter current gain has fallen to unity)

Table 5.10 Characteristics of some common types of bipolar transistor

Device	Туре	<i>I_c</i> max.	V _{CEO} max.	V _{CBO} max.	P _t max.	h _{fe}	at I _c	f _t typ.	Application	
BC108	NPN	100 mA	20 V	30 V	300 mW	125	2 mA	250 MHz	General purpose	
BCY70	PNP	200 mA	-40 V	-50 V	360 mW	150	2 mA	200 MHz	General purpose	
BD131	NPN	3 A	45 V	70 V	15 W	50	250 mA	60 MHz	AF power	
BD132	PNP	3 A	-45 V	-45 V	15 W	50	250 mA	60 MHz	AF power	
BF180	NPN	20 mA	20 V	20 V	150 mW	100	10 mA	650 MHz	RF amplifier	
2N3053	NPN	700 mA	40 V	60 V	800 mW	150	50 mA	100 MHz	Driver	
2N3055	NPN	15 A	60 V	100 V	115 W	50	500 mA	1 MHz	LF power	
2N3866	NPN	400 mA	30 V	30 V	3 W	105	50 mA	700 MHz	RF driver	
2N3904	NPN	200 mA	40 V	60 V	310 mW	150	50 mA	300 MHz	Switching	

Solution

The required current gain can be found from:

$$h_{\rm FE} = I_{\rm C}/I_{\rm R} = 1.5 \, {\rm A}/50 \, {\rm mA} = 1.5/0.05 = 30$$

The most appropriate device would be the BD131. The only other device capable of operating at a collector current of 1.5 A would be a 2N3055.

The collector power dissipation will be given by:

$$P_{\rm C} = I_{\rm C} \times V_{\rm CF} = 1.5 \, \text{A} \times 6 \, \text{V} = 9 \, \text{W}$$

However, the 2N3055 is rated at 115 W maximum total power dissipation and this is more than ten times the power required.

Example 5.7

A transistor is used in a linear amplifier arrangement. The transistor has small and large

signal current gains of 200 and 175, respectively, and bias is arranged so that the static value of collector current is 10 mA. Determine the value of base bias current and the change of output (collector) current that would result from a 10 μA change in input (base) current.

Solution

The value of base bias current can be determined from:

$$I_{\rm B} = I_{\rm C} / h_{\rm FF} = 10 \text{ mA} / 200 = 50 \mu \text{A}$$

The change of collector current resulting from a 10 μ A change in input current will be given by:

$$\Delta I_{\rm C} = h_{\rm fo} \times \Delta I_{\rm R} = 175 \times 10 \,\mu\text{A} = 1.75 \,\text{mA}$$

Field effect transistors

Field effect transistors (FETs) comprise a channel of P-type or N-type material surrounded by material of the opposite polarity. The ends of the channel (in which conduction takes place) form electrodes known as the **source** and **drain**. The effective width of the channel (in which conduction takes place) is controlled by a charge placed on the third (**gate**) electrode. The effective resistance between the source and drain is thus determined by the voltage present at the gate.

FETs are available in two basic forms; **junction gate** and **insulated gate**. The gate-source junction of a junction gate field effect transistor (JFET) is effectively a reverse-biased P–N junction. The gate connection of an insulated gate field effect transistor (IGFET), on the other hand, is insulated from the channel and charge is capacitively coupled to the channel. To keep things simple, we will consider only JFET devices in this book. Fig. 5.27 shows the basic construction of an N-channel JFET while Fig. 5.28 shows its symbol and simplified model.

JFETs offer a much higher input resistance when compared with bipolar transistors. For example,

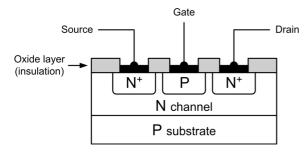
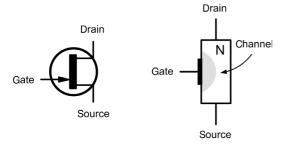
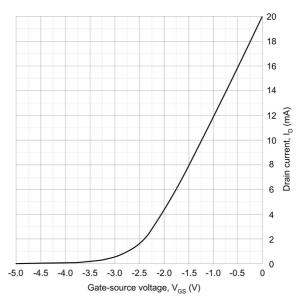



Figure 5.27 N-channel JFET construction


Figure 5.28 Symbol and simplified model for an N-channel JFET

the input resistance of a bipolar transistor operating in common-emitter mode (see Chapter 7) is usually around 2.5 k Ω whereas a JFET device operating in equivalent common-source mode (see Chapter 7) would typically exhibit an input resistance of 100 M Ω . This feature makes JFET devices ideal for use in applications where a very high input resistance is desirable.

FET characteristics

As with bipolar transistors, the characteristics of a FET are often presented in the form of a set of graphs relating voltage and current present at the transistor's terminals. A typical **mutual characteristic** ($I_{\rm D}$ plotted against $V_{\rm GS}$) for a small-signal general-purpose N-channel JFET operating in common-source mode (see Chapter 7) is shown in Fig. 5.29. This characteristic shows that the drain current is progressively reduced as the gate—source voltage is made more negative. At a certain value of $V_{\rm GS}$ the drain current falls to zero and the device is said to be **cut-off**.

Fig. 5.30 shows a typical **output characteristic** (I_D plotted against V_{DS}) for a small-signal general-purpose N-channel JFET operating in commonsource mode (see Chapter 7). This characteristic

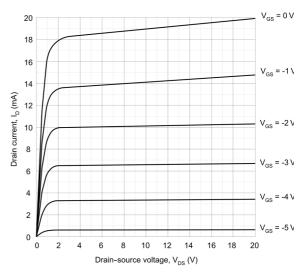
Figure 5.29 Typical mutual characteristic for an N-channel JFET operating in common-source mode

5 Semiconductors

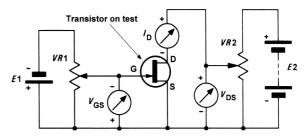
comprises a family of curves, each relating to a different value of gate-source voltage ($V_{\rm GS}$). It is worth taking a little time to get familiar with this characteristic as we shall be using it again in Chapter 7 (you might also like to compare this characteristic with the output characteristic for a transistor operating in common-emitter mode (see Fig. 5.22).

Once again, the characteristic curves have a 'knee' that occurs at low values of $V_{\rm DS}$. Also, note how the curves become flattened above this value with the drain current ($I_{\rm D}$) not changing very greatly for a comparatively large change in drain—source voltage ($V_{\rm DS}$). These characteristics are, in fact, even flatter than those for a bipolar transistor. Because of their flatness, they are often said to represent a **constant current** characteristic.

JFET parameters


The gain offered by a FET is normally expressed in terms of its **forward transfer conductance** ($g_{\rm fs}$ or $Y_{\rm fs}$) in **common-source** mode. In this mode, the input voltage is applied to the gate and the output current appears in the drain (the source is effectively common to both the input and output circuits).

The common-source forward transfer conductance is given by:


$$g_{\rm fs} = \frac{\Delta I_{\rm D}}{\Delta V_{\rm GS}}$$

where $\Delta I_{\rm D}$ is the change in drain current resulting from a corresponding change in gate–source voltage ($\Delta V_{\rm GS}$). The units of forward transfer conductance are siemens (S).

Forward transfer conductance $(g_{\rm fs})$ varies with drain current collector current. For most small-signal devices, $g_{\rm fs}$ is quoted for values of drain current between 1 mA and 10 mA. It's also worth noting that most FET parameters (particularly forward transfer conductance) are liable to wide variation from one device to the next. It is, therefore, important to design circuits on the basis of the minimum value for $g_{\rm fs}$ in order to ensure successful operation with a variety of

Figure 5.30 A typical family of output characteristics for an N-channel JFET operating in common-source mode

Figure 5.31 N-channel JFET test circuit (the arrangement for a P-channel JFET is similar but all meters and supplies must be reversed)

different devices. JFET parameters are shown in Table 5.11.

The characteristics of several common N-channel field effect transistors are shown in Table 5.12. Figure 5.31 shows a test circuit for obtaining the characteristics of an N-channel FET (the arrangement for a P-channel FET is similar but all meters and supplies must be reversed). A typical N-channel JFET data sheet is shown in Fig. 5.32.

Example 5.8

A FET operates with a drain current of 50 mA and a gate–source bias of –2 V. If the device has a $g_{\rm fs}$ of 0.025 S, determine the change in drain current if the bias voltage increases to –2.5 V.

2N3819

N-Channel RF Amplifier

- This device is designed for RF amplifier and mixer applications operating up to 450MHz, and for analog switching requiring low capacitance.
- · Sourced from process 50.

Epitaxial Silicon Transistor

Absolute Maximum Ratings* T_C=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	-25	V
I _D	Drain Current	50	mA
I _{GF}	Forward Gate Current	10	mA
T _{STG}	Storage Temperature Range	-55 ~ 150	°C

* This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These rating are based on a maximum junction temperature of 150 degrees C.

2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Electrical Characteristics T_C=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units	
Off Charac	Off Characteristics						
V _{(BR)GSS}	Gate-Source Breakdwon Voltage	$I_G = 1.0 \mu A, V_{DS} = 0$	25			V	
I _{GSS}	Gate Reverse Current	V _{GS} = -15V, V _{DS} = 0			2.0	nA	
V _{GS} (off)	Gate-Source Cutoff Voltage	V _{DS} = 15V, I _D = 2.0nA			8.0	V	
V _{GS}	Gate-Source Voltage	V _{DS} = 15V, I _D = 200μA	-0.5		-7.5	V	
On Characteristics							
I _{DSS}	Zero-Gate Voltage Drain Current	V _{DS} = 15V, V _{GS} = 0	2.0		20	mA	
Small Sign	al Characteristics						
gfs	Forward Transfer Conductance	$V_{DS} = 15V, V_{GS} = 0, f = 1.0KHz$	2000		6500	μmhos	
goss	Output Conductance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			50	μmhos	
У _{fs}	Reverse Transfer Admittance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz	1600			μmhos	
C _{iss}	Input Capacitance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			8.0	pF	
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15V, V _{GS} = 0, f = 1.0KHz			4.0	pF	

Thermal Characteristics TA=25°C unless otherwise noted

Symbol	Parameter	Max.	Units	
P _D	Total Device Dissipation	350	mW	
	Derate above 25°C	2.8	mW/°C	
R ₀ JC	Thermal Resistance, Junction to Case	125	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W	
Device mounted on FR-4 PCB 1.5" × 1.6" × 0.06"				

©2002 Fairchild Semiconductor Corporation

Rev. A1, December 2002

Figure 5.32 Extract from the data sheet for a 2N3819 JFET (courtesy of Fairchild Semiconductor)

Solution

The change in gate-source voltage ($\Delta V_{\rm gs}$) is -0.5 V and the resulting change in drain current can be determined from:

$$\Delta I_{\rm D} = \Delta V_{\rm GS} \times g_{\rm fs} = 0.025~{\rm S} \times -0.5~{\rm V} = -0.0125~{\rm A}$$
 This $\Delta I_{\rm D} = -12.5~{\rm mA}$

The new value of drain current will thus be (50 mA – 12.5 mA) or 37.5 mA.

The mutual characteristic shown in Fig. 5.33 illustrates this change in drain current. Note how the drain current falls in response to the change in gate—source voltage.

Transistor packages

A wide variety of packaging styles are used for transistors. Small-signal transistors tend to have either plastic packages (e.g. TO92) or miniature metal cases (e.g. TO5 or TO18). Medium- and high-power devices may also be supplied in plastic cases but these are normally fitted with integral metal heat-sinking tabs (e.g. TO126, TO218 or TO220) in order to conduct heat away

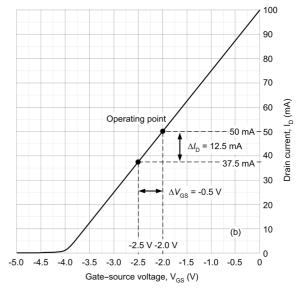


Figure 5.33 See Example 5.8

from the junction. Some older power transistors are supplied in metal cases (either TO3 or TO66). Several popular transistor case styles are shown in Fig. 5.34.

Table 5.11 JFET parameters

Parameter	Meaning
I _D max.	The maximum value of drain current
V _{DS} max.	The maximum value of drain-source voltage
$V_{\rm GS}$ max.	The maximum value of gate-source voltage
P _D max.	The maximum drain power dissipation
g_{fs}	The common-source forward transfer conductance
t _r typ.	The typical output rise time in response to a perfect rectangular pulse input
t _f typ.	The typical output fall time in response to a perfect rectangular pulse input
R _{DS(on)} max.	The maximum value of drain-source resistance when the device is in the conducting (on) state

Table 5.12 Characteristics of some common types of JFET

Device	Туре	I _D max.	V _{DS} max.	P _D max.	$g_{ m fs}$ min.	Application
2N3819	N-channel	10 mA	25 V	200 mW	4 mS	General purpose
2N5457	N-channel	10 mA	25 V	310 mW	1 mS	General purpose
BF244A	N-channel	100 mA	30 V	360 mW	3 mS	RF amplifier
2N3820	P-channel	–15 mA	20 V	200 mW	0.8 mS	General purpose
2N5461	P-channel	-9 mA	40 V	310 mW	1.5 mS	Audio amplifiers
2N5459	N-channel	16 mA	15 V	310 mW	2 mS	General purpose
J310	N-channel	30 mA	25 V	350 mW	8 mS	VHF/UHF amplifier

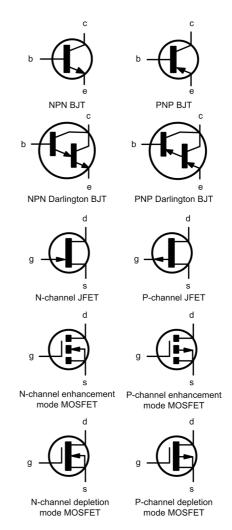
Figure 5.34 Some common transistor packages including TO3, TO220, TO5, TO18 and TO92

Transistor coding

The European system for classifying transistors involves an alphanumeric code which employs either two letters and three figures (general-purpose transistors) or three letters and two figures (special-purpose transistors). Table 5.13 shows how transistors are coded.

Example 5.9

Identify each of the following transistors:


- (a) AF115
- **(b)** BC109
- (c) BD135
- (d) BFY51.

Solution

- (a) Transistor (a) is a general-purpose, low-power, high-frequency germanium transistor.
- **(b)** Transistor (b) is a general-purpose, low-power, low-frequency silicon transistor.
- **(c)** Transistor (c) is a general-purpose, high-power, low-frequency silicon transistor.
- **(d)** Transistor (d) is a special-purpose, low-power, high-frequency silicon transistor.

Integrated circuits

Integrated circuits (ICs) are complex circuits fabricated on a small slice of silicon. Integrated circuits may contain as few as 10 or more than 100,000 active devices (transistors and

Figure 5.35 Symbols used for different types of transistor including BJT, JFET and MOSFET (metal oxide semiconductor field effect transistor) types

diodes). With the exception of a few specialized applications (such as amplification at high power levels) integrated circuits have largely rendered a great deal of conventional discrete circuitry obsolete.

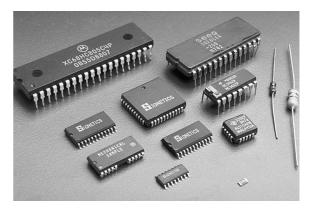
Integrated circuits can be divided into two general classes, linear (analogue) and digital. Typical examples of linear integrated circuits are operational amplifiers (see Chapter 8) whereas typical examples of digital integrated are logic gates (see Chapter 10).

A number of devices bridge the gap between the analogue and digital world. Such devices include

Table 5.13 The European system of transistor coding

First letter – semiconductor material:				
A Germanium				
B Silicon				
Second letter – application:				
C Low-power, low-frequency				
D High-power, low-frequency				
F Low-power, high-frequency				
L High-power, high-frequency				
Third letter – in the case of transistors for specialized				

applications, the third letter does not generally have any


analogue-to-digital converters (ADCs), digital-to-analogue converters (DACs) and timers. For example, the ubiquitous 555 timer contains two operational amplifier stages (configured as voltage comparators) together with a digital bistable stage, a buffer amplifier and an open-collector transistor.

IC packages

particular significance

As with transistors, a variety of different packages are used for integrated circuits. The most popular form of encapsulation used for integrated circuits is the **dual-in-line (DIL)** package which may be fabricated from either plastic or ceramic material (with the latter using a glass hermetic sealant). Common DIL packages have 8, 14, 16, 28 and 40 pins on a 0.1 inch matrix.

Flat package (**flatpack**) construction (featuring both glass–metal and glass–ceramic seals and welded construction) are popular for planar mounting on flat circuit boards. No holes are required to accommodate the leads of such devices which are arranged on a 0.05 inch pitch (i.e. half the pitch used with DIL devices). **Single-in-line (SIL**) and **quad-in-line (QIL**) packages are also becoming increasingly popular while TO5, TO72, TO3 and TO220 encapsulations are also found (the latter being commonly used for three-terminal voltage regulators). Fig. 5.36 shows a variety of common integrated circuit packages while Fig. 5.37 shows a modern **LSI** device.

Figure 5.36 Various common integrated circuit packages including DIL (dual-in-line) and QIL (quad-in-line) types

Figure 5.37 A large-scale integrated (LSI) circuit mounted in a socket fitted to a printed circuit board

Practical investigation

Objective

To obtain the common-emitter transfer characteristic and small-signal current gain for three different NPN bipolar junction transistors.

Components and test equipment

Breadboard, digital or analogue meters with d.c. current ranges, 9 V d.c. power supply (or battery), three different NPN transistors (e.g. 2N3904, BC548, BFY50, 2N2222), test leads, connecting wire.

Procedure

Connect the circuit shown in Fig. 5.38. Set the base current meter to the 2 mA range and the collector current meter to the 20 mA range.

Set the variable resistor to minimum position and slowly increase base current until it reaches 0.01 mA. Measure and record the collector current. Repeat for base currents up to 0.1 mA in steps of 0.02 m, at each stage measuring and recording the corresponding value of collector current.

Repeat the investigation with at least two further types of transistor.

Measurements and calculations

For each transistor, record your results in a table showing corresponding values of $I_{\rm C}$ and $I_{\rm B}$. (see Table 5.14). Plot graphs showing $I_{\rm C}$ plotted against $I_{\rm B}$ (see Fig. 5.39). Calculate the value of $h_{\rm FE}$ for each transistor at $I_{\rm C}$ = 2 mA. Compare your calculated results and characteristic graphs with manufacturer's data.

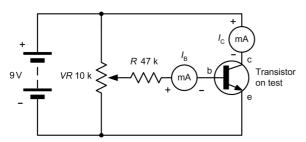


Figure 5.38 Transistor test circuit

Table 5.14 Results

Base current	Collector current (mA)			
(mA)	2N3904	BC548	BFY50	
0.01				
0.02				
0.03				
0.04				
0.05				
0.06				
0.07				
0.08				
0.09				
0.1				

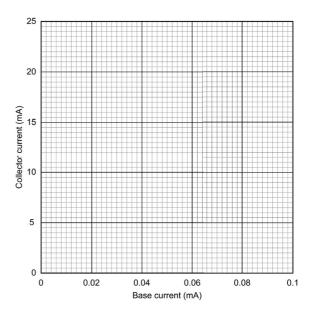


Figure 5.39 Graph layout for plotting the results

Conclusion

Comment on the shape of each graph. Is this what you would expect? Is the graph linear? If not, what will this imply about the static and small-signal values of current gain? Which of the transistors had the highest value of current gain and which had the least value of current gain?

Important formulae introduced in this chapter

LED series resistor:

(page 97)

$$R = \frac{V - V_{\rm F}}{I}$$

Bipolar transistor currents:

(page 100)

$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$

$$I_{\text{B}} = I_{\text{E}} - I_{\text{C}}$$

$$I_{\rm C} = I_{\rm E} - I_{\rm B}$$

Static current gain for a bipolar transistor: (page 101)

$$h_{\text{FE}} = \frac{I_{\text{C}}}{I_{\text{B}}}$$

Symbols introduced in this chapter

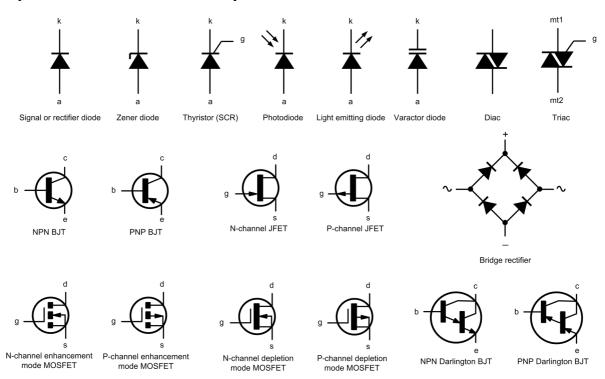


Figure 5.40 Circuit symbols introduced in this chapter

Small-signal current gain for a bipolar transistor: (page 101)

$$h_{\text{fe}} = \frac{\Delta I_{\text{C}}}{\Delta I_{\text{B}}}$$

Forward transfer conductance for a FET: (page 106)

$$g_{\rm fs} = \frac{\Delta I_{\rm D}}{\Delta V_{\rm GS}}$$

Problems

- 5.1 Fig. 5.41 shows the characteristics of a diode. What type of material is used in this diode? Give a reason for your answer.
- 5.2 Use the characteristic shown in Fig. 5.41 to determine the resistance of the diode when (a) $V_{\rm F} = 0.65$ V and (b) $I_{\rm F} = 4$ mA.

Forward current (mA)

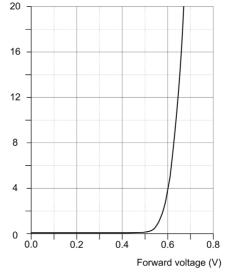


Figure 5.41 See Questions 5.1 and 5.2

5.3 The following data refer to a signal diode:

<i>V</i> _F (V)	I _F (mA)
0.0	0.0
0.1	0.05
0.2	0.02
0.3	1.2
0.4	3.6
0.5	6.5
0.6	10.1
0.7	13.8

Plot the characteristic and use it to determine:

- (a) the forward current when $V_{\rm c} = 350 \text{ mV}$;
- (b) the forward voltage when $I_c = 15 \text{ mA}$.
- 5.4 A diode is marked 'BZY88C9V1'. What type of diode is it? What is its rated voltage? State one application for the diode
- 5.5 An LED is to be used to indicate the presence of a 5 V d.c. supply. If the LED has a nominal forward voltage of 2 V, and is rated at a current of 12 mA, determine the value of series resistor required.
- 5.6 Identify each of the following transistors:
 - (a) AF117
- (b) BC184
- (c) BD131
- (d) BF180.
- 5.7 A transistor operates with a collector current of 2.5 A and a base current of 125 mA. Determine the value of emitter current and static common-emitter current gain.
- 5.8 A transistor operates with a collector current of 98 mA and an emitter current of 103 mA. Determine the value of base current and the static value of commonemitter current gain.
- 5.9 A bipolar transistor is to be used in a driver circuit in which a base current of 12 mA is available. If the load requires a current of 200 mA, determine the minimum value of common-emitter current gain required.

- 5.10 An NPN transistor is to operate with $V_{\rm CE}$ = 10 V, $I_{\rm C}$ = 50 mA, and $I_{\rm B}$ = 400 μ A. Which of the devices listed in Table 5.10 is most suitable for use in this application?
- 5.11 A transistor is used in a linear amplifier arrangement. The transistor has small-and large-signal current gains of 250 and 220, respectively, and bias is arranged so that the static value of collector current is 2 mA. Determine the value of base bias current and the change of output (collector) current that would result from a 5 μA change in input (base) current.
- 5.12 The transfer characteristic for an NPN transistor is shown in Fig. 5.42. Use this characteristic to determine:
 - (a) I_C when $I_B = 50 \mu A$;
 - (b) $h_{\rm FF}$ when $I_{\rm R}$ = 50 μ A;
 - (c) h_{fe} when $I_{\text{C}} = 75 \text{ mA}$.
- 5.13 The output characteristic of an NPN transistor is shown in Fig. 5.43. Use this characteristic to determine:
 - (a) $I_{\rm C}$ when $I_{\rm B}$ = 100 μA and $V_{\rm CF}$ = 4 V;
 - (b) V_{CE} when $I_{B} = 40 \mu A$ and $I_{C} = 5 \text{ mA}$;
 - (c) $I_{\rm B}$ when $I_{\rm C}$ = 7 mA and $V_{\rm CF}$ = 6 V.
- 5.14 An N-channel FET operates with a drain current of 20 mA and a gate–source bias of -1 V. If the device has a $g_{\rm fs}$ of 8 mS, determine the new drain current if the bias voltage increases to -1.5 V.
- 5.15 The following results were obtained during an experiment on an N-channel FET:

V _{GS} (V)	/ _D (mA)
0.0	11.4
-2.0	7.6
-4.0	3.8
-6.0	0.2
-8.0	0.0
-10.0	0.0

Plot the mutual characteristic for the FET and use it to determine $g_{\rm fs}$ when $I_{\rm D}=5$ A.

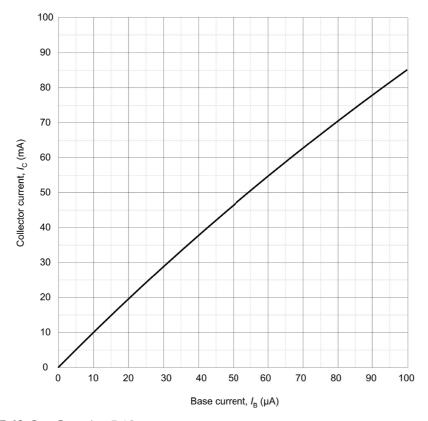


Figure 5.42 See Question 5.12

- 5.16 In relation to integrated circuit packages, what do each of the following abbreviations stand for?
 - (a) DIL
 - (b) SIL
 - (c) QIL
 - (d) LSI.
- 5.17 Use the data sheet for a 1N4148 diode in Appendix 5 to determine:
 - (a) the absolute maximum value of reverse repetitive voltage
 - (b) the maximum power dissipation for the device
 - (c) the typical reverse current when a reverse voltage of 70 V is applied
 - (d) the typical forward voltage for a forward current of 5 mA.
- 5.18 Identify each of the semiconductor devices shown in Fig. 5.44.

- 5.19 Identify each of the semiconductor devices shown in Fig. 5.45.
- 5.20 Use the data sheet for a 2N3702 transistor shown in Fig. 5.26 to determine:
 - (a) the type and class of device
 - (b) the absolute maximum value of collector–base voltage
 - (c) the absolute maximum value of collector current
 - (d) the maximum value of collector emitter saturation voltage
 - (e) the maximum value of total power dissipation
 - (f) the package style.
- 5.21 A 2N3702 transistor operates under the following conditions: $V_{\rm BE} = 0.7 \, \rm V$, $I_{\rm B} = 0.5 \, \rm mA$, $V_{\rm CE} = 9 \, \rm V$ and $I_{\rm C} = 50 \, \rm mA$. Determine whether or not this exceeds the maximum total device dissipation.

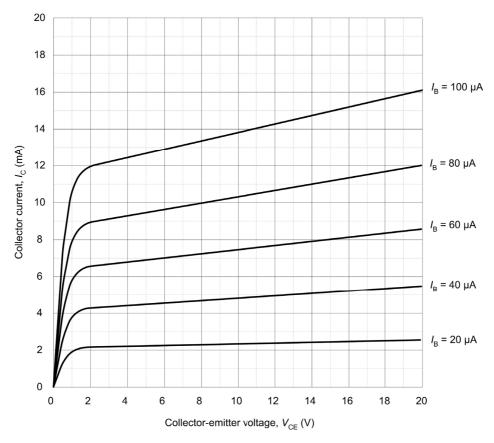


Figure 5.43 See Question 5.13

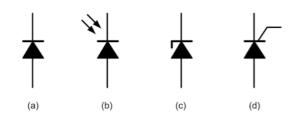


Figure 5.44 See Question 5.18

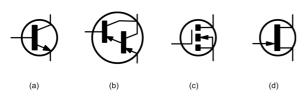


Figure 5.45 See Question 5.19

5.22 Use the data sheet for a 2N3819 transistor shown in Fig. 5.32 to determine:

- (a) the type and class of device
- (b) the absolute maximum value of drain–gate voltage
- (c) the absolute maximum value of drain current
- (d) the maximum value of reverse gate current
- (e) the minimum value of forward transfer conductance
- (f) the maximum value of input capacitance
- (g) the maximum value of total device dissipation
- (h) the package style.

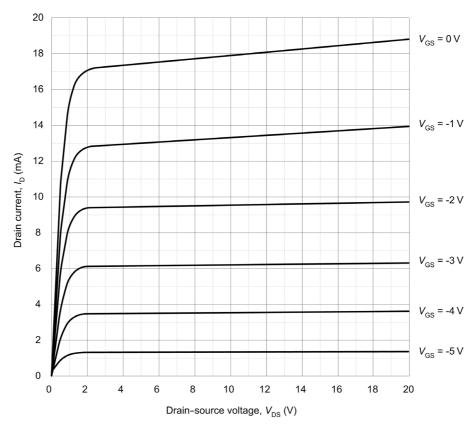


Figure 5.46 See Question 5.23

- 5.23 The output characteristic of an N-channel JFET is shown in Fig. 5.46. Use this characteristic to determine:
 - (a) $I_{\rm D}$ when $V_{\rm GS} = -2$ V and $V_{\rm DS} = 10$ V;
 - (b) V_{DS} when $V_{GS} = -1 \text{ V}$ and $I_D = 13 \text{ mA}$;
 - (c) V_{GS} when $I_D = 18$ mA and $V_{DS} = 11$ V.
- 5.24 Sketch a circuit diagram showing a test circuit for obtaining the characteristics of a PNP BJT. Label your diagram clearly and indicate the polarity of all supplies and test meters.
- 5.25 Sketch a circuit diagram showing a test circuit for obtaining the characteristics of a P-channel JFET. Label your diagram clearly and indicate the polarity of all supplies and test meters.
- 5.26 Sketch a circuit showing how a thyristor can be used to control the current through a resistive load. Label your diagram clearly and explain briefly how the circuit is triggered.

Answers to these problems appear on page 451.

Power supplies

Chapter summary

This chapter deals with the unsung hero of most electronic systems, the power supply. Nearly all electronic circuits require a source of well-regulated d.c. at voltages of typically between 5 V and 30 V. In some cases this supply can be derived directly from batteries (e.g. 6 V, 9 V, 12 V) but in many others it is desirable to make use of a standard a.c. mains outlet. This chapter explains how rectifier and smoothing circuits operate and how power supply output voltages can be closely regulated. The chapter concludes with a brief description of some practical power supply circuits.

6 Power supplies

The block diagram of a d.c. power supply is shown in Fig. 6.1. Since the mains input is at a relatively high voltage, a step-down transformer of appropriate turns ratio is used to convert this to a low voltage. The a.c. output from the transformer secondary is then rectified using conventional silicon rectifier diodes (see Chapter 5) to produce an unsmoothed (sometimes referred to as pulsating d.c.) output. This is then smoothed and filtered before being applied to a circuit which will **regulate** (or **stabilize**) the output voltage so that it remains relatively constant in spite of variations in both load current and incoming mains voltage. Fig. 6.2 shows how some of the electronic components that we have already met can be used in the realization of the block diagram in Fig. 6.1. The iron-cored step-down transformer feeds a rectifier arrangement (often based on a bridge circuit). The output of the rectifier is then applied to a high-value **reservoir** capacitor. This capacitor stores a considerable amount of charge and is being constantly topped-up by the rectifier arrangement. The capacitor also helps to smooth out the voltage pulses produced by the rectifier. Finally, a stabilizing circuit (often based on a series transistor regulator and a zener diode **voltage reference**) provides a constant output voltage. We shall now examine each stage of this arrangement in turn, building up to some complete power supply circuits at the end of the



Figure 6.3 A simple d.c. power supply

Rectifiers

Semiconductor diodes (see Chapter 5) are commonly used to convert alternating current (a.c.) to direct current (d.c), in which case they are referred to as **rectifiers**. The simplest form of rectifier circuit makes use of a single diode and, since it operates on only either positive or negative half-cycles of the supply, it is known as a **half-wave** rectifier.

Fig. 6.4 shows a simple half-wave rectifier circuit. Mains voltage (220 to 240 V) is applied to the primary of a step-down transformer (T1). The secondary of T1 steps down the 240 V r.m.s. to 12 V r.m.s. (the turns ratio of T1 will thus

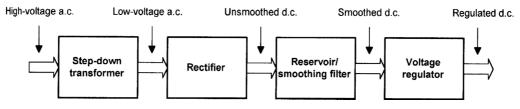


Figure 6.1 Block diagram of a d.c. power supply

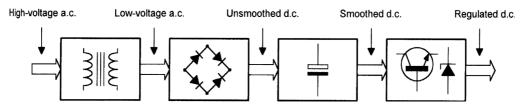


Figure 6.2 Block diagram of a d.c. power supply showing principal components

chapter.

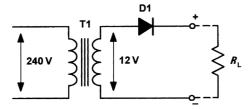
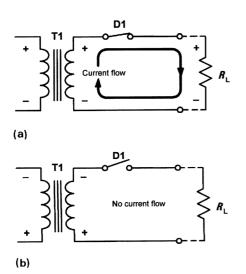



Figure 6.4 A simple half-wave rectifier circuit

be 240/12 or 20:1). Diode D1 will only allow the current to flow in the direction shown (i.e. from cathode to anode). D1 will be forward biased during each positive half-cycle (relative to common) and will effectively behave like a closed switch. When the circuit current tries to flow in the opposite direction, the voltage bias across the diode will be reversed, causing the diode to act like an open switch (see Figs 6.5(a) and 6.5(b), respectively).

The switching action of D1 results in a pulsating output voltage which is developed across the load resistor (R_L). Since the mains supply is at 50 Hz, the pulses of voltage developed across R_L will also be at 50 Hz even if only half the a.c. cycle is present. During the positive half-cycle, the diode will drop the 0.6 V to 0.7 V forward threshold

Figure 6.5 (a) Half-wave rectifier circuit with D1 conducting (positive-going half-cycles of secondary voltage); (b) half-wave rectifier with D1 not conducting (negative-going half-cycles of secondary voltage)

voltage normally associated with silicon diodes. However, during the negative half-cycle the peak a.c. voltage will be dropped across D1 when it is reverse biased. This is an important consideration when selecting a diode for a particular application. Assuming that the secondary of T1 provides 12 V r.m.s., the peak voltage output from the transformer's secondary winding will be given by:

$$V_{\rm pk} = 1.414 \times V_{\rm r.m.s.} = 1.414 \times 12 \text{ V} = 16.97 \text{ V}$$

The peak voltage applied to D1 will thus be approximately 17 V. The negative half-cycles are blocked by D1 and thus only the positive half-cycles appear across $R_{\rm L}$. Note, however, that the actual peak voltage across $R_{\rm L}$ will be the 17 V positive peak being supplied from the secondary on T1, *minus* the 0.7 V forward threshold voltage dropped by D1. In other words, positive half-cycle pulses having a peak amplitude of 16.3 V will appear across $R_{\rm L}$.

Example 6.1

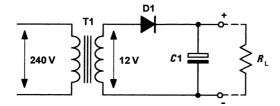
A mains transformer having a turns ratio of 44:1 is connected to a 220 V r.m.s. mains supply. If the secondary output is applied to a half-wave rectifier, determine the peak voltage that will appear across a load.

Solution

The r.m.s. secondary voltage will be given by:

$$V_{c} = V_{D} / 44 = 220 / 44 = 5 \text{ V}$$

The peak voltage developed after rectification will be given by:


$$V_{PK} = 1.414 \times 5 \text{ V} = 7.07 \text{ V}$$

Assuming that the diode is a silicon device with a forward voltage drop of 0.6 V, the actual peak voltage dropped across the load will be:

$$V_1 = 7.07 \text{ V} - 0.6 \text{ V} = 6.47 \text{ V}$$

Reservoir and smoothing circuits

Fig. 6.6 shows a considerable improvement to the circuit of Fig. 6.4. The capacitor, *C*1, has been added to ensure that the output voltage remains at, or near, the peak voltage even when the diode is not conducting. When the primary voltage is

Figure 6.6 A simple half-wave rectifier circuit with reservoir capacitor

first applied to T1, the first positive half-cycle output from the secondary will charge C1 to the peak value seen across $R_{\rm L}$. Hence C1 charges to 16.3 V at the peak of the positive half-cycle. Because C1 and $R_{\rm L}$ are in parallel, the voltage across $R_{\rm L}$ will be the same as that across C1.

The time required for *C*1 to charge to the maximum (peak) level is determined by the charging circuit time constant (the series resistance multiplied by the capacitance value). In this circuit, the series resistance comprises the secondary winding resistance together with the forward resistance of the diode and the (minimal) resistance of the wiring and connections. Hence *C*1 charges very rapidly as soon as D1 starts to conduct.

The time required for C1 to discharge is, in contrast, very much greater. The discharge time constant is determined by the capacitance value and the load resistance, $R_{\rm L}$. In practice, $R_{\rm L}$ is very much larger than the resistance of the secondary circuit and hence C1 takes an appreciable time to discharge. During this time, D1 will be reverse biased and will thus be held in its non-conducting state. As a consequence, the only discharge path for C1 is through $R_{\rm L}$.

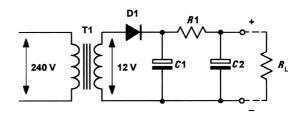

 ${\it C}1$ is referred to as a **reservoir** capacitor. It stores charge during the positive half-cycles of secondary voltage and releases it during the negative half-cycles. The circuit of Fig. 6.6 is thus able to maintain a reasonably constant output voltage across ${\it R}_{\rm L}$. Even so, ${\it C}1$ will discharge by a small amount during the negative half-cycle periods from the transformer secondary.

Figure 6.7 A simple half-wave rectifier circuit with reservoir capacitor

Fig. 6.7 shows the secondary voltage waveform together with the voltage developed across R_1 with and without C1 present. This gives rise to a small variation in the d.c. output voltage (known as **ripple**). Since ripple is undesirable we must take additional precautions to reduce it. One obvious method of reducing the amplitude of the ripple is that of simply increasing the discharge time constant. This can be achieved either by increasing the value of C1 or by increasing the resistance value of R_i . In practice, however, the latter is not really an option because R_1 is the effective resistance of the circuit being supplied and we don't usually have the ability to change it! Increasing the value of C1 is a more practical alternative and very large capacitor values (often in excess of 4,700 μ F) are typical.

Fig. 6.8 shows a further refinement of the simple power supply circuit. This circuit employs two additional components, *R*1 and *C*1, which act as a filter to remove the ripple. The value of *C*1 is chosen so that the component exhibits a negligible reactance at the ripple frequency (50 Hz for a half-wave rectifier or 100 Hz for a full-wave

Figure 6.8 Half-wave rectifier circuit with *R–C* smoothing filter

rectifier – see later). In effect, R1 and C1 act like a potential divider. The amount of ripple is reduced by an approximate factor equal to:

$$\frac{X_{\rm C}}{\sqrt{R^2 + X_{\rm C}^2}}$$

Example 6.2

The R-C smoothing filter in a 50 Hz mains operated half-wave rectifier circuit consists of R1 = 100 Ω and C2 = 1,000 μ F. If 1 V of ripple appears at the input of the circuit, determine the amount of ripple appearing at the output.

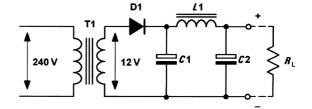
Solution

First we must determine the reactance of the capacitor, *C*1, at the ripple frequency (50 Hz):

$$X_{\rm C} = \frac{1}{2\pi f C} = \frac{1}{6.28 \times 50 \times 1,000 \times 10^{-6}}$$
$$= \frac{1,000}{314} = 3.18 \ \Omega$$

The amount of ripple at the output of the circuit (i.e. appearing across *C*1) will be given by:

$$V_{\text{ripple}} = 1 \times \frac{X_{\text{C}}}{\sqrt{R^2 + X_{\text{C}}^2}} = 1 \times \frac{3.18}{\sqrt{100^2 + 3.18^2}}$$


From which:

$$V = 0.032 \text{ V} = 32 \text{ mV}$$

Improved ripple filters

A further improvement can be achieved by using an inductor, *L*1, instead of a resistor in the smoothing circuit. This circuit also offers the advantage that the minimum d.c. voltage is dropped across the inductor (in the circuit of Fig. 6.7, the d.c. output voltage is *reduced* by an amount equal to the voltage drop across *R*1).

Fig. 6.9 shows the circuit of a half-wave power supply with an *L–C* smoothing circuit. At the ripple frequency, *L*1 exhibits a high value of inductive reactance while *C*1 exhibits a low value of capacitive reactance. The combined effect is that of an attenuator which greatly reduces the amplitude of the ripple while having a negligible effect on the direct voltage.

Figure 6.9 Half-wave rectifier circuit with *L–C* smoothing filter

Example 6.3

The L-C smoothing filter in a 50 Hz mains operated half-wave rectifier circuit consists of L1 = 10 H and C2 = 1,000 μ F. If 1 V of ripple appears at the input of the circuit, determine the amount of ripple appearing at the output.

Solution

Once again, the reactance of the capacitor, C1, is 3.18 Ω (see Example 6.2). The reactance of L1 at 50 Hz can be calculated from:

$$X_1 = 2\pi f L = 2 \times 3.14 \times 50 \times 10 = 3,140 \Omega$$

The amount of ripple at the output of the circuit (i.e. appearing across $\mathcal{C}1$) will be approximately given by:

$$V = 1 \times \frac{X_{\rm C}}{X_{\rm C} + X_{\rm L}} = 1 \times \frac{3.18}{3140 + 3.18} \approx 0.001 \,\rm V$$

Hence the ripple produced by this arrangement (with 1 V of 50 Hz a.c. superimposed on the rectified input) will be a mere 1 mV. It is worth comparing this value with that obtained from the previous example!

Finally, it is important to note that the amount of ripple present at the output of a power supply will increase when the supply is loaded.

Full-wave rectifiers

Unfortunately, the half-wave rectifier circuit is relatively inefficient as conduction takes place only on alternate half-cycles. A better rectifier arrangement would make use of both positive and negative half-cycles. These **full-wave rectifier** circuits offer a considerable improvement over their half-wave counterparts. They are not only more efficient but are significantly less demanding in terms of the reservoir and smoothing

components. There are two basic forms of full-wave rectifier; the bi-phase type and the bridge rectifier type.

Bi-phase rectifier circuits

Fig. 6.10 shows a simple bi-phase rectifier circuit. Mains voltage (240 V) is applied to the primary of the step-down transformer (T1) which has two identical secondary windings, each providing 12 V r.m.s. (the turns ratio of T1 will thus be 240/12 or 20:1 for *each* secondary winding).

On positive half-cycles, point A will be positive with respect to point B. Similarly, point B will be positive with respect to point C. In this condition D1 will allow conduction (its anode will be positive with respect to its cathode) while D2 will not allow conduction (its anode will be negative with respect to its cathode). Thus D1 alone conducts on positive half-cycles.

On negative half-cycles, point C will be positive with respect to point B. Similarly, point B will be positive with respect to point A. In this condition D2 will allow conduction (its anode will be positive with respect to its cathode) while D1 will not allow conduction (its anode will be negative with respect to its cathode). Thus D2 alone conducts on negative half-cycles.

Fig. 6.11 shows the bi-phase rectifier circuit with the diodes replaced by switches. In Fig. 6.11(a) D1 is shown conducting on a positive half-cycle while in Fig. 6.11(b) D2 is shown conducting. The result is that current is routed through the load *in the same direction* on successive half-cycles.

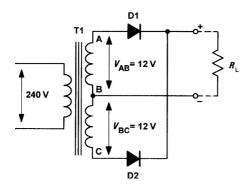
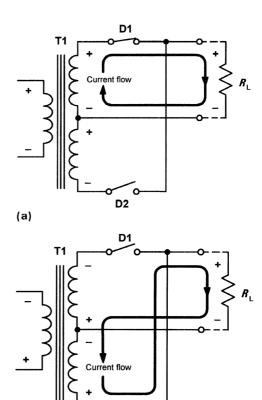
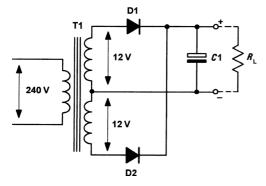



Figure 6.10 Bi-phase rectifier circuit

Figure 6.11 (a) Bi-phase rectifier with D1 conducting and D2 non-conducting (b) bi-phase rectifier with D2 conducting and D1 non-conducting

D2

(b)


Furthermore, this current is derived alternately from the two secondary windings.

As with the half-wave rectifier, the switching action of the two diodes results in a pulsating output voltage being developed across the load resistor ($R_{\rm L}$). However, unlike the half-wave circuit the pulses of voltage developed across $R_{\rm L}$ will occur at a frequency of 100 Hz (not 50 Hz). This doubling of the ripple frequency allows us to use smaller values of reservoir and smoothing capacitor to obtain the same degree of ripple reduction (recall that the reactance of a capacitor is reduced as frequency increases).

As before, the peak voltage produced by each of the secondary windings will be approximately 17 V and the peak voltage across $R_{\rm l}$ will be 16.3 V

(i.e. 17 V less the 0.7 V forward threshold voltage dropped by the diodes).

Fig. 6.12 shows how a reservoir capacitor (C1) can be added to ensure that the output voltage remains at, or near, the peak voltage even when the diodes are not conducting. This component operates in exactly the same way as for the half-wave circuit, i.e. it charges to approximately 16.3 V at the peak of the positive half-cycle and holds the voltage at this level when the diodes are in their non-conducting states. The time required for C1 to charge to the maximum (peak) level is determined by the charging circuit time constant (the series resistance multiplied by the capacitance value). In this circuit, the series resistance comprises the secondary winding resistance together with the forward resistance of the diode and the (minimal) resistance of the wiring and connections. Hence C1 charges very rapidly as soon as either D1 or D2 starts to conduct. The time required for C1 to discharge is, in contrast, very much greater. The discharge time contrast is determined by the capacitance value and the load resistance, $R_{\rm l}$. In practice, $R_{\rm l}$ is very much larger than the resistance of the secondary circuit and hence C1 takes an appreciable time to discharge. During this time, D1 and D2 will be reverse biased and held in a non-conducting state. As a consequence, the only discharge path for C1 is through R_i . Fig. 6.13 shows voltage waveforms for the bi-phase rectifier, with and without C1 present. Note that the ripple frequency (100 Hz) is twice that of the half-wave circuit shown previously in Fig. 6.7.

Figure 6.12 Bi-phase rectifier with reservoir capacitor

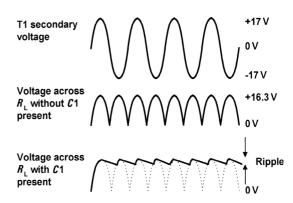


Figure 6.13 Waveforms for the bi-phase rectifier

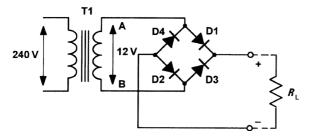
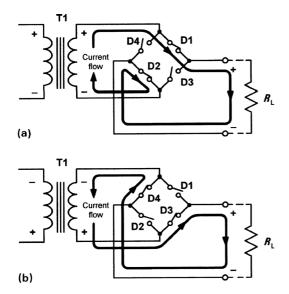
Bridge rectifier circuits

An alternative to the use of the bi-phase circuit is that of using a four-diode bridge rectifier (see Fig. 6.14) in which opposite pairs of diodes conduct on alternate half-cycles. This arrangement avoids the need to have two separate secondary windings.

A full-wave bridge rectifier arrangement is shown in Fig. 6.15. Mains voltage (240 V) is applied to the primary of a step-down transformer (T1). The secondary winding provides 12 V r.m.s. (approximately 17 V peak) and has a turns ratio of 20:1, as before. On positive half-cycles, point A will be positive with respect to point B. In this condition D1 and D2 will allow conduction while D3 and D4 will not allow conduction. Conversely, on negative half-cycles, point B will be positive with respect to point A. In this condition D3 and D4 will allow conduction while D1 and D2 will not allow conduction.

Fig. 6.16 shows the bridge rectifier circuit with the diodes replaced by four switches. In Fig. 6.16(a) D1 and D2 are conducting on a positive half-cycle while in Fig. 6.16(b) D3 and

Figure 6.14 Four diodes connected as a bridge

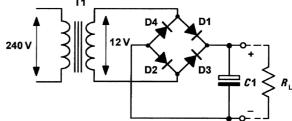
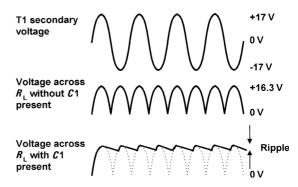

Figure 6.15 Full-wave bridge rectifier circuit

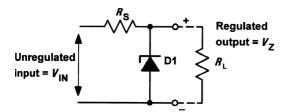
Figure 6.16 (a) Bridge rectifier with D1 and D2 conducting, D3 and D4 non-conducting (b) bridge rectifier with D1 and D2 non-conducting, D3 and D4 conducting

D4 are conducting. Once again, the result is that current is routed through the load *in the same direction* on successive half-cycles. As with the bi-phase rectifier, the switching action of the two diodes results in a pulsating output voltage being developed across the load resistor (R_L). Once again, the peak output voltage is approximately 16.3 V (i.e. 17 V less the 0.7 V forward threshold voltage).

Fig. 6.17 shows how a reservoir capacitor (*C*1) can be added to maintain the output voltage when the diodes are not conducting. This component operates in exactly the same way as for the bi-phase circuit, i.e. it charges to approximately 16.3 V at the peak of the positive half-cycle and

Figure 6.17 Bridge rectifier with reservoir capacitor




Figure 6.18 Waveforms for the bridge rectifier

holds the voltage at this level when the diodes are in their non-conducting states. This component operates in exactly the same way as for the bi-phase circuit and the secondary and rectified output waveforms are shown in Fig. 6.18. Once again note that the ripple frequency is twice that of the incoming a.c. supply.

Finally, *R*–*C* and *L*–*C* ripple filters can be added to bi-phase and bridge rectifier circuits in exactly the same way as those shown for the half-wave rectifier arrangement (see Figs 6.8 and 6.9).

Voltage regulators

A simple voltage regulator is shown in Fig. 6.19. $R_{\rm S}$ is included to limit the zener current to a safe value when the load is disconnected. When a load ($R_{\rm L}$) is connected, the zener current ($I_{\rm Z}$) will fall as current is diverted into the load resistance (it is usual to allow a minimum current of 2 mA to 5 mA in order to ensure that the diode regulates). The output voltage ($V_{\rm Z}$) will remain at the zener voltage until regulation fails at the point at which the potential divider formed by $R_{\rm S}$ and $R_{\rm L}$

Figure 6.19 A simple shunt zener voltage regulator

produces a lower output voltage that is less than V_z . The ratio of R_s to R_L is thus important. At the point at which the circuit just begins to fail to regulate:

$$V_{\rm Z} = V_{\rm IN} \times \frac{R_{\rm L}}{R_{\rm L} + R_{\rm S}}$$

where $V_{\rm IN}$ is the unregulated input voltage. Thus the maximum value for $R_{\rm S}$ can be calculated from:

$$R_{\rm S}$$
 max. = $R_{\rm L} \times \left(\frac{V_{\rm IN}}{V_{\rm IN}} - 1 \right)$

The power dissipated in the zener diode will be given by $P_z = I_z \times V_z$, hence the minimum value for R_s can be determined from the off-load condition when:

$$R_{\rm S}$$
 min. = $\frac{V_{\rm IN} - V_{\rm Z}}{I_{\rm Z}} = \frac{V_{\rm IN} - V_{\rm Z}}{\left(\frac{P_{\rm Z} \, {\rm max.}}{V_{\rm Z}}\right)} = \frac{\left(V_{\rm IN} - V_{\rm Z}\right) \times V_{\rm Z}}{P_{\rm Z} \, {\rm max.}}$

Thus:

$$R_{\rm S}$$
 min. = $\frac{V_{\rm IN}V_{\rm Z} - V_{\rm Z}^2}{P_{\rm Z}$ max.

where $P_{\rm Z}$ max. is the maximum rated power dissipation for the zener diode.

Example 6.4

A 5 V zener diode has a maximum rated power dissipation of 500 mW. If the diode is to be used in a simple regulator circuit to supply a regulated 5 V to a load having a resistance of 400 Ω , determine a suitable value of series resistor for operation in conjunction with a supply of 9 V.

Solution

We shall use an arrangement similar to that shown in Fig. 6.19. First we should determine the maximum value for the series resistor, R_s :

$$R_{\rm S}$$
 max. = $R_{\rm L} \times \left(\frac{V_{\rm IN}}{V_{\rm IN}} - 1\right)$

thus:

$$R_{\rm S}$$
 max. = $400 \times \left(\frac{9}{5} - 1\right) = 400 \times (1.8 - 1) = 320 \ \Omega$

Now we need to determine the minimum value for the series resistor, R_s :

$$R_{\rm S} \, \text{min.} = \frac{V_{\rm IN} V_{\rm Z} - V_{\rm Z}^2}{P_{\rm Z} \, {\rm max.}}$$

thus:

$$R_{\rm S}$$
 min. = $\frac{(9 \times 5) - 5^2}{0.5} = \frac{45 - 25}{0.5} = 40 \ \Omega$

Hence a suitable value for $R_{\rm S}$ would be 150 Ω (roughly mid-way between the two extremes).

Output resistance and voltage regulation

In a perfect power supply, the output voltage would remain constant regardless of the current taken by the load. In practice, however, the output voltage falls as the load current increases. To account for this fact, we say that the power supply has **internal resistance** (ideally this should be zero). This internal resistance appears at the output of the supply and is defined as the change in output voltage divided by the corresponding change in output current. Hence:

$$R_{\text{out}} = \frac{\text{change in output voltage}}{\text{change in output current}} = \frac{\Delta V_{\text{out}}}{\Delta I_{\text{out}}}$$

where $\Delta I_{\rm out}$ represents a small change in output (load) current and $\Delta V_{\rm out}$ represents a corresponding small change in output voltage.

The **regulation** of a power supply is given by the relationship:

Regulation =
$$\frac{\text{change in output voltage}}{\text{change in line (input) voltage}} \times 100\%$$

Ideally, the value of regulation should be very small. Simple shunt zener diode regulators of the type shown in Fig. 6.19 are capable of producing values of regulation of 5% to 10%. More sophisticated circuits based on discrete components produce values of between 1% and 5% and integrated circuit regulators often provide values of 1% or less.

Example 6.5

The following data were obtained during a test carried out on a d.c. power supply:

(i) Load test

Output voltage (no-load) = 12 V Output voltage (2 A load current) = 11.5 V

(ii) Regulation test

Output voltage (mains input, 220 V) = 12 V Output voltage (mains input, 200 V) = 11.9 V

Determine (a) the equivalent output resistance of the power supply and (b) the regulation of the power supply.

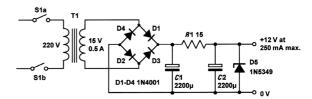
Solution

The output resistance can be determined from the load test data:

$$R_{\text{out}} = \frac{\text{change in output voltage}}{\text{change in output current}} = \frac{12 - 11.5}{2 - 0} = 0.25 \ \Omega$$

The regulation can be determined from the regulation test data:

Regulation =
$$\frac{\text{change in output voltage}}{\text{change in line (input) voltage}} \times 100\%$$


thus

Regulation =
$$\frac{12-1.9}{220-200} \times 100\% = \frac{0.1}{20} \times 100\% = 0.5\%$$

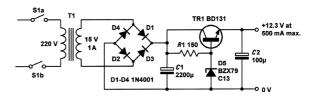

Practical power supply circuits

Fig. 6.20 shows a simple power supply circuit capable of delivering an output current of up to 250 mA. The circuit uses a full-wave bridge rectifier arrangement (D1 to D4) and a simple *C–R* filter. The output voltage is regulated by the shunt-connected 12 V zener diode.

Fig. 6.21 shows an improved power supply in which a transistor is used to provide current gain and minimize the power dissipated in the zener diode (TR1 is sometimes referred to as a **series-pass transistor**). The zener diode, D5, is rated at 13 V and the output voltage will be approximately 0.7 V less than this (i.e. 13 V minus the base-emitter voltage drop associated with TR1). Hence the output voltage is about 12.3 V. The circuit is capable of delivering an output current of up to 500 mA (note that TR1 should be fitted with

Figure 6.20 Simple d.c. power supply with shunt zener regulated output

Figure 6.21 Improved regulated d.c. power supply with series-pass transistor

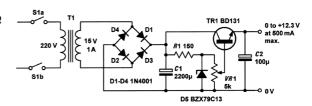
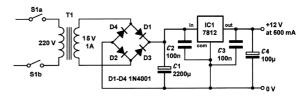



Figure 6.22 Variable d.c. power supply

Figure 6.23 Power supply with three-terminal IC voltage regulator

a small heatsink to conduct away any heat produced). Fig. 6.22 shows a variable power supply. The base voltage to the series-pass transistor is derived from a potentiometer connected across the zener diode, D5. Hence the base voltage is variable from 0 V to 13 V. The transistor requires a substantial heatsink (note that TR1's dissipation *increases* as the output voltage is reduced).

Finally, Fig. 6.23 shows a d.c. power supply based on a fixed-voltage **three-terminal integrated**

Figure 6.24 This four-diode bridge rectifier arrangement is part of a high-voltage d.c. supply. Each BY253 diode is rated for a reverse repetitive maximum voltage (V_{RRM}) of 600 V, and a maximum forward current ($I_{\rm F}$ max.) of 3 A

circuit voltage regulator. These devices are available in standard voltage and current ratings (e.g. 5 V, 12 V, 15 V at 1 A, 2 A and 5 A) and they provide excellent performance in terms of output resistance, ripple rejection and voltage regulation. In addition, such devices usually incorporate overcurrent protection and can withstand a direct short-circuit placed across their output terminals. This is an essential feature in many practical applications!

Voltage multipliers

By adding a second diode and capacitor, we can increase the output of the simple half-wave rectifier that we met earlier. A voltage doubler using this technique is shown in Fig. 6.25. In this arrangement C1 will charge to the positive peak secondary voltage while C2 will charge to the negative peak secondary voltage. Since the output is taken from C1 and C2 connected in series the resulting output voltage is twice that produced by one diode alone.

The voltage doubler can be extended to produce higher voltages using the cascade

Figure 6.25 A voltage doubler

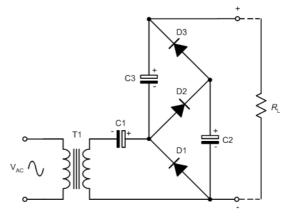


Figure 6.26 A voltage tripler

arrangement shown in Fig. 6.26. Here C1 charges to the positive peak secondary voltage, while C2 and C3 charge to twice the positive peak secondary voltage. The result is that the output voltage is the sum of the voltages across C1 and C3 which is three times the voltage that would be produced by a single diode. The ladder arrangement shown in Fig. 6.25 can be easily extended to provide even higher voltages but the efficiency of the circuit becomes increasingly impaired and high-order voltage multipliers of this type are only suitable for providing relatively small currents.

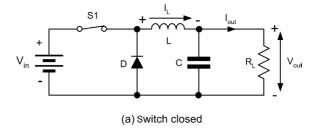
Switched mode power supplies

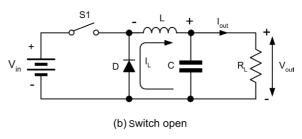
Power supplies can be divided into two principal categories, linear and non-linear types. **Linear power supplies** make use of conventional

analogue control techniques – the regulating device operates through a continuous range of current and voltage according to the input and load conditions prevailing at the time. **Non-linear power supplies**, on the other hand, use digital techniques where the regulating device is switched rapidly 'on' and 'off' in order to control the mean current and voltage delivered to the load. These non-linear power supplies are commonly referred to as **switched mode power supplies** or just **SMPS**. Note that SMPS can be used to step-up (**boost**) or step-down (**buck**) the input voltage.

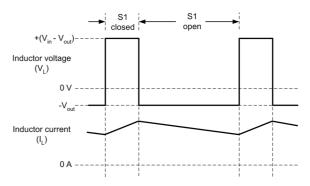
Compared with their conventional linear counterparts, the advantages of SMPS are:

- ability to cope with a very wide input voltage range
- very high efficiency (typically 80% or more)
- compact size and light weight.


The disadvantages of SMPS are:


- relatively complex circuitry
- appreciable noise generated (resulting from the high switching frequency switching action).

Fortunately, the principle of the basic step-down type switched mode regulator is quite straightforward. Take a look at the circuit diagram shown in Fig. 6.27. With S1 closed, the switching diode, D, will be reverse biased and will thus be in a non-conducting state. Current will flow through the inductor, L, charging the capacitor, C, and delivering current to the load, R₁.


Current flowing in the inductor, I_L, produces a magnetic flux in its core. When S1 is subsequently opened, the magnetic flux within the inductor rapidly collapses and an e.m.f. is generated across the terminals of the inductor. The polarity of the induced e.m.f. is such that it opposes the original potential and will cause current to continue to flow in the load (i.e. clockwise around the circuit). In this condition, the switching diode, D, will become forward biased, completing the circuit in order to provide a return path for the current.

Waveforms for the circuit of Fig. 6.27 are shown in Fig. 6.28. The inductor voltage, V_{l} , is alternately

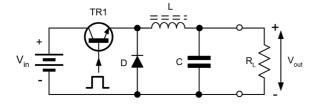
Figure 6.27 Principle of the switched mode power supply

Figure 6.28 Waveforms for the switched mode power supply shown in Fig. 6.27

positive and negative. When S1 is closed, the voltage dropped across the inductor (from left to right in the diagram) will be equal to $+(V_{\rm in}-V_{\rm out})$. When S1 is open, the voltage across the inductor will be equal to $-V_{\rm out}$ (less the small forward voltage drop of the switching diode, D). The average current through the inductor, $I_{\rm L}$, is equal to the load current, $I_{\rm out}$. Note that a small amount of ripple voltage appears superimposed on the steady output voltage, $V_{\rm out}$. This ripple voltage can be reduced by using a relatively large value for the capacitor, C.

In order to control the voltage delivered to the load, $V_{\rm out}$, it is simply necessary to adjust the ratio

of 'on' to 'off' time of the switch. A larger ratio of 'on' to 'off' time (i.e. a larger **duty cycle** or **mark to space ratio**) produces a greater output voltage, and vice versa.


In a practical switched mode power supply, the switch, S1, is replaced by a semiconductor switching device (i.e. a bipolar switching transistor or a MOSFET device). The switching device must have a low 'on' resistance and a high 'off' resistance and must be capable of switching from the 'on' state to the 'off' state in a very short time.

Regardless of whether it is a bipolar transistor or a MOSFET, the switching device is controlled by a train of rectangular pulses applied to its base or gate terminal. The output voltage can be controlled by varying the width of the pulses in this train. In a practical switched mode power supply, a closed-loop feedback path is employed in which the output voltage is sensed and fed back to the control input of a pulse generator.

The result is **pulse width modulation** (**PWM**) of the pulse train to the switching device. This pulse width modulation can be achieved using a handful of discrete components or, more usually, is based on a dedicated switched mode controller chip.

The job of controlling a switched mode power supply is an ideal task for an integrated circuit and Fig. 6.30 shows the internal arrangement of a typical example, the LM78S40. This device contains two operational amplifiers (IC1 and IC2) designed to work as **comparators**, and a two-stage Darlington transistor switch comprising an emitter-follower driver, Q1, and output switch, Q2. The LM78S40 is supplied in a 16-pin dual-in-line (DIL) package.

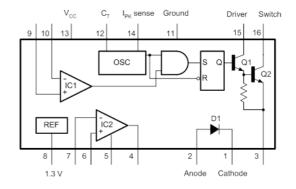

The LM78S40 can be configured to provide step-up (boost), step-down (buck) and inverting

Figure 6.29 Step-down switching regulator using a series switching transistor

operation. The frequency of the internal current controlled oscillator is set by the value of the capacitor connected to pin 12. Oscillator frequencies of between 100 Hz and 100 kHz are possible but most practical applications operate at frequencies between 20 kHz and 50 kHz. The oscillator duty cycle is internally set to 6:1 but can be varied by means of the current-sensing circuit which normally senses the current in an external resistor connected between pins 12 and 13.

An internal **band-gap voltage reference** provides a stable voltage reference of 1.3 V at pin 8. The internal reference voltage source is capable of providing a current of up to 10 mA drawn from pin 8. The output transistor, Q2, is capable of carrying a peak current of up to 1.5 A and has

Figure 6.30 The LM78S40 switched mode power supply controller

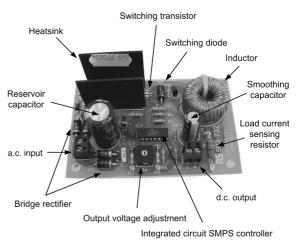


Figure 6.31 A switched mode power supply

a maximum collector-emitter voltage rating of 40 V. The internal power switching diode, D1, is accessible between pins 1 and 2 and this has similar ratings to Q2. Both D1 and Q2 have switching times of between 300 and 500 ns. IC1 is used to compare the 1.3 V voltage reference (pin 10 connected to pin 8) with a proportion of the output (derived from a simple two-resistor potential divider).

Batteries

Batteries are energy storage devices that convert electrical energy to chemical energy (when being *charged*) and chemical energy to electrical energy (when being *discharged*). Batteries are an ideal power source for small, lightweight and portable items of electronic equipment. They can also be useful as a back-up supply that can be brought into service when a primary supply (such as the AC mains) should fail.

The individual cells of which batteries are composed tend to have voltages of between 1.2V and 3.7V so battery packs are made from several series-connected cells in order to provide a larger output voltage than would be available from a single cell (see Figure 6.32).

Cells fall into one or two principal categories; **primary cells** end their useful life when their chemical constituents are exhausted whereas **secondary cells** (in which the chemical reaction may be reversed) can be recharged many times.

Figure 6.32 Some typical battery packs for small electronic equipment. From left to right: alkaline a 9 V PP3 based on six layered 1.5 V cells; a 4.5 V battery pack based on three 1.5 V alkaline cells; a 3.6 V pack based on three Ni-MH cells; a single 3.7 V high-capacity Li-ion cell.

Alkaline (and older Leclanché cells) are examples of the former type whilst nickel cadmium (Ni-Cd) and nickel metal hydride (Ni-MH) cells are an example of the latter type.

Battery capacity, energy content and efficiency

The capacity of a battery is the amount of electrical energy that it can deliver and is simply the product of its rated discharge current (A) and rated discharge time (hours). Capacity (C) is normally quoted in ampere-hours (Ah) or milliampere-hours (mAh). The capacity of a battery is somewhat dependent upon the rate of discharge and thus, to be strictly meaningful, the ampere-hour rate should be specified for a stated discharge rate (e.g. 2,500 mAh for a discharge current of 500 mA over a five-hour period). Depending upon the application envisaged, cells are often rated for discharge periods of between two and sixteen hours.

The energy content of a battery is specified in watt-hours (Wh) and is the product of the cell's capacity (Ah) and the average cell voltage (V) when being discharged. The watt-hour efficiency of a battery is the ratio of the energy realised upon discharge to that which is required to fully charge the battery. It's worth illustrating this with some examples:

Example 6.6

A nickel cadmium (Ni-Cd) battery is rated at 4.8Ah for a six-hour discharge period and it comprises ten individual series-connected cells (each having a nominal discharge voltage of 1.2V). Determine the terminal voltage of the battery, its energy content and the average load current that the battery should be able to supply over a continuous six-hour discharge period?

Solution

The terminal voltage of the battery will be $10 \times 1.2V$ or 12V and the energy content of the battery can be calculated from:

Energy content = $4.8Ah \times 12V = 57.6Wh$

Over a six-hour period, the battery should be capable of delivering an average load current of 4.8/6 = 0.8A.

Example 6.7

If the battery in Example 6.6 requires fourteen hours to charge at a terminal voltage of 13.5V and at a constant current of 0.4A, determine the energy required to charge the battery. Also determine the Watt-hour efficiency of the battery.

Solution

The energy required to charge the battery can be calculated from:

$$13.5 \times 0.4 \times 14 = 75.6 \text{ Wh}$$

The battery's Watt-hour efficiency, expressed as a percentage, will thus be:

$$(57.6/75.6) \times 100 = 76\%$$

Internal resistance

The internal resistance of a battery appears in series with any load to which the battery is connected. Figure 6.33 shows how a real battery can be represented by a perfect voltage source connected in series with its internal resistance (R_s). When the battery is disconnected from its load, the voltage measured under open-circuit conditions (V_{oc}) will be identical to that of the perfect internal voltage source. However, when a load (R_L) is connected, the terminal voltage will fall by an amount equal to the voltage dropped across the internal resistance of the battery. Thus:

$$V_{\rm L} = V_{\rm OC} - V_{\rm LOSS}$$

where $V_{\rm L}$ is the terminal voltage of the battery (i.e. the potential difference that's effectively developed to the load, R), $V_{\rm OC}$ is the open-circuit (no-load) battery voltage, and $V_{\rm LOSS}$ is the voltage dropped across the internal resistance of the battery (i.e. the voltage "lost" inside the battery).

Now
$$V_{LOSS} = I_L \times R_S$$
 and so:

$$V_{L} = V_{OC} - (I_{L} \times R_{S})$$

 $V_{\rm L},~V_{\rm OC}$ and $I_{\rm L}$ can be measured and thus $R_{\rm S}$ can be obtained.

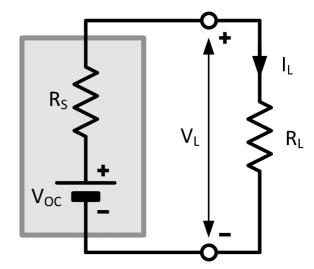


Figure 6.33 Internal resistance of a battery

It should be noted that the internal resistance of a battery increases when the battery is in a discharged state. Furthermore, internal faults within a battery usually manifest themselves as a significant increase in internal resistance (which may then render the battery unserviceable). Here's an example to show how this works:

Example 6.8

A 3.6 V Ni-MH battery pack produces an output voltage of 3.7 V off-load falling to 3.5 V when supplying a load current of 400 mA. Determine the internal resistance of the battery and the output voltage when the battery is supplying a load current of 1A.

Solution

The internal resistance, $R_{\rm S}$, of the battery can be determined from:

$$R_{\rm S} = V_{\rm LOSS} / I_{\rm L} = (3.7 - 3.5) / 0.4 = 0.5 \Omega$$

When this battery is supplying a load current of 1A, the output voltage will fall to:

$$V_{\rm L} = 3.7 - (1 \times 0.5) = 3.2 \text{V}$$

Battery types and characteristics

There's a vast and somewhat bewildering range of batteries available to the electronic equipment

designer and the choice of a suitable battery type can often be crucial to deriving optimum performance from the equipment. Furthermore, the choice of battery type is invariably a compromise, taking into account factors such as capacity, energy content, efficiency, operational life and cost.

Alkaline batteries are universally available on almost every high street. Individual cells have a nominal terminal voltage of 1.5 V (a fresh cell usually has a voltage of a little less than 1.6V falling to about 1.25 V at the end of the cell's working life). Alkaline cells are disposable and therefore not generally cost-effective in the longterm. They can have appreciable values of quoted capacity (e.g. 2800 mAh for an AA battery) but this can be somewhat misleading as these battery types are only suitable for use at relatively low discharge rates. For example, when delivering a current of 1 A, an AA cell may only be able to sustain this current for less than an hour. equivalent to a capacity of less than 700 mAh. Since alkaline cells are disposable, a particular concern is their self-discharge rate which imposes limitations on their shelf-life. A typical self-discharge rate for an alkaline battery is less than 3% per month and, although this might not sound problematic, after a twelve-month period of inactive shelf-life, an alkaline battery will have lost a significant proportion of its energy content. Alkaline cells are available at reasonably low cost in a very wide range of common sizes (including AAA, AA, C, D, PP3, etc.) summarised in Table 6.1.

Nickel cadmium (Ni-Cd) batteries are secondary cells and they can be used over a large number

charge/discharge cycles. are capable. The terminal voltage of a single nickel cadmium cell is usually assumed to be 1.2 V though, as with other types of cell, there's some variation during the discharge period. Unlike some other types of cell, nickel cadmium types exhibit a remarkably constant output voltage during discharge. After falling initially from approximately 1.3 V, the cell voltage remains within about 5% of 1.25 V for more than 75% of the discharge period. This makes Ni-Cd batteries ideal for use in equipment that doesn't have the benefit of an internal voltage regulator.

Nickel cadmium cells exhibit an extremely low value of internal resistance and this makes them eminently suited to applications that demand the delivery of high currents for short periods. A notable disadvantage of Ni-Cd batteries (often referred to as "memory effect") occurs when a battery exhibits a loss of capacity after being left in a partially charged state for a long period of time. Ni-Cd batteries benefit from a regular (and full) charge/discharge cycle.

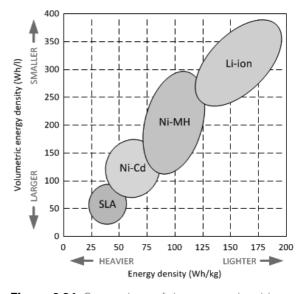
Nickel-metal hydride (Ni-MH) batteries are more environmentally friendly than Ni-Cd and SLA batteries yet still offer reasonably good energy density. Unfortunately, rates of self-discharge are higher than other types and the service life is reduced if a battery is subject to high loads. When compared with their Ni-Cd counterparts, Ni-MH batteries are much less prone to "memory effect". Although Ni-MH cells are available in counterpart equivalents to the common alkaline and Ni-Cd cells listed in Table 6.1, they are not always interchangeable and require different charging regimes.

Table 6.1	Commonly	available	alkalina	hattorios
i abie b. i	Commoniv	avallable	aikaiine	patteries

Battery type	Nominal voltage (V)	Typical capacity, C (mAh)	Recommended discharge rate	Recommended average load current (mA)	Construction	Dimensions (mm)	Typical weight (kg)
AAA, LR03	1.5	1,100	0.017C	10 to 50	Cylindrical	10.5 × 44.5	0.011
AA, LR6	1.5	2,800	0.007C	20 to 100	Cylindrical	14.5 × 50.5	0.024
C, LR14	1.5	7,000	0.005C	40 to 250	Cylindrical	26.2 × 50	0.065
D, R20	1.5	17,000	0.002C	200 to 500	Cylindrical	34.2 × 61.5	0.13
PP3, 6LR61	9	570	0.025C	5 to 30	Rectangular (layered)	H: 48.5 L: 26.5 W: 17.5	0.046

Most readers will already be familiar with **lead** acid batteries which are universally fitted to cars. The individual cell voltage in a lead acid battery is 2 V hence six individual cells are connected in series within a standard 12 V care battery whereas 12 cells are present within a high-capacity 24 V lorry battery. Smaller (i.e. lower capacity) sealed lead acid (SLA) batteries can often be an extremely cost-effective choice when a high-current supply is required for electronic equipment.

SLA batteries contain extremely toxic materials and great care is needed with their disposal. SLA batteries are ideal for use in applications where they can be left float-charging for long periods before discharging at a high-current for a relatively short period. Typical applications are emergency lighting, engine starting, and **uninterruptible power supplies (UPS)**. SLA batteries are usually rated for use at 0.2C (i.e. a five-hour discharge period). Note that, when compared with other battery types, SLA batteries exhibit relatively poor energy densities.


Lithium-ion (Li-ion) batteries perform well in terms of both capacity and energy density (see Fig.6.34). They also produce output voltages that remain reasonably constant over the full discharge period. They do not suffer from "memory effect" and the relatively high cell voltage (3.7 V) supports electronic equipment with batteries constructed from only a limited number of series-connected cells. In some cases, a single 3.7 V 18650 Li-ion cell is all that's required for some small items of electronic equipment.

Lithium polymer (Li-po) batteries combine many of the advantages of Li-ion batteries in a much more flexible form factor. This allows batteries to be easily fitted into a very small space while offering capacities and energy densities that are similar (but not quite equal) to those of conventional cylindrical Li-ion batteries.

The high energy content coupled with the low internal resistance of Li-ion and Li-po batteries demands extra care in their use. Rapidly overcharging or over-discharging this type of battery can result in a very real risk of fire and explosion. Because of this, it is essential to treat Li-ion and Li-po batteries with great care. To reduce these risks, many batteries are fitted with internal

battery protection circuitry. This limits the battery current and voltage during both charge and discharge.

Cylindrical Li-ion batteries (like the commonly available 3.7V 18650 battery) are available both with and without integrated protection circuitry. Protected cells are preferred for most applications and unprotected cells (due to their high energy content) must be treated with caution. A practical point worth noting is that protected and unprotected cells have slightly different dimensions (see Figure 6.35) and this

Figure 6.34 Comparison of the energy densities of various types of battery (note the relationship between energy, size and weight; and how Li-ion batteries are superior in both respects)

Figure 6.35 Protected (bottom) and unprotected (top) 3.7V 18650 cells

can sometimes cause problems when cells are to be fitted in off-the-shelf battery holders.

Finally, Table 6.2 summarises the characteristics, strengths and weaknesses of each of the battery types that we've just met. It's also important

to be aware that advances in battery technology are ongoing and further improvements in performance can be expected as new batteries are developed.

 Table 6.2
 Comparison of battery types and characteristics

Feature	Alkaline	Nickel Cadmium (Ni-Cd)	Nickel-Metal Hydride (Ni-MH)	Sealed Lead Acid (SLA)	Lithium Ion (Li-ion)	Li-ion Polymer (Li-po)
Rechargeable?	No	Yes	Yes	Yes	Yes	Yes
Nominal cell voltage	1.5V	1.2V	1.2V	2V	3.7V	3.7V
Typical battery/ pack configuration	3V, 4.5V, 6V or 9V (2, 3, 4 or 6 cells)	3.6V (3 cells)	3.6V (3 cells)	6V or 12V (3 or 6 cells)	7.2V (2 cells)	7.2V (2 cells)
Energy density (Wh/kg)	80	45 to 80	60 to 120	30 to 50	110 to 160	100 to 130
Typical cycle life	n/a	800 to 1200	300 to 500	200 to 300	500 to 1000	300 to 500
Typical fast charge time	n/a	1 to 2 hours	2 to 4 hours	8 to 16 hours	2 to 4 hours	2 to 4 hours
Overcharge tolerance	n/a	Moderate	Low	High	Very low	Low
Self-discharge (per month)	Limited by shelf-life	20%	30%	5%	10%	10%
Typical load current	C/20 to C/5	C/10 to C/2	C/10 to C/4	C/5	C/4 to C/2	C/4
Peak load current	C/2	>10C	5C	5C	>2C	>2C
Typical internal resistance (Ω)	0.5 to 2	0.15	0.25	<0.1	0.2	0.2 to 0.5
Operating temperature (°C)	0 to +65	-40 to +60	-20 to +60	-20 to +60	-20 to +60	0 to +60
Typical cost factor (relative to Ni-CD and SLA)	4 to 8	1.0	1.2 to 1.5	1.0	1.5 to 2.0	2.0 to 2.5
Strengths	Universally available in standard sizes	Rugged and economical	Less prone to "memory effect" and more environmentally friendly than Ni-Cd	Reliable and dependable; good performance at high discharge currents	Very high energy density; low self- discharge; no "memory effect"	Lightweight, compact and available in a wide range of form factors
Weaknesses	Uneconomic; unsuitable for high-current applications; limited shelf-life	Relatively low energy density compared with Li-ion and Li-po; prone to "memory effect"; environmentally unfriendly	Limited shelf- life; high self- discharge; poor performance at high temperatures	Relatively low energy density (bulky and heavy)	Requires protection circuitry; needs careful charging and care when using	Requires protection circuitry; needs careful charging and care when using; can be expensive

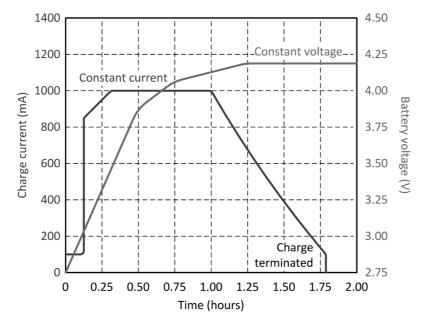


Figure 6.36 Typical charging characteristics for Li-ion cells

Practical investigation

Objective

To investigate the operation of simple voltage regulators.

Components and test equipment

Breadboard, digital or analogue meters with d.c. voltage and current ranges, 9 V d.c. power supply (or battery), 3.9 V zener diode (e.g. BZX85 or BZY88), NPN TO5 transistor (e.g. 2N3053 or BFY50), 48 °C/W TO5 clip-on heatsink, 220 Ω 0.3 W resistor, 15 Ω 0.3 W resistor, 500 Ω and 1 $k\Omega$ wirewound variable resistors, connecting wire, test leads.

Procedure

Connect the simple zener diode shunt regulator shown in Fig. 6.37. Set the variable resistor to produce a load current ($I_{\rm L}$) of 10 mA then measure and record the output voltage produced across the load, $V_{\rm L}$. Repeat for load currents from 20 mA to 100 mA in 10 mA steps.

Connect the transistor regulator shown in Fig. 6.38. Set the variable resistor to produce a load current ($I_{\rm L}$) of 25 mA then measure and

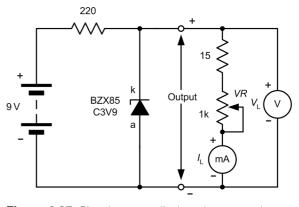


Figure 6.37 Simple zener diode voltage regulator

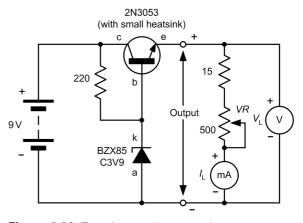


Figure 6.38 Transistor voltage regulator

record the output voltage produced across the load, $V_{\rm L}$. Repeat for load current from 50 mA to 250 mA in 25 mA steps.

Measurements and calculations

For each circuit, record your results in a table showing corresponding values of $I_{\rm L}$ and $V_{\rm L}$ (see Tables 6.3 and 6.4).

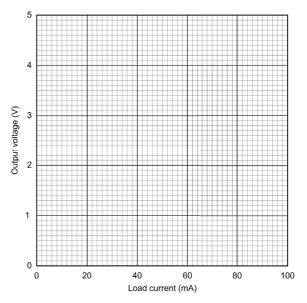

Plot graphs showing V_{\perp} plotted against I_{\perp} for each circuit (see Figures 6.39 and 6.40). By constructing a tangent to each graph, determine the output

Table 6.3 Table of results for the simple zener voltage regulator

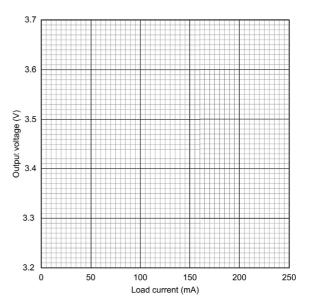

Load current (mA)	Output voltage (V)
10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

Table 6.4 Table of results for the transistor voltage regulator

Load current (mA)	Output voltage (V)
25	
50	
75	
100	
125	
150	
175	
200	
225	
250	

Figure 6.39 Graph layout that can be used for the load characteristic of the simple zener voltage regulator (construct a tangent to the graph at $I_{\rm L} = 30$ mA in order to determine the output resistance)

Figure 6.40 Graph layout that can be used for the load characteristic of the simple zener voltage regulator (construct a tangent to the graph at $I_{\rm L}=100$ mA in order to determine the output resistance)

resistance of each regulator circuit. For the simple shunt zener diode regulator the output resistance should be calculated at $I_{\rm L}$ = 30 mA while for the transistor voltage regulator the output resistance should be calculated at $I_{\rm L}$ = 100 mA.

Conclusion

Comment on the shape of each graph. Is this what you would expect? Compare the performance of each circuit and, in particular, the range of load currents over which effective regulation is achieved. Which of the transistors had the lowest value of output resistance? Can you suggest why this is?

Important formulae introduced in this chapter

Maximum value of series resistor for a simple shunt zener diode voltage regulator: (page 125)

$$R_{\rm S}$$
 max. = $R_{\rm L} \times \left(\frac{V_{\rm IN}}{V_{\rm IN}} - 1 \right)$

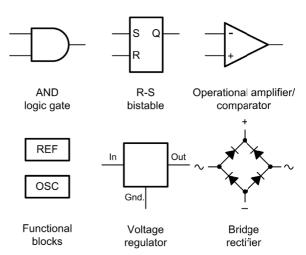
Minimum value of series resistor for a simple shunt zener diode voltage regulator: (page 125)

$$R_{\rm S} \, \text{min.} = \frac{V_{\rm IN} V_{\rm Z} - V_{\rm Z}^2}{P_{\rm Z} \, \text{max.}}$$

Output resistance of a power supply: (page 125)

$$R_{\text{out}} = \frac{\text{change in output voltage}}{\text{change in output current}} = \frac{\Delta V_{\text{out}}}{\Delta I_{\text{out}}}$$

Input (line) regulation of a power supply: (page 125)


Regulation =
$$\frac{\text{change in output voltage}}{\text{change in line (input) voltage}} \times 100\%$$

Symbols introduced in this chapter

Problems

6.1 A half-wave rectifier is fitted with an R-C smoothing filter comprising $R=200~\Omega$ and $C=50~\mu F$. If 2 V of 400 Hz ripple appear

- at the input of the circuit, determine the amount of ripple appearing at the output.
- 6.2 The L-C smoothing filter fitted to a 50 Hz mains operated full-wave rectifier circuit consists of L=4 H and C=500 μF . If 4 V of ripple appear at the input of the circuit, determine the amount of ripple appearing at the output.
- 6.3 If a 9 V zener diode is to be used in a simple shunt regulator circuit to supply a load having a nominal resistance of 300 Ω , determine the maximum value of series resistor for operation in conjunction with a supply of 15 V.
- 6.4 The circuit of a d.c. power supply is shown in Fig. 6.42. Determine the voltages that will appear at test points A, B and C.
- 6.5 In Fig. 6.42, determine the current flowing in *R*1 and the power dissipated in D5 when the circuit is operated without any load connected.
- 6.6 In Fig. 6.42, determine the effect of each of the following fault conditions:
 - (a) R1 open-circuit;
 - (b) D5 open-circuit;
 - (c) D5 short-circuit.
- 6.7 A 220 V a.c supply feeds a 20:1 stepdown transformer, the secondary of

Figure 6.41 Circuit symbols introduced in this chapter

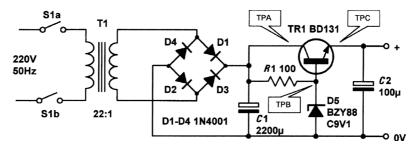


Figure 6.42 See Questions 6.4, 6.5 and 6.6

which is connected to a bridge rectifier and reservoir capacitor. Determine the approximate d.c. voltage that will appear across the reservoir capacitor under 'noload' conditions.

- 6.8 The following data were obtained during a load test carried out on a d.c. power supply:
 - Output voltage (no-load) = 8.5 V Output voltage (800 mA load) = 8.1 V Determine the output resistance of the power supply and estimate the output voltage at a load current of 400 mA.
- 6.9 The following data were obtained during a regulation test on a d.c. power supply:

 Output voltage (a.c. input: 230 V) = 15 V

 Output voltage (a.c. input: 190 V) = 14.6 V

 Determine the regulation of the power supply and estimate the output voltage when the input voltage is 245 V.

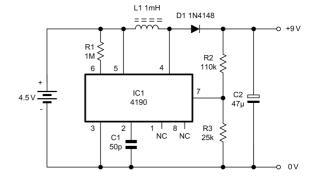


Figure 6.43 See Question 6.10

6.10 Fig. 6.43 shows a switching regulator circuit that produces an output of 9 V for an input of 4.5 V. What type of regulator is this? Between which pins of IC1 is the switching transistor connected? Which pin on IC1 is used to feed back a proportion of the output voltage to the internal comparator stage?

Answers to these problems appear on page 451.

Amplifiers

Chapter summary

This chapter introduces the basic concepts of amplifiers and amplification. It describes the most common types of amplifier and outlines the basic classes of operation used in both linear and non-linear amplifiers. The chapter also describes methods for predicting the performance of an amplifier based on equivalent circuits and on the use of semiconductor characteristics and load lines. Once again, we conclude with a selection of practical circuits that can be built and tested.

Types of amplifier

Many different types of amplifier are found in electronic circuits. Before we explain the operation of transistor amplifiers in detail, we shall briefly describe the main types of amplifier.

a.c. coupled amplifiers

In a.c. coupled amplifiers, stages are coupled together in such a way that d.c. levels are isolated and only the a.c. components of a signal are transferred from stage to stage.

d.c. coupled amplifiers

In d.c. (or direct) coupled amplifiers, stages are coupled together in such a way that stages are not isolated to d.c. potentials. Both a.c. and d.c. signal components are transferred from stage to stage.

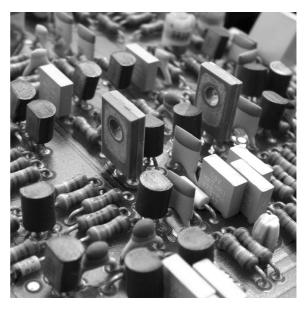
Large-signal amplifiers

Large-signal amplifiers are designed to cater for appreciable voltage and/or current levels (typically from 1 V to 100 V or more).

Small-signal amplifiers

Small-signal amplifiers are designed to cater for low-level signals (normally less than 1V and often much smaller). Small-signal amplifiers have to be specially designed to combat the effects of noise.

Audio frequency amplifiers


Audio frequency amplifiers operate in the band of frequencies that is normally associated with audio signals (e.g. 20 Hz to 20 kHz).

Wideband amplifiers

Wideband amplifiers are capable of amplifying a very wide range of frequencies, typically from a few tens of hertz to several megahertz.

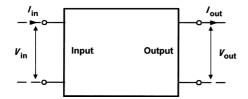
Radio frequency amplifiers

Radio frequency amplifiers operate in the band of frequencies that is normally associated with radio signals (e.g. from 100 kHz to over 1 GHz). Note that it is desirable for amplifiers of this type to be frequency selective and thus their frequency response may be restricted to a relatively narrow band of frequencies (see Fig. 7.9 on page 144).

Figure 7.1 Part of a high-gain, wideband d.c. coupled amplifier using discrete components

Low-noise amplifiers

Low-noise amplifiers are designed so that they contribute negligible noise (signal disturbance) to the signal being amplified. These amplifiers are usually designed for use with very small signal levels (usually less than 10 mV or so).


Gain

One of the most important parameters of an amplifier is the amount of amplification or gain that it provides. Gain is simply the ratio of output voltage to input voltage, output current to input current, or output power to input power (see Fig. 7.2). These three ratios give, respectively, the voltage gain, current gain and power gain. Thus:

Voltage gain,
$$A_{v} = \frac{V_{out}}{V_{in}}$$

Current gain,
$$A_i = \frac{I_{\text{out}}}{I_{\text{in}}}$$

Power gain,
$$A_p = \frac{P_{\text{out}}}{P_{\text{in}}}$$

Figure 7.2 Block diagram for an amplifier showing input and output voltages and currents

Note that, since power is the product of current and voltage (P = I V), we can infer that:

$$A_{p} = \frac{P_{out}}{P_{in}} = \frac{I_{out} \times V_{out}}{I_{in} \times V_{in}} = \frac{I_{out}}{I_{in}} \times \frac{V_{out}}{V_{in}} = A_{i} \times A_{v}$$

Example 7.1

An amplifier produces an output voltage of 2 V for an input of 50 mV. If the input and output currents in this condition are, respectively, 4 mA and 200 mA, determine:

- (a) the voltage gain;
- (b) the current gain;
- (c) the power gain.

Solution

(a) The voltage gain is calculated from:

$$A_{V} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{2 \text{ V}}{50 \text{ mV}} = 40$$

(b) The current gain is calculated from:

$$A_{i} = \frac{I_{out}}{I_{in}} = \frac{200 \text{ mA}}{4 \text{ mA}} = 50$$

(c) The power gain is calculated from:

$$A_{\rm p} = \frac{I_{\rm out} \times V_{\rm out}}{I_{\rm in} \times V_{\rm in}} = \frac{200 \text{ mA} \times 2 \text{ V}}{4 \text{ mA} \times 50 \text{ mV}} = \frac{0.4 \text{ W}}{200 \text{ } \mu\text{W}} = 2,000$$

Note that the same result is obtained from:

$$A_0 = A_1 \times A_2 = 50 \times 40 = 2,000$$

Class of operation

An important requirement of most amplifiers is that the output signal should be a faithful copy of the input signal, albeit somewhat larger in amplitude. Other types of amplifier are non-linear, in which case their input and output waveforms will not necessarily be similar. In practice, the degree of **linearity** provided by an amplifier can

be affected by a number of factors including the amount of bias applied (see later) and the amplitude of the input signal.

It is also worth noting that a linear amplifier will become non-linear when the applied input signal exceeds a threshold value. Beyond this value the amplifier is said to be **overdriven** and the output will become increasingly distorted if the input signal is further increased.

Amplifiers are usually designed to be operated with a particular value of bias supplied to the active devices (i.e. transistors). For linear operation, the active device(s) must be operated in the linear part of their **transfer characteristic** (V_{out} plotted against V_{in}). In Fig. 7.3 the input and output signals for an amplifier are operating in linear mode. This form of operation is known as **Class A** and the **bias point** is adjusted to the mid-point of the linear part of the transfer characteristic. Furthermore, current will flow in the active devices used in a Class A amplifier during a complete cycle of the signal waveform. At no time does the current fall to zero.

Fig. 7.4 shows the effect of moving the bias point down the transfer characteristic and, at the same time, increasing the amplitude of the input signal. From this, you should notice that the extreme negative portion of the output signal has become distorted. This effect arises from the non-linearity of the transfer characteristic that occurs near the origin (i.e. the zero point). Despite the obvious

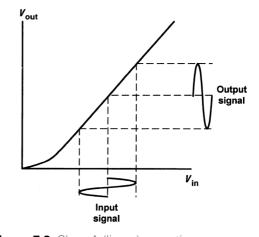
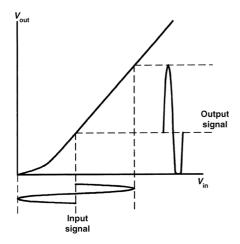



Figure 7.3 Class A (linear) operation

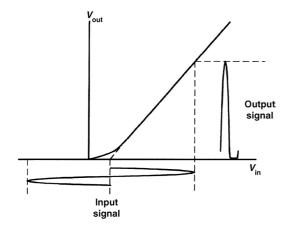


Figure 7.4 Effect of reducing bias and increasing input signal amplitude (the output waveform is no longer a faithful reproduction of the input)

non-linearity in the output waveform, the active device(s) will conduct current during a complete cycle of the signal waveform.

Now consider the case of reducing the bias even further while further increasing the amplitude of the input signal (see Fig. 7.5). Here the bias point has been set at the projected cut-off point. The negative-going portion of the output signal becomes cut-off (or **clipped**) and the active device(s) will cease to conduct for this part of the cycle. This mode of operation is known as **Class AB**.

Now let's consider what will happen if no bias at all is applied to the amplifier (see Fig. 7.6).

Figure 7.5 Class AB operation (bias set at projected cut-off)

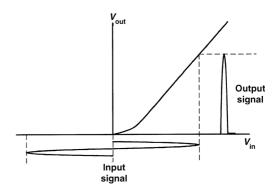
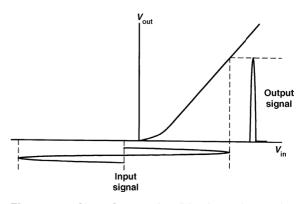



Figure 7.6 Class B operation (no bias applied)

The output signal will only comprise a series of positive-going half-cycles and the active device(s) will only be conducting during half-cycles of the waveform (i.e. they will only be operating 50% of the time).

This mode of operation is known as **Class B** and is commonly used in high-efficiency push–pull power amplifiers where the two active devices in the output stage operate on alternate half-cycles of the waveform.

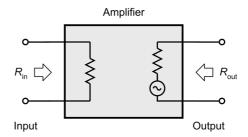
Finally, there is one more class of operation to consider. The input and output waveforms for **Class C** operation are shown in Fig. 7.7. Here, the bias point is set at beyond the cut-off (zero) point and a very large input signal is applied. The output waveform will then comprise a series of quite sharp positive-going pulses. These pulses of current or voltage can be applied to a tuned circuit load in order to recreate a sinusoidal signal. In effect, the pulses will excite the tuned circuit

Figure 7.7 Class C operation (bias is set beyond cut-off)

Table 7.1	Classes of	operation
-----------	------------	-----------

Class of operation	Bias point	Conduction angle (typical)	Efficiency (typical)	Application
А	Mid-point	360°	5% to 20%	Linear audio amplifiers
AB	Projected cut-off	210°	20% to 40%	Push–pull audio amplifiers
В	At cut-off	180°	40% to 70%	Push–pull audio amplifiers
С	Beyond cut-off	120°	70% to 90%	Radio frequency power amplifiers

and its inherent flywheel action will produce a sinusoidal output waveform. This mode of operation is only used in RF power amplifiers that must operate at very high levels of efficiency. Table 7.1 summarizes the classes of operation used in amplifiers.


Input and output resistance

Input resistance is the ratio of input voltage to input current and it is expressed in ohms. The input of an amplifier is normally purely resistive (i.e. any reactive component is negligible) in the middle of its working frequency range (i.e. the **mid-band**). In some cases, the reactance of the input may become appreciable (e.g. if a large value of stray capacitance appears in parallel with the input resistance). In such cases we would refer to **input impedance** rather than input resistance.

Output resistance is the ratio of open-circuit output voltage to short-circuit output current and is measured in ohms. Note that this resistance is internal to the amplifier and should not be confused with the resistance of a load connected externally.

As with input resistance, the output of an amplifier is normally purely resistive and we can safely ignore any reactive component. If this is not the case, we would once again need to refer to **output impedance** rather than output resistance.

Fig. 7.8 shows how the input and output resistances are 'seen' looking into the input and output terminals, respectively. We shall be returning to this equivalent circuit a little later in

Figure 7.8 Input and output resistances 'seen' looking into the input and output terminals, respectively

this chapter. Finally, it's important to note that, although these resistances are meaningful in terms of the signals present, they cannot be measured using a conventional meter!

Frequency response

The frequency response characteristics for various types of amplifier are shown in Fig. 7.9. Note that, for response curves of this type, frequency is almost invariably plotted on a **logarithmic scale**.

The frequency response of an amplifier is usually specified in terms of the upper and lower **cut-off frequencies** of the amplifier. These frequencies are those at which the output power has dropped to 50% (otherwise known as the **–3 dB points**) or where the voltage gain has dropped to 70.7% of its mid-band value.

Figs 7.10 and 7.11, respectively, show how the bandwidth can be expressed in terms of either power or voltage (the cut-off frequencies, f_1 and f_2 , and bandwidth are identical).

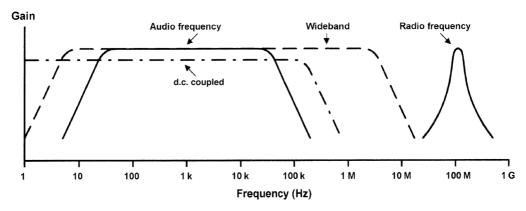
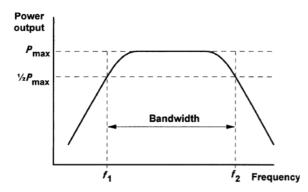
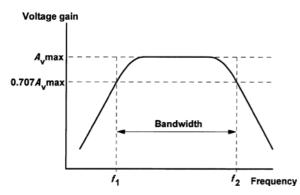




Figure 7.9 Frequency response and bandwidth (output power plotted against frequency)

Figure 7.10 Frequency response and bandwidth (output power plotted against frequency)

Figure 7.11 Frequency response and bandwidth (output voltage plotted against frequency)

Example 7.2

Determine the mid-band voltage gain and upper and lower cut-off frequencies for the amplifier whose frequency response is shown in Fig. 7.12.

Solution

The mid-band voltage gain corresponds with the flat part of the frequency response characteristic. At that point the voltage gain reaches a maximum of 35 (see Fig. 7.12).

The voltage gain at the two cut-off frequencies can be calculated from:

 A_{v} cut-off = 0.707 × A_{v} max = 0.707 × 35 = 24.7 This value of gain intercepts the frequency response graph at f_{1} = 57 Hz and f_{2} = 590 kHz (see Fig. 7.12).

Bandwidth

The bandwidth of an amplifier is usually taken as the difference between the upper and lower cut-off frequencies (i.e. $f_2 - f_1$ in Figs 7.10 and 7.11). The bandwidth of an amplifier must be sufficient to accommodate the range of frequencies present within the signals that it is to be presented with. Many signals contain **harmonic** components (i.e. signals at 2f, 3f, 4f, etc. where f is the frequency of the fundamental signal). To reproduce a square wave, for example, requires an amplifier with a very wide bandwidth (note that a square wave comprises an infinite series of harmonics). Clearly it is not possible to perfectly reproduce such a wave, but it does explain why it can be desirable for an amplifier's bandwidth to greatly exceed the highest signal frequency that it is required to handle!

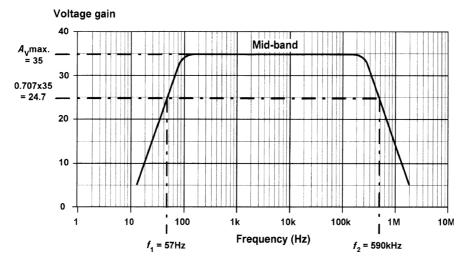


Figure 7.12 See Example 7.2

Phase shift

Phase shift is the phase angle between the input and output signal voltages measured in degrees. The measurement is usually carried out in the mid-band where, for most amplifiers, the phase shift remains relatively constant. Note also that conventional single-stage transistor amplifiers provide phase shifts of either 180° or 360°.

Negative feedback

Many practical amplifiers use negative feedback in order to precisely control the gain, reduce distortion and improve bandwidth. The gain can be reduced to a manageable value by feeding back a small proportion of the output. The amount of

feedback determines the overall (or **closed-loop**) gain. Because this form of feedback has the effect of reducing the overall gain of the circuit, this form of feedback is known as **negative feedback**. An alternative form of feedback, where the output is fed back in such a way as to reinforce the input (rather than to subtract from it) is known as **positive feedback**. This form of feedback is used in oscillator circuits (see Chapter 9).

Fig. 7.13 shows the block diagram of an amplifier stage with negative feedback applied. In this circuit, the proportion of the output voltage fed back to the input is given by β and the overall voltage gain will be given by:

Overall gain,
$$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$

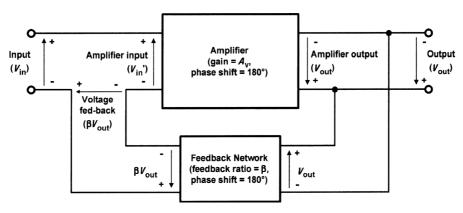


Figure 7.13 Amplifier with negative feedback applied

7 Amplifiers

Now $V_{\rm in}' = V_{\rm in} - \beta V_{\rm out}$ (by applying Kirchhoff's Voltage Law) (note that the amplifier's input voltage has been *reduced* by applying negative feedback) thus:

$$V_{\rm in} = V_{\rm in}' + \beta V_{\rm out}$$

and

 $V_{\text{out}} = A_{\text{v}} \times V_{\text{in}}$ (note that A_{v} is the **internal gain** of the amplifier)

Hence:

Overall gain,
$$G = \frac{A_v \times V'_{in}}{V'_{in} + \beta V_{out}} = \frac{A_v \times V'_{in}}{V'_{in} + \beta (A_v \times V'_{in})}$$

Thus:

$$G = \frac{A_{v}}{1 + \beta A_{v}}$$

Hence, the overall gain with negative feedback applied will be less than the gain without feedback. Furthermore, if $A_{\rm v}$ is very large (as is the case with an operational amplifier – see Chapter 8) the overall gain with negative feedback applied will be given by:

$$G = 1/\beta$$
 (when A_{ij} is very large)

Note, also, that the **loop gain** of a feedback amplifier is defined as the product of β and A_o .

Example 7.3

An amplifier with negative feedback applied has an open-loop voltage gain of 50, and one-tenth of its output is fed back to the input (i.e. β = 0.1). Determine the overall voltage gain with negative feedback applied.

Solution

With negative feedback applied the overall voltage gain will be given by:

$$G = \frac{A_{v}}{1 + \beta A_{v}} = \frac{50}{1 + (0.1 \times 50)} = \frac{50}{6} = 8.33$$

Example 7.4

If, in Example 7.3, the amplifier's open-loop voltage gain increases by 20%, determine the percentage increase in overall voltage gain.

Solution

The new value of voltage gain will be given by:

$$A_{y} = A_{y} + 0.2A_{y} = 1.2 \times 50 = 60$$

The overall voltage gain with negative feedback will then be:

$$G = \frac{A_{v}}{1 + \beta A_{v}} = \frac{60}{1 + (0.1 \times 60)} = \frac{60}{7} = 7.14$$

The increase in overall voltage gain, expressed as a percentage, will thus be:

$$\frac{8.57 - 8.33}{8.33} \times 100\% = 2.88\%$$

Note that this example illustrates one of the important benefits of negative feedback in stabilizing the overall gain of an amplifier stage.

Example 7.5

An integrated circuit that produces an openloop gain of 100 is to be used as the basis of an amplifier stage having a precise voltage gain of 20. Determine the amount of feedback required.

Solution

Re-arranging the formula, $G = \frac{A_{v}}{1 + \beta A_{v}}$ to make β the subject gives:

$$\beta = \frac{1}{G} - \frac{1}{A}$$

Thus:

$$\beta = \frac{1}{20} - \frac{1}{100} = 0.05 - 0.01 = 0.04$$

Transistor amplifiers

Regardless of what type of transistor is employed, three basic circuit configurations are used. These three circuit configurations depend upon which one of the three transistor connections is made common to both the input and the output. In the case of bipolar transistors, the configurations are known as common emitter, common collector (or emitter follower) and common base. Where field effect transistors are used, the corresponding configurations are common source, common drain (or source follower) and common gate.

The three basic circuit configurations (Figs 7.14 to 7.19) exhibit quite different performance

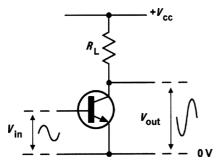
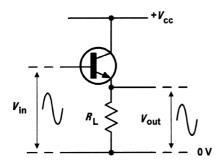



Figure 7.14 Common-emitter configuration

Figure 7.15 Common-collector (emitter follower) configuration

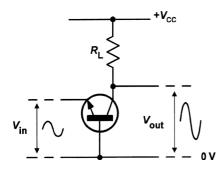


Figure 7.16 Common-base configuration

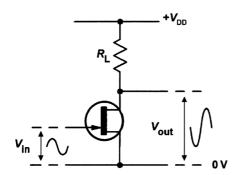
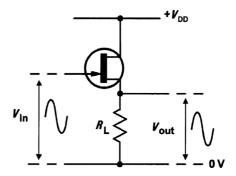



Figure 7.17 Common-source configuration

Figure 7.18 Common-drain (source follower) configuration

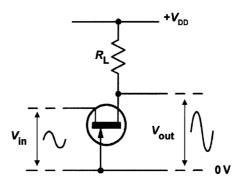


Figure 7.19 Common-gate configuration

characteristics, as shown in Tables 7.2 and 7.3 (typical values are given in brackets).

Equivalent circuits

One method of determining the behaviour of an amplifier stage is to make use of an equivalent circuit. Fig. 7.20 shows the basic equivalent circuit of an amplifier. The output circuit is reduced to its Thévenin equivalent (see Chapter 3) comprising a voltage generator $(A_v \times V_{\rm in})$ and a series input resistance, resistance $(R_{\rm out})$. This simple model allows us to forget the complex circuitry that might exist within the amplifier box!

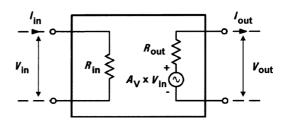


Figure 7.20 Common-source configuration

Table 7.2 BJT amplifier circuit configurations

Parameter	Mode of operation			
	Common emitter (Fig. 7.14)	Common collector (Fig. 7.15)	Common base (Fig. 7.16)	
Voltage gain	Medium/high (40)	Unity (1)	High (200)	
Current gain	High (200)	High (200)	Unity (1)	
Power gain	Very high (8000)	High (200)	High (200)	
Input resistance	Medium (2.5 kΩ)	High (100 kΩ)	Low (200 Ω)	
Output resistance	Medium/high (20 kΩ)	Low (100 Ω)	High (100 kΩ)	
Phase shift	180°	0°	0°	
Typical applications	General purpose AF and RF amplifiers	Impedance matching; input and output stages	RF and VHF/UHF amplifiers	

Table 7.3 JFET amplifier circuit configurations

Parameter	Mode of operation				
	Common source (Fig. 7.17)	Common drain (Fig. 7.18)	Common gate (Fig. 7.19)		
Voltage gain	Medium (40)	Unity (1)	High (250)		
Current gain	Very high (200,000)	Very high (200,000)	Unity (1)		
Power gain	Very high (800,000)	Very high (200,000)	High (250)		
Input resistance	Very high (1 MΩ)	Very high (10 MΩ)	Low (500 Ω)		
Output resistance	Medium/high (50 kΩ)	Low (200 Ω)	High (150 kΩ)		
Phase shift	180°	0°	0°		
Typical applications	General purpose AF and RF amplifiers	Impedance matching; input and output stages	RF and VHF/UHF amplifiers		

In practice, we use a slightly more complex equivalent circuit model in the analysis of a transistor amplifier. The most frequently used equivalent circuit is that which is based on **hybrid parameters** (or **h-parameters**). In this form of analysis, a transistor is replaced by four components; h_i , h_r , h_t and h_o (see Table 7.4). In order to indicate which one of the operating modes is used we add a further subscript letter to each h-parameter; e for common emitter, b for common base and c for common collector (see Table 7.5). However, to keep things simple, we will only consider common-emitter operation here.

Common-emitter input resistance (h_{ie})

The input resistance of a transistor is the resistance that is effectively 'seen' between its input terminals. As such, it is the ratio of the voltage between the input terminals to the current flowing into the input. In the case of a transistor operating in common-emitter mode, the input voltage is the voltage developed between the

Table 7.4 General hybrid parameters

	, ,
h _i	input resistance, $\frac{\Delta V_{\rm in}}{\Delta I_{\rm in}}$
h _r	reverse voltage transfer ratio, $\frac{\Delta V_{ ext{in}}}{\Delta V_{ ext{out}}}$
h _f	forward current transfer ratio, $\frac{\Delta I_{ m out}}{\Delta I_{ m in}}$
h _o	output conductance, $\frac{\Delta I_{ m out}}{\Delta V_{ m out}}$

Table 7.5 Common emitter mode h-parameters

h _{ie}	input resistance, $\frac{\Delta V_{\rm be}}{\Delta I_{\rm b}}$
h _{re}	reverse voltage transfer ratio, $\frac{\Delta V_{\mathrm{be}}}{\Delta V_{\mathrm{ce}}}$
h _{fe}	forward current transfer ratio, $\frac{\Delta I_{\rm c}}{\Delta I_{\rm b}}$
h _{oe}	output conductance, $\frac{\Delta I_{\rm c}}{\Delta V_{\rm ce}}$

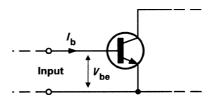
base and emitter, V_{be} , while the input current is the current supplied to the base, I_{b} .

Fig. 7.21 shows the current and voltage at the input of a common-emitter amplifier stage while Fig. 7.22 shows how the small-signal input resistance, $R_{\rm in}$, appears between the base and emitter. Note that $R_{\rm in}$ is not a discrete component, it is inside the transistor. From the foregoing we can deduce that:

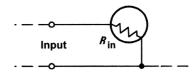
$$R_{\rm in} = \frac{V_{\rm be}}{I_{\rm b}}$$

(note that this is similar to the expression for $h_{\rm ie}$). The transistor's input characteristic can be used to predict the input resistance of a transistor amplifier stage. Since the input characteristic is non-linear (recall that very little happens until the base-emitter voltage exceeds 0.6 V), the value of input resistance will be very much dependent on the exact point on the graph at which the transistor is being operated. Furthermore, we might expect quite different values of resistance according to whether we are dealing with larger d.c. values or smaller incremental changes (a.c. values). Since this can be a rather difficult concept, it is worth expanding on it.

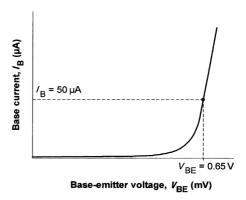
Fig. 7.23 shows a typical input characteristic in which the transistor is operated with a base current, $I_{\rm B}$, of 50 μ A. This current produces a base-emitter voltage, $V_{\rm BE}$, of 0.65 V. The input resistance corresponding to these steady (d.c.) values will be given by:


$$R_{\rm in} = \frac{V_{\rm BE}}{I_{\rm P}} = \frac{0.65 \text{ V}}{50 \text{ }\mu\text{A}} = 13 \text{ k}\Omega$$

Now, suppose that we apply a steady bias current of, say, 70 μA and superimpose on this a signal that varies above and below this value, swinging through a total change of 100 μA (i.e. from 20 μA to 120 μA). Fig. 7.24 shows that this produces a base-emitter voltage change of 0.05 V. The input resistance seen by this small-signal input current is given by:


$$R_{\rm in} = \frac{\rm change~in~V_{\rm be}}{\rm change~in~I_{\rm b}} = \frac{\Delta V_{\rm be}}{\Delta I_{\rm b}} = \frac{0.05~\rm V}{100~\mu \rm A} = 500~\Omega$$

In other words:


$$h_{\text{ie}} = 500 \ \Omega \ \left(\text{since } h_{\text{ie}} = \frac{\Delta V_{\text{be}}}{\Delta I_{\text{b}}} \right)$$

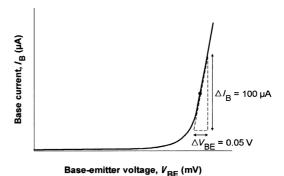

Figure 7.21 Voltage and current at the input of a common-emitter amplifier stage

Figure 7.22 Input resistance of a commonemitter amplifier stage

Figure 7.23 Using the input characteristic to determine the large-signal (static) input resistance of a transistor connected in common-emitter mode

Figure 7.24 Using the input characteristic to determine the small-signal input resistance of a transistor connected in common-emitter mode

7 Amplifiers

It is worth comparing this value with the steady (d.c.) value. The appreciable difference is entirely attributable to the shape of the input characteristic!

Common-emitter current gain (h_{fe})

The current gain produced by a transistor is the

ratio of output current to input current. In the case of a transistor operating in common-emitter mode, the input current is the base current, $I_{\rm b}$, while the output current is the collector current, $I_{\rm c}$. Fig. 7.25 shows the small-signal input and output currents and voltages for a common-emitter amplifier stage. The magnitude of the current produced at the output of the transistor is equal to

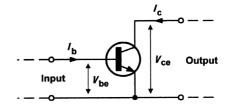
the current gain, A, multiplied by the applied base

current, $I_{\rm h}$. Since the output current is the current

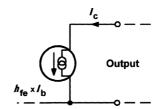
flowing in the collector, l_c , we can deduce that:

$$I_{c} = A_{i} \times I_{b}$$

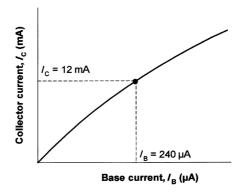
where $A_{i} = h_{fe}$ (the common-emitter current gain). Fig. 7.26 shows how this current source appears


between the collector and emitter. Once again, the current source is not a discrete component – it appears *inside* the transistor.

The transistor's transfer characteristic can be used to predict the current gain of a transistor amplifier stage. Since the transfer characteristic is linear, the current gain remains reasonably constant over a range of collector current. Fig. 7.27 shows a typical transfer characteristic in which the transistor is operated with a base current, $I_{\rm g}$, of 240 μ A. This current produces a collector current, $I_{\rm c}$, of 12 mA. The current gain corresponding to these steady (d.c.) values will be given by:


$$A_{I} = \frac{I_{C}}{I_{B}} = \frac{2.5 \text{ mA}}{50 \text{ } \mu\text{A}} = 50$$

(note that this is similar to the expression for $h_{\rm fe}$). Now, suppose that we apply a steady bias current of, say, 240 μ A and superimpose on this a signal that varies above and below this value, swinging through a total change of 220 μ A (i.e. from 120 μ A to 360 μ A). Fig. 7.28 shows that this produces a collector current swing of 10 mA.


The small-signal a.c. current gain is given by:

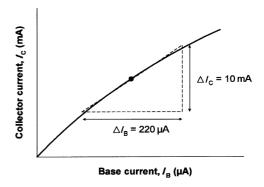

Figure 7.25 Input and output currents and voltages in a common-emitter amplifier stage

Figure 7.26 Equivalent output current source in a common-emitter amplifier stage

Figure 7.27 Using the transfer characteristic to determine the large-signal (static) current gain of a transistor connected in common-emitter mode

Figure 7.28 Using the transfer characteristic to determine the small-signal current gain of a transistor connected in common-emitter mode

$$A = \frac{\text{change in } I_c}{\text{change in } I_b} = \frac{\Delta I_c}{\Delta I_b} = \frac{10 \text{ mA}}{220 \text{ } \mu\text{A}} = 45.45$$

Once again, it is worth comparing this value with the steady state value ($h_{\rm FE}$). Since the transfer characteristic is reasonably linear, the values are quite close (45.45 compared with 50). However, if the transfer characteristic was *perfectly* linear the value of $h_{\rm fe}$ would be *exactly* the same as that for $h_{\rm FE}$.

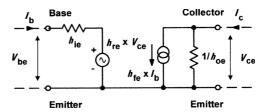
h-parameter equivalent circuit for a transistor in common-emitter mode

A complete h-parameter equivalent circuit for a transistor operating in common-emitter mode is shown in Fig. 7.29. We have already shown how the two most important parameters, $h_{\rm ie}$ and $h_{\rm fe}$, can be found from the transistor's characteristic curves.

The remaining parameters, $h_{\rm re}$ and $h_{\rm oe}$, can, in many applications, be ignored. A typical set of h-parameters for a BFY50 transistor is shown in Table 7.6. Note how small $h_{\rm re}$ and $h_{\rm oe}$ are for a real transistor!

Example 7.6

A BFY50 transistor is used in a common-emitter amplifier stage with $R_{\rm L}$ = 10 k Ω and $I_{\rm C}$ = 1 mA. Determine the output voltage produced by an input signal of 10 mV. (You may ignore the effect of $h_{\rm re}$ and any bias components that may be present externally.)


Solution

The equivalent circuit (with h_{re} replaced by a short circuit) is shown in Fig. 7.30. The load effectively appears between the collector and emitter while the input signal appears between the base and emitter. First we need to find the value of input current, I_{rr} from:

$$I_{\rm b} = \frac{V_{\rm in}}{h} = \frac{10 \text{ mV}}{250 \Omega} = 40 \text{ }\mu\text{A}$$

Next we find the value of current generated, $I_{\rm f}$, from:

$$I_{f} = h_{f_0} \times I_{h} = 80 \times 40 \ \mu A = 320 \ \mu A$$

Figure 7.29 *h*-parameter equivalent circuit for a transistor amplifier

Table 7.6 h-parameters for a BFY50 transistor

$h_{ie}(\Omega)$	h _{re}	h _{fe}	h _{oe} (S)
250	0.85 × 10 ⁻⁴	80	35 × 10 ⁻⁶

Measured at $I_C = 1$ mA, $V_{CF} = 5$ V

This value of current is shared between the internal resistance between collector and emitter (i.e. $1/h_{oe}$) and the external load, R_{L} . To determine the value of collector current, we can apply the current divider theorem (Chapter 3):

$$I_{c} = I_{f} \times \frac{\frac{1}{h_{oe}}}{\frac{1}{h_{oe}} + R_{L}} = 320 \ \mu\text{A} \times \frac{\frac{1}{(80 \times 10^{-6})}}{\frac{1}{(80 \times 10^{-6})} + 10 \ \text{k}\Omega}$$

Thus:

$$I_{c} = 320 \ \mu\text{A} \times \frac{12.5 \ \text{k}\Omega}{12.5 \ \text{k}\Omega + 10 \ \text{k}\Omega}$$

from which:

$$I_0 = 320 \,\mu\text{A} \times 0.555 = 177.6 \,\mu\text{A}$$

Finally, we can determine the output voltage from:

$$V_{\text{out}} = I_c \times R_L = 177.6 \,\mu\text{A} \times 10 \,\text{k}\Omega = 1.776 \,\text{V}$$

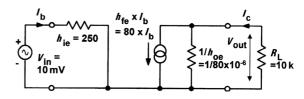


Figure 7.30 See Example 7.6

Voltage gain

We can use hybrid parameters to determine the voltage gain of a transistor stage. We have already shown how the voltage gain of an amplifier stage is given by:

$$A_{V} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

In the case of a common-emitter amplifier stage, $V_{\text{out}} = V_{\text{ic}}$ and $V_{\text{in}} = V_{\text{be}}$. If we assume that h_{oe} and h, are negligible, then:

$$V_{\text{out}} = V_{\text{ce}} = I_{\text{c}} \times R_{\text{L}} = I_{\text{f}} \times R_{\text{L}} = h_{\text{fe}} \times I_{\text{b}} \times R_{\text{L}}$$

$$V_{\rm in} = V_{\rm be} = I_{\rm b} \times R_{\rm in} = I_{\rm b} \times h_{\rm ie}$$

Thus:

$$A_{v} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{h_{\text{fe}} \times I_{\text{b}} \times R_{\text{L}}}{I_{\text{b}} \times h_{\text{ie}}} = \frac{h_{\text{fe}} \times R_{\text{L}}}{h_{\text{ie}}}$$

Example 7.7

A transistor has $h_{fe} = 150$ and $h_{ie} = 1.5 \text{ k}\Omega$. Assuming that h_{re} and h_{oe} are both negligible, determine the value of load resistance required to produce a voltage gain of 200.

Solution

Re-arranging $A_{\rm v} = \frac{h_{\rm fe} \times R_{\rm L}}{h_{\rm fe}}$ to make $R_{\rm L}$ the subject gives:

$$R_{\rm L} = \frac{A_{\rm v} \times h_{\rm ie}}{h_{\rm fe}}$$

For a voltage gain of 200 the value of load resistance can be determined from:

$$R_{L} = \frac{200 \times 1.5 \text{ k}\Omega}{150} = 2 \text{ k}\Omega$$

Bias

We stated earlier that the optimum value of bias for a Class A (linear) amplifier is that value which ensures that the active devices are operated at the midpoint of their transfer characteristics. In practice, this means that a static value of collector current will flow even when there is no signal present. Furthermore, the collector current will flow throughout the complete cycle of an input signal (i.e. conduction will take place over an angle of 360°). At no stage will the transistor be

saturated nor should it be cut-off (i.e. the state in which no collector current flows).

In order to ensure that a static value of collector current flows in a transistor, a small current must therefore be applied to the base of the transistor. This current can be derived from the same voltage rail that supplies the collector circuit (via the load). Fig. 7.31 shows a simple Class A common-emitter amplifier circuit in which the base bias resistor, R1, and collector load resistor, R2, are connected to a common positive supply rail.

The signal is applied to the base terminal of the transistor via a coupling capacitor, C1. This capacitor removes the d.c. component of any signal applied to the input terminals and ensures that the base bias current delivered by R1 is unaffected by any device connected to the input. C2 couples the signal out of the stage and also prevents d.c. current appearing at the output terminals.

In order to stabilize the operating conditions for the stage and compensate for variations in transistor parameters, base bias current for the transistor can be derived from the voltage at the collector (see Fig. 7.32). This voltage is dependent on the collector current which, in turn, depends upon the base current. A negative feedback loop thus exists in which there is a degree of selfregulation. If the collector current increases, the collector voltage will fall and the base current will be reduced. The reduction in base current will produce a corresponding reduction in collector current to offset the original change. Conversely, if the collector current falls, the collector voltage will rise and the base current will increase. This.

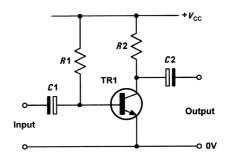
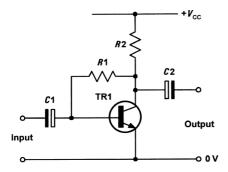



Figure 7.31 Basic Class-A common-emitter amplifier

Figure 7.32 An improvement on the circuit shown in Fig. 7.31 (using negative feedback to bias the transistor)

in turn, will produce a corresponding increase in collector current to offset the original change.

The negative feedback path in Fig. 7.32 provides feedback that involves an a.c. (signal) component as well as the d.c. bias. As a result of the a.c. feedback, there is a slight reduction in signal gain. The signal gain can be increased by removing the a.c. signal component from the feedback path so that only the d.c. bias component is present. This can be achieved with the aid of a bypass capacitor, as shown in Fig. 7.33. The value of the bypass capacitor, *C*1, is chosen so that the component exhibits a very low reactance at the lowest signal frequency when compared with the series base bias resistance, *R*1. The result of this potential divider arrangement is that the a.c. signal component is effectively bypassed to ground.

Fig. 7.34 shows an improved form of transistor amplifier in which d.c. negative feedback is used to stabilize the stage and compensate for variations in transistor parameters, component values and temperature changes. *R*1 and *R*2 form

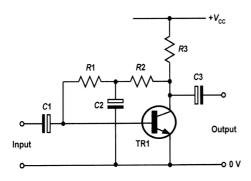
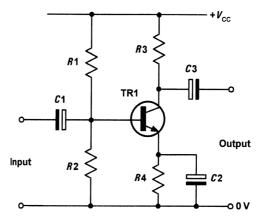



Figure 7.33 Improved version of Fig. 7.31

Figure 7.34 A common-emitter amplifier stage with effective bias stabilization

a potential divider that determines the d.c. base potential, $V_{\rm B}$. The base-emitter voltage ($V_{\rm BE}$) is the difference between the potentials present at the base ($V_{\rm B}$) and emitter ($V_{\rm E}$). The potential at the emitter is governed by the emitter current ($I_{\rm E}$). If this current increases, the emitter voltage ($V_{\rm E}$) will increase and, as a consequence, $V_{\rm BE}$ will fall. This, in turn, produces a reduction in emitter current which largely offsets the original change. Conversely, if the emitter current decreases, the emitter voltage ($V_{\rm E}$) will decrease and $V_{\rm BE}$ will increase (remember that $V_{\rm B}$ remains constant). The increase in bias results in an increase in emitter current compensating for the original change.

Example 7.8

Determine the static value of current gain and collector voltage in the circuit shown in Fig. 7.35.

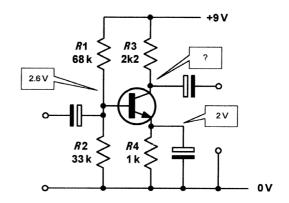


Figure 7.35 See Example 7.8

Solution

Since 2 V appears across *R*4, we can determine the emitter current easily from:

$$I_{\rm E} = \frac{V_{\rm E}}{R_{\rm A}} = \frac{2 \text{ V}}{1 \text{ k}\Omega} = 2 \text{ mA}$$

Next we should determine the base current. This is a little more difficult. The base current is derived from the potential divider formed by *R*1 and *R*2. The potential at the junction of *R*1 and *R*2 is 2.6 V, hence we can determine the currents through *R*1 and *R*2. The difference between these currents will be equal to the base current.

The current in R2 will be given by:

$$I_{R2} = \frac{V_{B}}{R2} = \frac{2.6 \text{ V}}{33 \text{ k}\Omega} = 79 \text{ }\mu\text{A}$$

The current in R1 will be given by:

$$I_{\text{R1}} = \frac{9 \text{ V} - V_{\text{B}}}{R1} = \frac{6.4 \text{ V}}{68 \text{ k}\Omega} = 94.1 \,\mu\text{A}$$

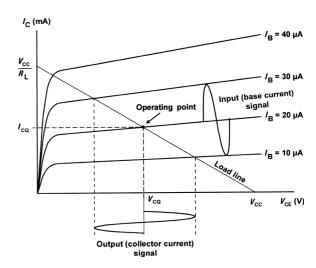
Hence the base current is found from:

$$I_{\rm B} = 94.1 \ \mu \text{A} - 79 \ \mu \text{A} = 15.1 \ \mu \text{A}$$

Next we can determine the collector current from:

$$h_{\rm FE} = \frac{I_{\rm C}}{I_{\rm p}} = \frac{2.0151 \,\text{mA}}{15.1 \,\mu\text{A}} = 133.45$$

Finally we can determine the collector voltage by subtracting the voltage dropped across *R*3 from the 9 V supply.


The voltage dropped across R3 will be:

$$V_{\rm R4} = I_{\rm C} \times R4 = 2.0151 \; {\rm mA} \times 2.2 \; {\rm k}\Omega = 4.43 \; {\rm V}$$
 Hence $V_{\rm C} = 9 \; {\rm V} - 4.43 \; {\rm V} = 4.57 \; {\rm V}$

Predicting amplifier performance

The a.c. performance of an amplifier stage can be predicted using a load line superimposed on the relevant set of output characteristics. For a bipolar transistor operating in common-emitter mode the required characteristics are $I_{\rm C}$ plotted against $V_{\rm CE}$. One end of the load line corresponds to the supply voltage ($V_{\rm CC}$) while the other end corresponds to the value of collector or drain current that would flow with the device totally saturated. In this condition:

$$I_{\rm C} = \frac{V_{\rm CC}}{R_{\rm I}}$$

Figure 7.36 Operating point and quiescent values shown on the load line for a bipolar transistor operating in common-emitter mode

where $R_{\rm L}$ is the value of collector or drain load resistance.

Fig. 7.36 shows a load line superimposed on a set of output characteristics for a bipolar transistor operating in common-emitter mode. The quiescent point (or operating point) is the point on the load line that corresponds to the conditions that exist when no-signal is applied to the stage. In Fig. 7.36, the base bias current is set at 20 μA so that the quiescent point effectively sits roughly halfway along the load line. This position ensures that the collector voltage can swing both positively (above) and negatively (below) its quiescent value (V_{CO}).

The effect of superimposing an alternating base current (of 20 μA peak–peak) to the d.c. bias current (of 20 μA) can be clearly seen. The corresponding collector current signal can be determined by simply moving up and down the load line.

Example 7.9

The characteristic curves shown in Fig. 7.37 relate to a transistor operating in common-emitter mode. If the transistor is operated with $I_{\rm B}$ = 30 μ A, a load resistor of 1.2 k Ω and an 18 V supply, determine the quiescent values of collector voltage and current ($V_{\rm CO}$ and $I_{\rm CO}$). Also determine

the peak–peak output voltage that would be produced by an input signal of 40 μ A peak–peak.

Solution

First we need to construct the load line. The two ends of the load line will correspond to $V_{\rm CC}$ (18 V) on the collector-emitter voltage axis and (18V/1.2 k Ω or 15 mA) on the collector current axis. Next we locate the **operating point** (or **quiescent point**) from the point of intersection of the $I_{\rm B}$ = 30 μ A characteristic and the load line. Having located the operating point we can read off the quiescent (no-signal) values of collector-emitter voltage ($V_{\rm CO}$) and collector current ($I_{\rm CO}$). Hence:

$$V_{\rm CQ}$$
 = 9.2 V and $I_{\rm CQ}$ = 7.3 mA

Next we can determine the maximum and minimum values of collector-emitter voltage by locating the appropriate intercept points on Fig. 7.37.

Note that the maximum and minimum values of base current will be (30 μ A + 20 μ A) on positive peaks of the signal and (30 μ A – 20 μ A) on negative peaks of the signal. The maximum and minimum values of V_{CE} are, respectively, 14.8 V and 3.3 V. Hence the output voltage swing will be (14.8 V – 3.3 V) or 11.5 V peak–peak.

Practical amplifier circuits

The simple common-emitter amplifier stage shown in Fig. 7.38 provides a modest voltage gain (80 to 120 typical) with an input resistance of approximately 1.5 k Ω and an output resistance of around 20 k Ω . The frequency response extends from a few hertz to several hundred kilohertz. The improved arrangement shown in Fig. 7.39 provides a voltage gain of around 150 to 200 by eliminating the signal frequency negative feedback that occurs through R1 in Fig. 7.38.

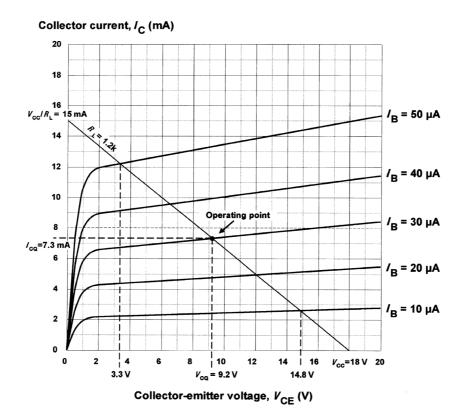
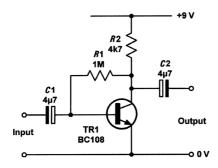
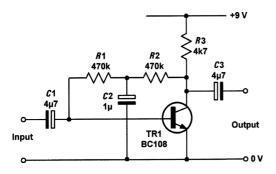




Figure 7.37 See Example 7.9

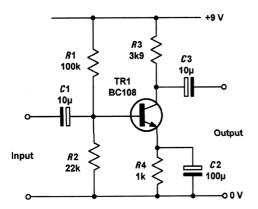


Figure 7.38 A practical common-emitter amplifier stage

Figure 7.39 An improved version of the common-emitter amplifier stage

Fig. 7.40 shows a practical common-emitter amplifier with bias stabilization. This stage provides a gain of 150 to well over 200 (depending upon the current gain, $h_{\rm fe}$, of the individual transistor used). The circuit will operate with supply voltages of between 6 V and 18 V.

Figure 7.40 Operating point and quiescent values shown on the load line for a bipolar transistor operating in common-emitter mode

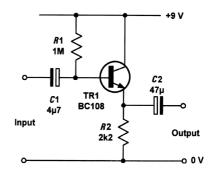


Figure 7.41 A practical emitter-follower stage

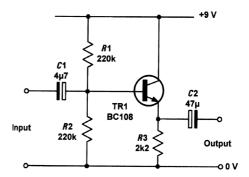
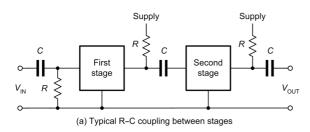
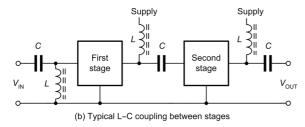


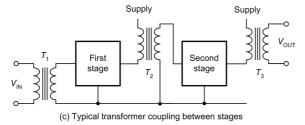
Figure 7.42 An improved emitter-follower stage

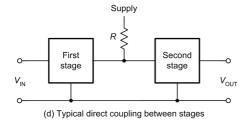
Two practical emitter-follower circuits are shown in Figs 7.41 and 7.42. These circuits offer a voltage gain of unity (1) but are ideal for matching a high-resistance source to a low-resistance load. It is important to note that the input resistance varies with the load connected to the output of the circuit (it is typically in the range 50 k Ω to 150 k Ω). The input resistance can be calculated by multiplying $h_{\rm fe}$ by the effective resistance of R2 in parallel with the load connected to the output terminals.

Fig. 7.42 is an improved version of Fig. 7.41 in which the base current is derived from the potential divider formed by R1 and R2. Note, however, that the input resistance is reduced since R1 and R2 effectively appear in parallel with the input. The input resistance of the stage is thus typically in the region of 40 k Ω to 70 k Ω .


Multi-stage amplifiers


In order to provide sufficiently large values of gain, it is frequently necessary to use a number of interconnected stages within an amplifier. The overall gain of an amplifier with several stages (i.e. a multi-stage amplifier) is simply the product of the individual voltage gains. Hence:


$$A_{V} = A_{V1} \times A_{V2} \times A_{V3}$$
, etc.


Note, however, that the bandwidth of a multistage amplifier will be less than the bandwidth of each individual stage. In other words, an increase in gain can only be achieved at the expense of a reduction in bandwidth.

Signals can be coupled between the individual stages of a multi-stage amplifier using one of a number of different methods shown in Fig. 7.43.

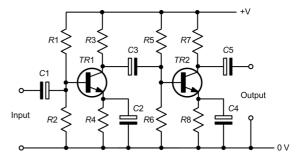


Figure 7.43 Different methods used for interstage coupling

Figure 7.44 A typical two-stage high-gain *R–C* coupled common-emitter amplifier

The most commonly used method is that of **R-C coupling** as shown in In Fig. 7.43(a). In this coupling method, the stages are coupled together using capacitors having a low reactance at the signal frequency and resistors (which also provide a means of connecting the supply). Fig. 7.44 shows a practical example of this coupling method.

A similar coupling method, known as *L-C* **coupling**, is shown in Fig. 7.43(b). In this method, the inductors have a high reactance at the signal frequency. This type of coupling is generally only used in RF and high-frequency amplifiers.

Two further methods, **transformer coupling** and **direct coupling**, are shown in Figs 7.43(c) and 7.43(d), respectively. The latter method is used where d.c. levels present on signals must be preserved.

Power amplifiers

The term 'power amplifier' can be applied to any amplifer that is designed to deliver an appreciable level of power. There are several important considerations for amplifiers of this type, including the ability to deliver current (as well as voltage) to a load, and also the need to operate with a reasonable degree of efficiency (recall that conventional Class A amplifiers are inefficient).

In order to deliver sufficient current to the load, power amplifiers must have a very low value of output impedance. Thus the final stage (or **output stage**) is usually based on a device operating in emitter-follower configuration. In order to operate at a reasonable level of efficiency, the output stage must operate in Class AB or

7 Amplifiers

Class B mode (see page 142). One means of satisfying both of these requirements is with the use of a symmetrical output stage based on complementary NPN and PNP devices.

A simple **complementary output stage** is shown in Fig. 7.45. TR1 is a suitably rated NPN device while TR2 is an identically rated PNP device. Both TR1 and TR2 operate as emitter followers (i.e. common-collector mode) with the output taken from the two emitters, coupled via C2 to the load. In order to bias TR1 and TR2 into Class AB mode two silicon diodes (D1 and D2) are used to provide a constant voltage drop of approximately 1.2 V between the two bases. This voltage drop is required between the bases of TR1 and TR2 in order to bring them to conduction. Since D1 and D2 are both in forward conduction (with current supplied via *R*1 and *R*2) they have little effect on the input signal (apart from shifting the d.c. level).

Fig. 7.46 shows an improvement of the basic complementary output stage with the addition of a driver stage (TR1) and a means of adjusting the bias (i.e. operating point) of the two output transistors. VR1 is typically adjusted in order to produce an output stage collector current of between 15 mA and 50 mA (required for Class AB operation). With VR1 set to minimum resistance, the output stage will operate in Class B (this will produce significantly more cross-over distortion because the two devices may both be cut-off for a brief period of each cycle). Fig. 7.47 shows how negative feedback bias (via R2) can be added in order to stabilize the output stage. Practical power amplifiers are shown in Figs 7.48 and 7.49.

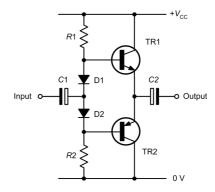
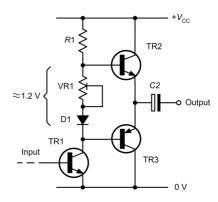
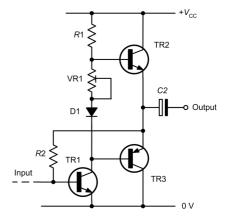
Practical investigation

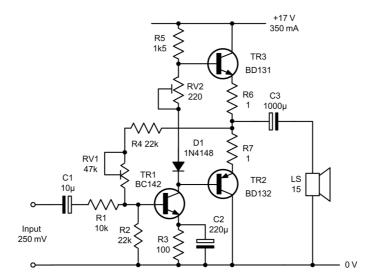
Objective

To measure the voltage gain and low-frequency response of a simple common-emitter amplifier stage.

Components and test equipment

Breadboard, d.c. voltmeter (preferably digital), AF signal generator (with variable frequency sine wave output), two AF voltmeters (or a dual beam oscilloscope), 9 V d.c. power supply (or battery),


Figure 7.45 A complementary output stage

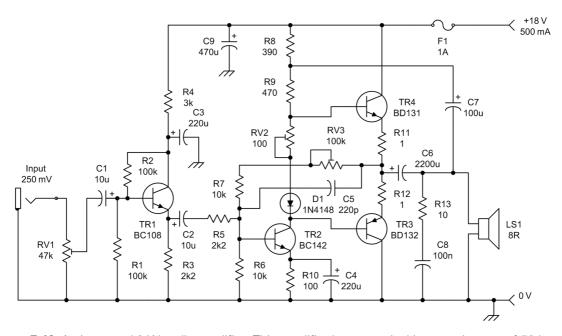

Figure 7.46 A complementary output stage with adjustable bias for the output transistors

Figure 7.47 A complementary output stage with stabilized bias for the driver stage

Figure 7.48 A simple power amplifier based on a Class AB complementary output stage and Class A driver stage. This amplifier provides an output of 3 W into an 8Ω load and has a frequency response extending from 20 Hz to 50 kHz. Total harmonic distortion (THD) is less than 0.2% at 250 mW output. An input of 2 V peak–peak is required for full output

Figure 7.49 An improved 3 W audio amplifier. This amplifier has a nominal input resistance of 50 k Ω and a frequency response extending from 30 Hz to 30 kHz at the –3 dB power points. Capacitor C5 is added to 'roll-off' the high-frequency response (without this component the high-frequency response extends to around 100 kHz). RV2 is adjusted for a quiescent (no-signal) collector current for TR3 (and TR4) of 25 mA. RV3 is adjusted for a d.c. voltage of exactly 9 V at the junction of the two low-value thermal compensating resistors, R11 and R12. C8 and R13 form a Zobel network to provide frequency compensation of the output load

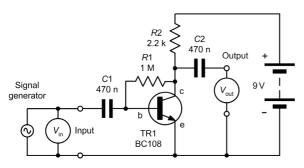


Figure 7.50 Transistor test circuit

BC108 (or similar) NPN transistor, two 470 nF and two 10 μ F capacitors, resistors of 1 M Ω and 2.2 k Ω 5% 0.25 W, test leads, connecting wire.

Procedure

Connect the circuit shown in Fig. 7.50. Without the signal generator connected, measure and record the no-signal d.c. collector, base and emitter voltages for TR1 (the collector voltage should be in the range 3 V to 6 V). Connect the signal generator and set it to produce a sine wave output at 1 kHz. Increase the output voltage from the signal generator until the input voltmeter reads exactly 10 mV. Measure and record the output signal voltage (see Table 7.7).

Repeat at frequencies over the range 10 Hz to 10 kHz, at each stage recording the output voltage produced in the table. Replace $\emph{C}1$ and $\emph{C}2$ with 10 μF capacitors and repeat the measurements.

Table 7.7 Results

Frequency (Hz)	Output voltage (V)
10	
20	
50	
100	
200	
500	
1 k	
2 k	
5 k	
10 k	

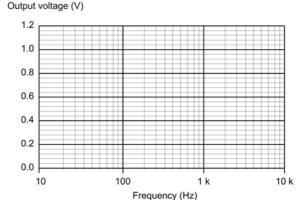


Figure 7.51 Graph layout for plotting the results

Measurements and calculations

Use the measured value of output voltage at 1 kHz in order to determine the voltage gain of the stage.

Graphs

For each set of measurements (470 nF and 10 μ F for C1 and C2) plot a graph showing the frequency response of the amplifier stage. In each case, use the graph to determine the low-frequency cut-off.

Conclusion

Comment on the no-signal voltages measured at the collector, base and emitter. Are these what you would expect? Comment on the value of voltage gain that you have obtained. Is this what you would expect? Comment on the shape of each frequency response graph. Explain why there is a difference in cut-off frequency.

Important formulae introduced in this chapter

Voltage gain: (page 140)

$$A_{V} = \frac{V_{\text{out}}}{V_{\text{in}}}$$

Current gain: (page 140)

$$A_{i} = \frac{I_{out}}{I_{in}}$$

Power gain: (page 140)

$$A_{\rm p} = \frac{P_{\rm out}}{P_{\rm in}}$$

Gain with negative feedback applied: (page 146)

$$G = \frac{A_{V}}{1 + \beta A_{V}}$$

Gain (when A_{v} is very large):

(page 146)

$$G = 1/\beta$$

Loop gain: (page 146)

$$G_{loop} = \beta \times A_{v}$$

Input resistance (common emitter): (page 149)

$$h_{\rm ie} = \frac{\Delta V_{\rm be}}{\Delta I_{\rm b}}$$

Forward current transfer ratio (common-emitter): (page 150)

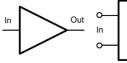
$$h_{\text{fe}} = \frac{\Delta I_{\text{c}}}{\Delta I_{\text{b}}}$$

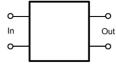
Output conductance (common-emitter): (page 150)

$$h_{\text{oe}} = \frac{\Delta I_{\text{c}}}{\Delta V_{\text{ce}}}$$

Reverse voltage transfer ratio (common-emitter): (page 151)

$$h_{\rm re} = \frac{\Delta V_{\rm be}}{\Delta V_{\rm co}}$$


Voltage gain (common-emitter) assuming h_{re} and h_{oe} can be neglected): (page 152)


$$A_{V} = \frac{h_{fe} \times R_{L}}{h_{fe}}$$

Symbols introduced in this chapter

Signal source (constant voltage generator)

Constant current generator

Amplifier (block symbol)

Four-terminal network (e.g. an amplifier)

Figure 7.52 Circuit symbols introduced in this chapter

Problems

7.1 The following measurements were made during a test on an amplifier:

$$V_{\text{in}} = 250 \text{ mV}, I_{\text{in}} = 2.5 \text{ mA},$$

 $V_{\text{out}} = 10 \text{ V}, I_{\text{out}} = 400 \text{ mA}$

Determine:

- (a) the voltage gain;
- (b) the current gain;
- (c) the power gain;
- (d) the input resistance.

- 7.2 An amplifier has a power gain of 25 and identical input and output resistances of 600 Ω . Determine the input voltage required to produce an output of 10 V.
- 7.3 Determine the mid-band voltage gain and upper and lower cut-off frequencies for the amplifier whose frequency response curve is shown in Fig. 7.53. Also determine the voltage gain at frequencies of:
 - (a) 10 Hz
 - (b) 1 MHz

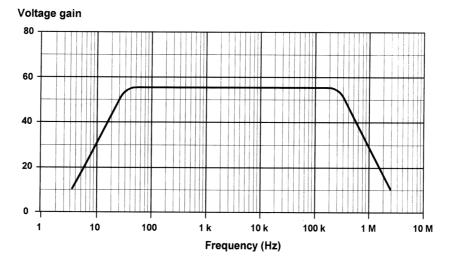


Figure 7.53 See Question 7.3

- 7.4 An amplifier with negative feedback applied has an open-loop voltage gain of 250, and 5% of its output is fed-back to the input. Determine the overall voltage gain with negative feedback applied. If the open-loop voltage gain increases by 20% determine the new value of overall voltage gain.
- 7.5 An amplifier produces an open-loop gain of 180. Determine the amount of feedback required if it is to be operated with a precise voltage gain of 50.
- 7.6 A transistor has the following parameters:

 $h_{io} = 800 \Omega$

 h_{r_0} = negligible

 $h_{f_{e}} = 120$

 $h_{00} = 50 \,\mu\text{S}.$

If the transistor is to be used as the basis of a common-emitter amplifier stage with $R_{\rm L}$ = 12 k Ω , determine the output voltage when an input signal of 2 mV is applied.

- 7.7 Determine the unknown current and voltages in Fig. 7.54.
- 7.8 The output characteristics of a bipolar transistor are shown in Fig. 7.55. If this transistor is used in an amplifier circuit operating from a 12 V supply with a base bias current of 60 μ A and a load resistor of 1 k Ω , determine the quiescent values

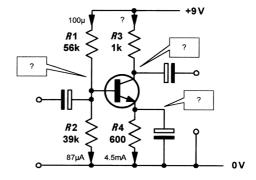


Figure 7.54 See Question 7.7

of collector-emitter voltage and collector current. Also determine the peak–peak output voltage produced when an 80 μ A peak–peak signal current is applied to the base of the transistor.

- 7.9 Fig. 7.56 shows a simple audio power amplifier in which all of the semiconductor devices are silicon and all three transistors have an $h_{\rm FE}$ of 100. If RV1 is adjusted to produce 4.5 V at Test Point D, determine the base, emitter and collector currents and voltages for each transistor and the voltages that will appear at Test Points A to C.
- 7.10 The output characteristics of a junction gate field effect transistor are shown in Fig. 7.57. If this JFET is used in an

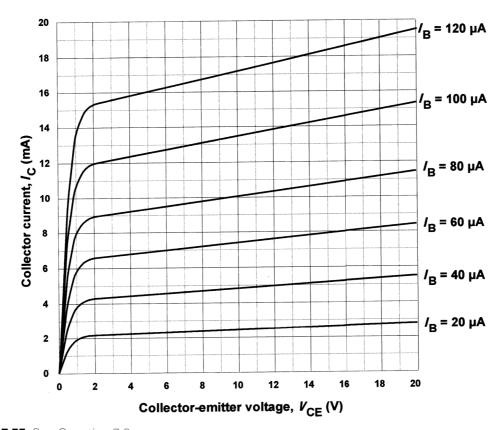


Figure 7.55 See Question 7.8

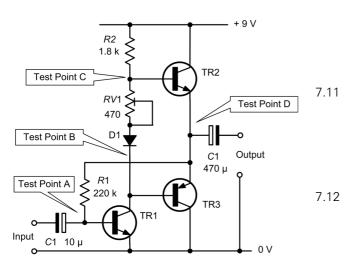


Figure 7.56 See Questions 7.9, 7.12 and 7.13

amplifier circuit operating from an 18V supply with a gate–source bias voltage of –3 V and a load resistor of 900 Ω , determine the quiescent values of drain–source voltage and drain current. Also

determine the peak–peak output voltage when an input voltage of 2 V peak–peak is applied to the gate. Also determine the voltage gain of the stage.

A multi-stage amplifier consists of two *R*–*C* coupled common emitter stages. If each stage has a voltage gain of 50, determine the overall voltage gain. Draw a circuit diagram of the amplifier and label your drawing clearly.

The following r.m.s. voltage measurements were made during a signal test on the simple power amplifier shown in Fig. 7.56 when connected to a 15 Ω load:

$$V_{in} = 50 \text{ mV}$$
$$V_{out} = 2 \text{ V}$$

Determine:

- (a) the voltage gain
- (b) the output power
- (c) the output current.

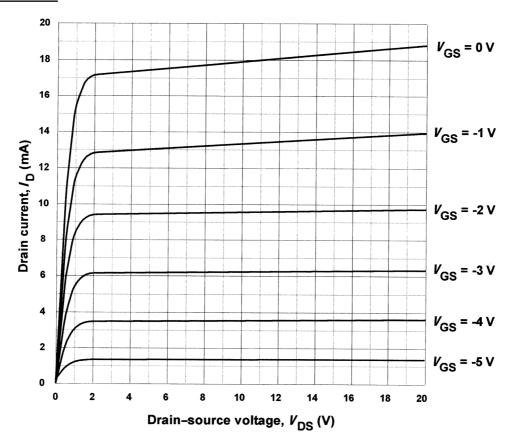


Figure 7.57 See Question 7.10

7.13 If the power amplifier shown in Fig. 7.56 produces a maximum r.m.s. output power of 0.25 W, determine its overall efficiency if the supply current is 75 mA. Also

determine the power dissipated in each of the output transistors in this condition.

Answers to these problems appear on page 451.

Operational amplifiers

Chapter summary

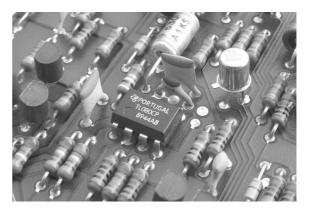
Operational amplifiers are analogue integrated circuits designed for linear amplification that offer near-ideal characteristics (virtually infinite voltage gain and input resistance coupled with low output resistance and wide bandwidth).

Operational amplifiers can be thought of as universal 'gain blocks' to which external components are added in order to define their function within a circuit. By adding two resistors, we can produce an amplifier having a precisely defined gain. Alternatively, with two resistors and two capacitors we can produce a simple band-pass filter. From this you might begin to suspect that operational amplifiers are really easy to use. The good news is that they are!

Symbols and connections

The symbol for an operational amplifier is shown in Fig. 8.2. There are a few things to note about this. The device has two inputs and one output and no common connection. Furthermore, we often don't show the supply connections – it is often clearer to leave them out of the circuit altogether!

In Fig. 8.2, one of the inputs is marked '-' and the other is marked '+'. These polarity markings have nothing to do with the supply connections – they indicate the overall phase shift between each input and the output. The '+' sign indicates zero phase shift while the '-' sign indicates 180° phase shift. Since 180° phase shift produces an inverted waveform, the '-' input is often referred to as the **inverting input**. Similarly, the '+' input is known as the **non-inverting** input.


Most (but not all) operational amplifiers require a symmetrical supply (of typically ±6 V to ±15 V) which allows the output voltage to swing both positive (above 0 V) and negative (below 0 V). Fig. 8.3 shows how the supply connections would appear if we decided to include them. Note that we usually have two separate supplies; a positive supply and an equal, but opposite, negative supply. The common connection to these two supplies (i.e. the 0 V supply connection) acts as the **common rail** in our circuit. The input and output voltages are usually measured relative to this rail.

Operational amplifier parameters

Before we take a look at some of the characteristics of 'ideal' and 'real' operational amplifiers it is important to define some of the terms and parameters that we apply to these devices.

Open-loop voltage gain

The open-loop voltage gain of an operational amplifier is defined as the ratio of output voltage to input voltage measured with no feedback applied. In practice, this value is exceptionally high (typically greater than 100,000) but is liable to considerable variation from one device to another.

Figure 8.1 A typical operational amplifier. This device is supplied in an eight-pin dual-in-line (DIL) package. It has a JFET input stage and produces a typical open-loop voltage gain of 200,000

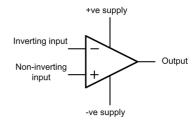
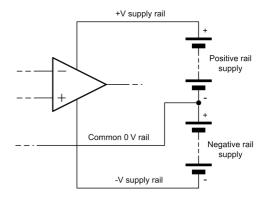



Figure 8.2 Symbol for an operational amplifier

Figure 8.3 Supply connections for an operational amplifier

Open-loop voltage gain may thus be thought of as the 'internal' voltage gain of the device, thus:

$$A_{V(OL)} = \frac{V_{OUT}}{V_{IN}}$$

where $A_{\text{V(OL)}}$ is the open-loop voltage gain, V_{OUT} and V_{IN} are the output and input voltages, respectively, under open-loop conditions.

In linear voltage amplifying applications, a large amount of negative feedback will normally be applied and the open-loop voltage gain can be thought of as the internal voltage gain provided by the device.

The open-loop voltage gain is often expressed in **decibels** (**dB**) rather than as a ratio. In this case:

$$A_{V(OL)} = 20 \log_{10} \frac{V_{OUT}}{V_{IN}}$$

Most operational amplifiers have open-loop voltage gains of 90 dB or more.

Closed-loop voltage gain

The closed-loop voltage gain of an operational amplifier is defined as the ratio of output voltage to input voltage measured with a small proportion of the output fed-back to the input (i.e. with feedback applied). The effect of providing negative feedback is to reduce the loop voltage gain to a value that is both predictable and manageable. Practical closed-loop voltage gains range from one to several thousand but note that high values of voltage gain may make unacceptable restrictions on bandwidth (see later).

Closed-loop voltage gain is once again the ratio of output voltage to input voltage but with negative feedback applied, hence:

$$A_{\text{V(CL)}} = \frac{V_{\text{OUT}}}{V_{\text{IN}}}$$

where $A_{\rm \tiny V(CL)}$ is the open-loop voltage gain, $V_{\rm \tiny OUT}$ and $V_{\rm \tiny IN}$ are the output and input voltages, respectively, under closed-loop conditions. The closed-loop voltage gain is normally very much less than the open-loop voltage gain.

Example 8.1

An operational amplifier operating with negative feedback produces an output voltage of 2 V when supplied with an input of 400 μ V. Determine the value of closed-loop voltage gain.

Solution

Now:

$$A_{\text{V(CL)}} = \frac{V_{\text{OUT}}}{V_{\text{IN}}}$$

Thus:

$$A_{\text{V(CL)}} = \frac{2}{400 \times 10^{-6}} = \frac{2 \times 10^{6}}{400} = 5,000$$

Expressed in decibels (rather than as a ratio) this is:

$$A_{V(CL)} = 20 \log_{10}(5,000) = 20 \times 3.7 = 74 \text{ dB}$$

Input resistance

The input resistance of an operational amplifier is defined as the ratio of input voltage to input current expressed in ohms. It is often expedient to assume that the input of an operational amplifier is purely resistive, though this is not the case at high frequencies where shunt capacitive reactance may become significant. The input resistance of operational amplifiers is very much dependent on the semiconductor technology employed. In practice values range from about $2~{\rm M}\Omega$ for common bipolar types to over $10^{12}~\Omega$ for FET and CMOS devices.

Input resistance is the ratio of input voltage to input current:

$$R_{\rm IN} = \frac{V_{\rm IN}}{I_{\rm IN}}$$

where $R_{\rm IN}$ is the input resistance (in ohms), $V_{\rm IN}$ is the input voltage (in volts) and $I_{\rm IN}$ is the input current (in amps). Note that we usually assume that the input of an operational amplifier is purely resistive though this may not be the case at high frequencies where shunt capacitive reactance may become significant.

The input resistance of operational amplifiers is very much dependent on the semiconductor technology employed. In practice, values range from about 2 M Ω for bipolar operational amplifiers to over 10¹² Ω for CMOS devices.

Example 8.2

An operational amplifier has an input resistance of $2~M\Omega$. Determine the input current when an input voltage of 5 mV is present.

Solution

Now:

$$R_{\rm IN} = \frac{V_{\rm IN}}{I_{\rm IN}}$$

thus

$$I_{IN} = \frac{V_{IN}}{R_{IN}} = \frac{5 \times 10^{-3}}{2 \times 10^{6}} = 2.5 \times 10^{-9} \text{A} = 2.5 \text{ nA}$$

Output resistance

The output resistance of an operational amplifier is defined as the ratio of open-circuit output voltage to short-circuit output current expressed in ohms. Typical values of output resistance range from less than 10 Ω to around 100 Ω , depending upon the configuration and amount of feedback employed.

Output resistance is the ratio of open-circuit output voltage to short-circuit output current, hence:

$$R_{\text{OUT}} = \frac{V_{\text{OUT(OC)}}}{I_{\text{OUT(SC)}}}$$

where $R_{\rm OUT}$ is the output resistance (in ohms), $V_{\rm OUT(OC)}$ is the open-circuit output voltage (in volts) and $I_{\rm OUT(SC)}$ is the short-circuit output current (in amps).

Input offset voltage

An ideal operational amplifier would provide zero output voltage when 0 V difference is applied to its inputs. In practice, due to imperfect internal balance, there may be some small voltage present at the output. The voltage that must be applied differentially to the operational amplifier input in order to make the output voltage exactly zero is known as the input offset voltage.

Input offset voltage may be minimized by applying relatively large amounts of negative feedback or by using the offset null facility provided by a number of operational amplifier devices. Typical values of input offset voltage range from 1 mV to 15 mV. Where a.c. rather than d.c. coupling is employed, offset voltage is not normally a problem and can be happily ignored.

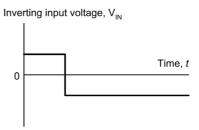
Full-power bandwidth

The full-power bandwidth for an operational amplifier is equivalent to the frequency at which the maximum undistorted peak output voltage swing falls to 0.707 of its low-frequency (d.c.) value (the sinusoidal input voltage remaining

constant). Typical full-power bandwidths range from 10 kHz to over 1 MHz for some high-speed devices.

Slew rate

Slew rate is the rate of change of output voltage with time, when a rectangular step input voltage is applied (as shown in Fig. 8.4). The slew rate of an operational amplifier is the rate of change of output voltage with time in response to a perfect step-function input. Hence:


Slew rate =
$$\frac{\Delta V_{\text{OUT}}}{\Delta t}$$

where $\Delta V_{\rm OUT}$ is the change in output voltage (in volts) and Δt is the corresponding interval of time (in seconds).

Slew rate is measured in V/s (or V/ μ s) and typical values range from 0.2 V/ μ s to over 20 V/ μ s. Slew rate imposes a limitation on circuits in which large amplitude pulses rather than small amplitude sinusoidal signals are likely to be encountered.

Operational amplifier characteristics

Having defined the parameters that we use to describe operational amplifiers we shall now

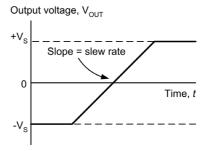


Figure 8.4 Slew rate for an operational amplifier

consider the desirable characteristics for an 'ideal' operational amplifier. These are:

- (a) The open-loop voltage gain should be very high (ideally infinite).
- **(b)** The input resistance should be very high (ideally infinite).
- **(c)** The output resistance should be very low (ideally zero).
- **(d)** Full-power bandwidth should be as wide as possible.
- (e) Slew rate should be as large as possible.
- (f) Input offset should be as small as possible.

The characteristics of most modern integrated circuit operational amplifiers (i.e. 'real' operational amplifiers) come very close to those of an 'ideal' operational amplifier, as witnessed by the data shown in Table 8.1.

Table 8.1 Comparison of operational amplifier parameters for 'ideal' and 'real' devices

Parameter	Ideal	Real
Voltage gain	Infinite	100,000
Input resistance	Infinite	100 ΜΩ
Output resistance	Zero	20 Ω
Bandwidth	Infinite	2 MHz
Slew rate	Infinite	10 V/μs
Input offset	Zero	Less than 5 mV

Example 8.3

A perfect rectangular pulse is applied to the input of an operational amplifier. If it takes 4 μ s for the output voltage to change from –5 V to +5 V, determine the slew rate of the device.

Solution

The slew rate can be determined from:

Slew rate =
$$\frac{\Delta V_{\text{OUT}}}{\Delta t} = \frac{10 \text{ V}}{4 \,\mu\text{s}} = 2.5 \text{ V}/\mu\text{s}$$

Example 8.4

A wideband operational amplifier has a slew rate of 15 V/ μ s. If the amplifier is used in a circuit with a voltage gain of 20 and a perfect step input of 100 mV is applied to its input, determine the time taken for the output to change level.

Solution

The output voltage change will be $20 \times 100 = 2,000 \text{ mV}$ (or 2 V). Re-arranging the formula for slew rate gives:

$$\Delta t = \frac{\Delta V_{\text{OUT}}}{\text{Slew rate}} = \frac{2 \text{ V}}{15 \text{ V/us}} = 0.133 \text{ µs}$$

Operational amplifier applications

Table 8.2 shows abbreviated data for some common types of integrated circuit operational amplifier together with some typical applications.

Example 8.5

Which of the operational amplifiers in Table 8.2 would be most suitable for each of the following applications:

- (a) amplifying the low-level output from a piezoelectric vibration sensor
- **(b)** a high-gain amplifier that can be used to faithfully amplify very small signals

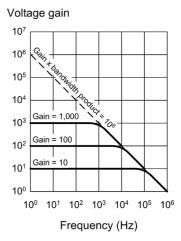
Table 8.2 Some common examples of integrated circuit operational amplifiers

Device	Туре	Open-loop voltage gain (dB)	Input bias current	Slew rate (V/μs)	Application
AD548	Bipolar	100 min.	0.01 nA	1.8	Instrumentation amplifier
AD711	FET	100	25 pA	20	Wideband amplifier
CA3140	CMOS	100	5 pA	9	Low-noise wideband amplifier
LF347	FET	110	50 pA	13	Wideband amplifier
LM301	Bipolar	88	70 nA	0.4	General-purpose operational amplifier
LM348	Bipolar	96	30 nA	0.6	General-purpose operational amplifier
TL071	FET	106	30 pA	13	Wideband amplifier
741	Bipolar	106	80 pA	0.5	General-purpose operational amplifier

(c) a low-frequency amplifier for audio signals.

Solution

- (a) AD548 (this operational amplifier is designed for use in instrumentation applications and it offers a very low input offset current which is important when the input is derived from a piezoelectric transducer).
- **(b)** CA3140 (this is a low-noise operational amplifier that also offers high gain and fast slew rate).
- **(c)** LM348 or LM741 (both are general-purpose operational amplifiers and are ideal for non-critical applications such as audio amplifiers).


Gain and bandwidth

It is important to note that the product of gain and bandwidth is a constant for any particular operational amplifier. Hence, an increase in gain can only be achieved at the expense of bandwidth, and vice versa.

Fig. 8.5 shows the relationship between voltage gain and bandwidth for a typical operational amplifier (note that the axes use logarithmic rather than linear scales). The open-loop voltage gain (i.e. that obtained with no feedback applied) is 100,000 (or 100 dB) and the bandwidth obtained in this condition is a mere 10 Hz. The effect of applying increasing amounts of negative feedback (and consequently reducing the gain to a more manageable amount) is that the bandwidth increases in direct proportion.

The frequency response curves in Fig. 8.5 show the effect on the bandwidth of making the closed-loop gains equal to 10,000, 1,000, 100, and 10. Table 8.3 summarizes these results. You should also note that the (gain \times bandwidth) product for this amplifier is 1 \times 10⁶ Hz (i.e. 1 MHz).

We can determine the bandwidth of the amplifier when the closed-loop voltage gain is set to 46 dB by constructing a line and noting the intercept point on the response curve. This shows that the bandwidth will be 10 kHz (note that, for this operational amplifier, the (gain \times bandwidth) product is 2×10^6 Hz (or 2 MHz).

Figure 8.5 Frequency response curves for an operational amplifier

Table 8.3 Corresponding values of voltage gain and bandwidth for an operational amplifier with a gain \times bandwidth product of 1×10^6

Voltage gain (A _v)	Bandwidth
1	d.c. to 1 MHz
10	d.c. to 100 kHz
100	d.c. to 10 kHz
1,000	d.c. to 1 kHz
10,000	d.c. to 100 Hz
100,000	d.c. to 10 Hz

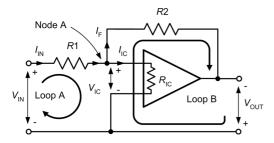

Inverting amplifier with feedback

Fig. 8.6 shows the circuit of an inverting amplifier with negative feedback applied. For the sake of our explanation we will assume that the operational amplifier is 'ideal'. Now consider what happens when a small positive input voltage is applied. This voltage ($V_{\rm IN}$) produces a current ($I_{\rm IN}$) flowing in the input resistor R1.

Since the operational amplifier is 'ideal' we will assume that:

- (a) the input resistance (i.e. the resistance that appears between the inverting and non-inverting input terminals, $R_{\rm IC}$) is infinite
- **(b)** the open-loop voltage gain (i.e. the ratio of V_{OUT} to V_{IN} with no feedback applied) is infinite.

As a consequence of (a) and (b):

Figure 8.6 Operational amplifier with negative feedback applied

- (i) the voltage appearing between the inverting and non-inverting inputs ($V_{\rm IC}$) will be zero, and
- (ii) the current flowing into the chip $(I_{\rm IC})$ will be zero (recall that $I_{\rm IC} = V_{\rm IC}/R_{\rm IC}$ and $R_{\rm IC}$ is infinite) Applying Kirchhoff's Current Law at node A gives:

$$I_{IN} = I_{IC} + I_{E} \text{ but } I_{IC} = 0 \text{ thus } I_{IN} = I_{E}$$
 (1)

(this shows that the current in the feedback resistor, R2, is the same as the input current, $I_{\rm IN}$).

Applying Kirchhoff's Voltage Law to loop A gives:

$$V_{\rm IN} = (I_{\rm IN} \times R1) + V_{\rm IC}$$

but
$$V_{IC} = 0$$
 thus $V_{IN} = I_{IN} \times R1$ (2)

Using Kirchhoff's Voltage Law in loop B gives:

$$V_{\text{OUT}} = -V_{\text{IC}} + (I_{\text{F}} \times R2)$$

but
$$V_{\rm IC} = 0$$
 thus $V_{\rm OUT} = I_{\rm F} \times R2$ (3)

Combining (1) and (3) gives:

$$V_{\text{OUT}} = I_{\text{IN}} \times R2 \tag{4}$$

The voltage gain of the stage is given by:

$$A_{V} = \frac{V_{OUT}}{V_{IN}} \tag{5}$$

Combining (4) and (2) with (5) gives:

$$A_{v} = \frac{I_{IN} \times R2}{I_{IN} \times R1} = \frac{R2}{R1}$$

To preserve symmetry and minimize offset voltage, a third resistor is often included in series with the non-inverting input. The value of this resistor should be equivalent to the parallel combination of *R*1 and *R*2. Hence:

$$R3 = \frac{R1 \times R2}{R1 + R2}$$

From this point onwards (and to help you remember the function of the resistors) we

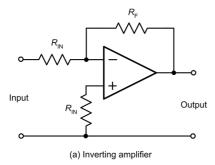
shall refer to the input resistance as $R_{\rm IN}$ and the feedback resistance as $R_{\rm F}$ (instead of the more general and less meaningful R1 and R2, respectively).

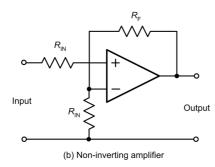
Operational amplifier configurations

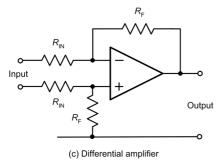
The three basic configurations for operational voltage amplifiers, together with the expressions for their voltage gain, are shown in Fig. 8.7. Supply rails have been omitted from these diagrams for clarity but are assumed to be symmetrical about 0 V.

All of the amplifier circuits described previously have used direct coupling and thus have frequency response characteristics that extend to d.c. This, of course, is undesirable for many applications, particularly where a wanted a.c. signal may be superimposed on an unwanted d.c. voltage level or when the bandwidth of the amplifier greatly exceeds that of the signal that it is required to amplify. In such cases, capacitors of appropriate value may be inserted in series with the input resistor, $R_{\rm IN}$, and in parallel with the feedback resistor, $R_{\rm F}$, as shown in Fig. 8.8.

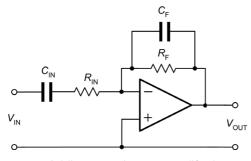
The value of the input and feedback capacitors, $C_{\rm IN}$ and $C_{\rm F}$ respectively, are chosen so as to roll-off the frequency response of the amplifier at the desired lower and upper cut-off frequencies, respectively. The effect of these two capacitors on an operational amplifier's frequency response is shown in Fig. 8.9.


By selecting appropriate values of capacitor, the frequency response of an inverting operational voltage amplifier may be very easily tailored to suit a particular set of requirements.


The lower cut-off frequency is determined by the value of the input capacitance, $C_{\rm IN}$, and input resistance, $R_{\rm IN}$. The lower cut-off frequency is given by:


$$f_1 = \frac{1}{2\pi C_{\text{IN}} R_{\text{IN}}} = \frac{0.159}{C_{\text{IN}} R_{\text{IN}}}$$

where f_1 is the lower cut-off frequency in hertz, $C_{\rm IN}$ is in farads and $R_{\rm IN}$ is in ohms.


Provided the upper frequency response it not limited by the gain × bandwidth product, the

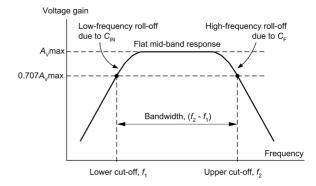


Figure 8.7 The three basic configurations for operational voltage amplifiers

Figure 8.8 Adding capacitors to modify the frequency response of an inverting operational amplifier

Figure 8.9 Effect of adding capacitors, $C_{\rm IN}$ and $C_{\rm F}$, to modify the frequency response of an operational amplifier

upper cut-off frequency will be determined by the feedback capacitance, $C_{\rm F}$, and feedback resistance, $R_{\rm E}$, such that:

$$f_{2} = \frac{1}{2\pi C_{\rm E} R_{\rm E}} = \frac{0.159}{C_{\rm E} R_{\rm E}}$$

where f_2 is the upper cut-off frequency in hertz, C_F is in farads and R_2 is in ohms.

Example 8.6

An inverting operational amplifier is to operate according to the following specification:

Voltage gain = 100

Input resistance (at mid-band) = 10 k Ω Lower cut-off frequency = 250 Hz Upper cut-off frequency = 15 kHz

Devise a circuit to satisfy the above specification using an operational amplifier.

Solution

To make things a little easier, we can break the problem down into manageable parts. We shall base our circuit on a single operational amplifier configured as an inverting amplifier with capacitors to define the upper and lower cut-off frequencies, as shown in Fig. 8.9.

The nominal input resistance is the same as the value for R_{IN} . Thus:

$$R_{\rm IN}$$
 = 10 k Ω

To determine the value of $R_{\rm F}$ we can make use of the formula for mid-band voltage gain:

$$A_{v} = \frac{R2}{R1}$$

thus $R2 = A_v \times R1 = 100 \times 10 \text{ k}\Omega = 100 \text{ k}\Omega$ To determine the value of C_{IN} we will use the formula for the low-frequency cut-off:

$$f_1 = \frac{0.159}{C_{1N}R_{1N}}$$

from which:

$$C_{\rm IN} = \frac{0.159}{f_{\rm I}R_{\rm IN}} = \frac{0.159}{250 \times 10 \times 10^3}$$

hence:

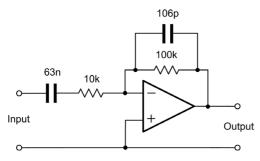
$$C_{IN} = \frac{0.159}{2.5 \times 10^6} = 63 \times 10^{-9} \text{F} = 63 \text{ nF}$$

Finally, to determine the value of C_F we will use the formula for high-frequency cut-off:

$$f_2 = \frac{0.159}{C_r R_r}$$

from which:

$$C_{\rm F} = \frac{0.159}{f_2 R_{\rm IN}} = \frac{0.159}{15 \times 10^3 \times 100 \times 10^3}$$


hence:

$$C_{\rm F} = \frac{0.159}{1.5 \times 10^9} = 0.106 \times 10^{-9} \,\text{F} = 106 \,\text{pF}$$

For most applications the nearest preferred values (68 nF for $C_{\rm IN}$ and 100 pF for $C_{\rm F}$) would be perfectly adequate. The complete circuit of the operational amplifier stage is shown in Fig. 8.10.

Operational amplifier circuits

As well as their application as a general-purpose amplifying device, operational amplifiers have a

Figure 8.10 See Example 8.6. This operational amplifier has a mid-band voltage gain of 10 over the frequency range 250 Hz to 15 kHz

number of other uses, including voltage followers, differentiators, integrators, comparators and summing amplifiers. We shall conclude this section by taking a brief look at each of these applications.

Voltage followers

A voltage follower using an operational amplifier is shown in Fig. 8.11. This circuit is essentially an inverting amplifier in which 100% of the output is fed back to the input. The result is an amplifier that has a voltage gain of 1 (i.e. unity), a very high input resistance and a very high output resistance. This stage is often referred to as a buffer and is used for matching a high-impedance circuit to a low-impedance circuit.

Typical input and output waveforms for a voltage follower are shown in Fig. 8.12. Notice how the input and output waveforms are both in-phase (they rise and fall together) and that they are identical in amplitude.

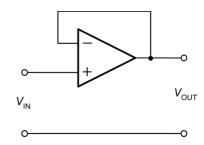
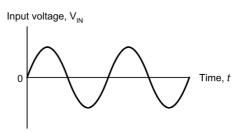
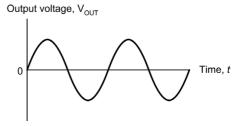




Figure 8.11 A voltage follower

Figure 8.12 Typical input and output waveforms for a voltage follower

Differentiators

A differentiator using an operational amplifier is shown in Fig. 8.13. A differentiator produces an output voltage that is equivalent to the rate of change of its input. This may sound a little complex but it simply means that if the input voltage remains constant (i.e. if it isn't changing) the output also remains constant. The faster the input voltage changes the greater will the output be. In mathematics this is equivalent to the differential function.

Typical input and output waveforms for a differentiator are shown in Fig. 8.14. Notice how the square wave input is converted to a train of short duration pulses at the output. Note also that the output waveform is inverted because the signal has been applied to the inverting input of the operational amplifier.

Integrators

An integrator using an operational amplifier is shown in Fig. 8.15. This circuit provides the

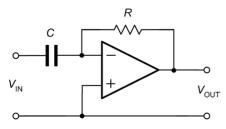
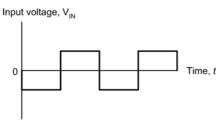
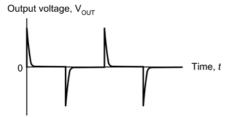




Figure 8.13 A differentiator

Figure 8.14 Typical input and output waveforms for a differentiator

opposite function to that of a differentiator (see earlier) in that its output is equivalent to the area under the graph of the input function rather than its rate of change. If the input voltage remains constant (and is other than 0V) the output voltage will ramp up or down according to the polarity of the input. The longer the input voltage remains at a particular value the larger the value of output voltage (of either polarity) will be produced.

Typical input and output waveforms for an integrator are shown in Fig. 8.16. Notice how the square wave input is converted to a wave that has a triangular shape. Once again, note that the output waveform is inverted.

Comparators

A comparator using an operational amplifier is shown in Fig. 8.17. Since no negative feedback has been applied, this circuit uses the maximum gain of the operational amplifier. The output voltage produced by the operational amplifier will

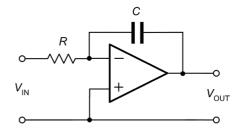
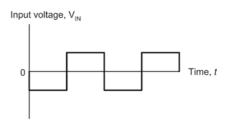
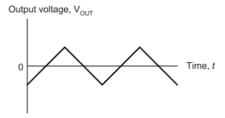




Figure 8.15 An integrator

Figure 8.16 Typical input and output waveforms for an integrator

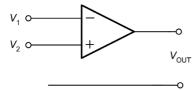
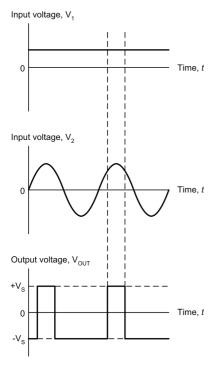



Figure 8.17 A comparator

Figure 8.18 Typical input and output waveforms for a comparator

thus rise to the maximum possible value (equal to the positive supply rail voltage) whenever the voltage present at the non-inverting input exceeds that present at the inverting input. Conversely, the output voltage produced by the operational amplifier will fall to the minimum possible value (equal to the negative supply rail voltage) whenever the voltage present at the inverting input exceeds that present at the non-inverting input.

Typical input and output waveforms for a comparator are shown in Fig. 8.18. Notice how the output is either +15V or –15V depending on the relative polarity of the two inputs. A typical application for a comparator is that of comparing a signal voltage with a reference voltage. The output will go high (or low) in order to signal the result of the comparison.

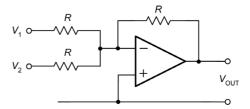
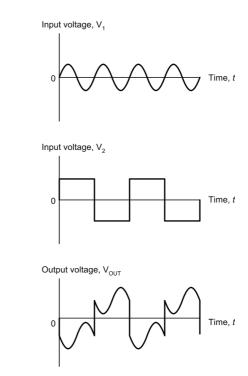



Figure 8.19 A summing amplifier

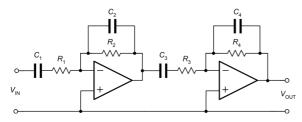
Figure 8.20 Typical input and output waveforms for a summing amplifier

Summing amplifiers

A summing amplifier using an operational amplifier is shown in Fig. 8.19. This circuit produces an output that is the sum of its two input voltages. However, since the operational amplifier is connected in inverting mode, the output voltage is given by:

$$V_{\text{OUT}} = -(V_1 + V_2)$$

where V_1 and V_2 are the input voltages (note that all of the resistors used in the circuit have the same value). Typical input and output waveforms for a summing amplifier are shown in Fig. 8.20. A typical application is that of 'mixing' two input signals to produce an output voltage that is the sum of the two.


Positive versus negative feedback

We have already shown how negative feedback can be applied to an operational amplifier in order to produce an exact value of gain. Negative feedback is frequently used in order to stabilize the gain of an amplifier and also to increase the frequency response (recall that, for an amplifier the product of gain and bandwidth is a constant). Positive feedback, on the other hand, results in an increase in gain and a reduction in bandwidth. Furthermore, the usual result of applying positive feedback is that an amplifier becomes unstable and oscillates (i.e. it generates an output without an input being present!). For this reason, positive feedback is only used in amplifiers when the voltage gain is less than unity.

The important thing to remember from all of this is that, when negative feedback is applied to an amplifier the overall gain is reduced and the bandwidth is increased (note that the gain × bandwidth product remains constant). When positive feedback is applied to an amplifier the overall gain increases and the bandwidth is reduced. In most cases this will result in instability and oscillation.

Multi-stage amplifiers

Multi-stage amplifiers can easily be produced using operational amplifiers. Coupling methods can be broadly similar to those described earlier in Chapter 7 (see page 157). As an example, Fig. 8.21 shows a two-stage amplifier in which each stage has a tailored frequency response. Note how *C*1 and *C*3 provide d.c. isolation between the stages as well as helping to determine the low-frequency roll-off.

Figure 8.21 A multi-stage amplifier (both stages have tailored frequency responses)

Practical investigation

Objective

To measure the voltage gain and frequency response of an inverting operational amplifier.

Components and test equipment

Breadboard, AF signal generator (with variable-frequency sine wave output), two AF voltmeters (or a dual-beam oscilloscope), ± 9 V d.c. power supply (or two 9 V batteries), TL081 (or similar operational amplifier), 22 pF, 2.2 nF, 47 nF and 220 nF capacitors, resistors of 10 k Ω and 100 k Ω 5% 0.25 W, test leads, connecting wire.

Procedure

Connect the circuit shown in Fig. 8.22 with $C_{\rm IN}$ = 47 nF and $C_{\rm F}$ = 2.2 nF, set the signal generator to produce an output of 100 mV at 1 kHz. Measure and record the output voltage produced and repeat this measurement for frequencies over the range 10 Hz to 100 kHz (see Table 8.4).

Replace $C_{\rm IN}$ and $C_{\rm F}$ with 220 nF and 22 pF capacitors and repeat the measurements, this time over the extended frequency range from 1 Hz to 1 MHz, recording your results as shown in Table 8.5.

Measurements and graphs

Use the measured value of output voltage at 1 kHz for both sets of measurements, in order to determine the mid-band voltage gain of the stage. For each set of measurements plot graphs

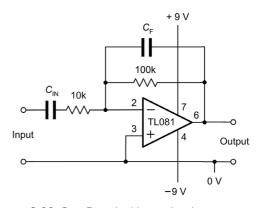


Figure 8.22 See Practical investigation

showing the frequency response of the amplifier stage (see Fig. 8.23). In each case, use the graph to determine the lower and upper cut-off frequencies.

Calculations

For each circuit calculate:

- (a) the mid-band voltage gain
- (b) the lower cut-off frequency
- (c) the upper cut-off frequency.

Compare the calculated values with the measured values.

Table 8.4 Results ($C_{IN} = 47 \text{ nF}$, $C_F = 2.2 \text{ nF}$)

Frequency (Hz)	Output voltage (V)
10	
20	
40	
100	
200	
400	
1 k	
2k	
4k	
10 k	

Conclusion

Comment on the performance of the amplifier stage. Is this what you would expect? Do the measured values agree with those obtained by calculation? If not, suggest reasons for any

Output voltage (V)

			Frequency (Hz)			
1	10	100	1 k	10 k	100 k	1
.0						
2						
4						
6						
0						
8						
0						
.2						

Figure 8.23 Graph layout for plotting the results

differences. Suggest typical applications for the circuit.

Table 8.5 Results ($C_{IN} = 220 \text{ nF}, C_{F} = 22 \text{ pF}$)

Frequency (Hz)	Output voltage (V)
4	
10	
20	
40	
100	
200	
400	
1 k	
10k	
20 k	
40 k	
100 k	
200 k	
400 k	

Important formulae introduced in this chapter

Open-loop voltage gain (pages 166 and 167):

$$A_{V(OL)} = \frac{V_{OUT}}{V_{IN}}$$

$$A_{V(OL)} = 20\log_{10}\frac{V_{OUT}}{V_{IN}} dB$$

8 Operational amplifiers

Closed-loop voltage gain: (page 167)

$$A_{V(CL)} = \frac{V_{OUT}}{V_{IN}}$$

$$A_{V(CL)} = 20 \log_{10} \frac{V_{OUT}}{V_{IN}} dB$$

Input resistance: (page 167)

$$R_{\rm IN} = \frac{V_{\rm IN}}{I_{\rm IN}}$$

Output resistance: (page 168)

$$R_{\text{OUT}} = \frac{V_{\text{OUT(OC)}}}{I_{\text{OUT(SC)}}}$$

Slew rate (page 168)

Slew rate =
$$\frac{\Delta V_{\text{OUT}}}{\Delta t}$$

Lower cut-off frequency: (page 171)

$$f_1 = \frac{0.159}{C_{\rm IN} R_{\rm IN}}$$

Upper cut-off frequency: (page 172)

$$f_{_2} = \frac{0.159}{C_{_{\rm F}}R_{_{\rm F}}}$$

Output voltage produced by a summing amplifier: (page 175)

$$V_{\text{OUT}} = -(V_1 + V_2)$$

Symbol introduced in this chapter

Operational amplifier

Figure 8.24 Symbol introduced in this chapter

Problems

- 8.1 Sketch the circuit symbol for an operational amplifier. Label each of the connections.
- 8.2 List four characteristics associated with an 'ideal' operational amplifier.
- 8.3 An operational amplifier with negative feedback applied produces an output of 1.5 V when an input of 7.5 mV is present. Determine the closed-loop voltage gain.
- 8.4 Sketch the circuit of an inverting amplifier based on an operational amplifier. Label your circuit and identify the components that determine the closed-loop voltage gain.
- 8.5 Sketch the circuit of each of the following based on the use of operational amplifiers:
 - (a) a comparator
 - (b) a differentiator
 - (c) an integrator.
- 8.6 An inverting amplifier is to be constructed having a mid-band voltage gain of 40, an input resistance of 5 k Ω and a frequency response extending from 20 Hz to 20 kHz. Devise a circuit and specify all component values required.
- 8.7 A summing amplifier with two inputs has $R_{\rm F}$ = 10 k Ω , and $R_{\rm IN}$ (for both inputs) of 2 k Ω . Determine the output voltage when one input is at -2 V and the other is +0.5 V.
- 8.8 During measurements on an operational amplifier under open-loop conditions, an output voltage of 12 V is produced by an input voltage of 1 mV. Determine the open-loop voltage gain expressed in dB.
- 8.9 With the aid of a sketch, explain what is meant by the term 'slew rate'. Why is this important?

Numerical answers to these problems appear on page 451.

Oscillators

Chapter summary

This chapter describes circuits that generate sine wave, square wave and triangular waveforms. These oscillator circuits form the basis of clocks and timing arrangements as well as signal and function generators.

Positive feedback

In Chapter 7 we showed how negative feedback can be applied to an amplifier to form the basis of a stage which has a precisely controlled gain. An alternative form of feedback, where the output is fed back in such a way as to reinforce the input (rather than to subtract from it), is known as positive feedback.

Fig. 9.1 shows the block diagram of an amplifier stage with positive feedback applied. Note that the amplifier provides a phase shift of 180° and the feedback network provides a further 180°. Thus the overall phase shift is 0°. The overall voltage gain, *G*, is given by:

Overall gain,
$$G = \frac{V_{\text{out}}}{V_{\text{in}}}$$

By applying Kirchhoff's Voltage Law

$$V_{\text{in}}' = V_{\text{in}} + \beta V_{\text{out}}$$

thus

$$V_{\text{in}} = V_{\text{in}} - \beta V_{\text{out}}$$

and

$$V_{\rm out} = A_{\rm v} \times V_{\rm in}$$

where Av is the internal gain of the amplifier. Hence:

Overall gain,
$$G = \frac{A_{v} \times V_{in}'}{V_{in}' - \beta V_{out}} = \frac{A_{v} \times V_{in}'}{V_{in}' - \beta (A_{v} \times V_{in}')}$$

Thus,
$$G = \frac{A_{v}}{1 - \beta A_{v}}$$

Now consider what will happen when the loop gain, βA_{v} , approaches unity (i.e. when the loop gain is just less than 1). The denominator $(1 - \beta A_{v})$ will become close to zero. This will have the effect of *increasing* the overall gain, i.e. the overall gain with positive feedback applied will be *greater* than the gain without feedback.

It is worth illustrating this difficult concept using some practical figures. Assume that you have an amplifier with a gain of 9 and one-tenth of the output is fed back to the input (i.e. β = 0.1). In this case the loop gain (β × Δ) is 0.9.

With negative feedback applied (see Chapter 7) the overall voltage gain will be:

$$G = \frac{A_v}{1 + \beta A_v} = \frac{9}{1 + (0.1 \times 9)} = \frac{9}{1 + 0.9} = \frac{9}{1.9} = 4.7$$

With positive feedback applied the overall voltage gain will be:

$$G = \frac{A_{v}}{1 - \beta A_{v}} = \frac{10}{1 - (0.1 \times 9)} = \frac{10}{1 - 0.9} = \frac{10}{0.1} = 90$$

Now assume that you have an amplifier with a gain of 10 and, once again, one-tenth of the output is fed back to the input (i.e. $\beta = 0.1$). In this example the loop gain ($\beta \times A$) is exactly 1.

With negative feedback applied (see Chapter 7) the overall voltage gain will be:

$$G = \frac{A_{v}}{1 + \beta A_{v}} = \frac{10}{1 + (0.1 \times 10)} = \frac{10}{1 + 1} = \frac{10}{2} = 5$$

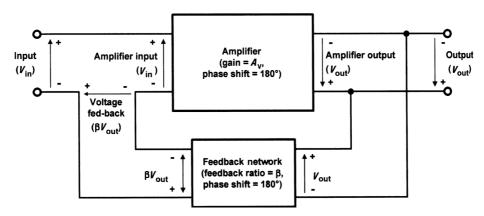


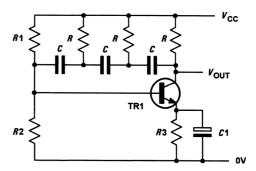
Figure 9.1 Amplifier with positive feedback applied

With positive feedback applied the overall voltage gain will be:

$$G = \frac{A_v}{1 - \beta A_v} = \frac{10}{1 - (0.1 \times 10)} = \frac{10}{1 - 1} = \frac{10}{0} = \infty$$

This simple example shows that a loop gain of unity (or larger) will result in infinite gain and an amplifier which is unstable. In fact, the amplifier will oscillate since any disturbance will be amplified and result in an output.

Clearly, as far as an amplifier is concerned, positive feedback may have an undesirable effect – instead of reducing the overall gain the effect is that of reinforcing any signal present and the output can build up into continuous oscillation if the loop gain is 1 or greater. To put this another way, oscillator circuits can simply be thought of as amplifiers that generate an output signal without the need for an input!


Conditions for oscillation

From the foregoing we can deduce that the conditions for oscillation are:

- (a) the feedback must be positive (i.e. the signal fed back must arrive back in-phase with the signal at the input);
- (b) the overall loop voltage gain must be greater than 1 (i.e. the amplifier's gain must be sufficient to overcome the losses associated with any frequency selective feedback network).

Hence, to create an oscillator we simply need an amplifier with sufficient gain to overcome the losses of the network that provide positive feedback. Assuming that the amplifier provides 180° phase shift, the frequency of oscillation will be that at which there is 180° phase shift in the feedback network.

A number of circuits can be used to provide 180° phase shift, one of the simplest being a three-stage *C-R* ladder network that we shall meet next. Alternatively, if the amplifier produces 0° phase shift, the circuit will oscillate at the frequency at which the feedback network produces 0° phase shift. In both cases, the essential point is that the feedback should be

Figure 9.2 Sine wave oscillator based on a three-stage *C–R* ladder network

positive so that the output signal arrives back at the input in such a sense as to reinforce the original signal.

Ladder network oscillator

A simple phase-shift oscillator based on a three-stage *C–R* ladder network is shown in Fig. 9.2. TR1 operates as a conventional common-emitter amplifier stage with *R*1 and *R*2 providing base bias potential and *R*3 and *C*1 providing emitter stabilization.

The total phase shift provided by the *C–R* ladder network (connected between collector and base) is 180° at the frequency of oscillation. The transistor provides the other 180° phase shift in order to realize an overall phase shift of 360° or 0° (note that these are the same).

The frequency of oscillation of the circuit shown in Fig. 9.2 is given by:

$$f = \frac{1}{2\pi \times \sqrt{6}CR}$$

The loss associated with the ladder network is 29, thus the amplifier must provide a gain of *at least* 29 in order for the circuit to oscillate. In practice this is easily achieved with a single transistor.

Example 9.1

Determine the frequency of oscillation of a three-stage ladder network oscillator in which C = 10 nF and R = 10 k Ω .

Solution

Using

$$f = \frac{1}{2\pi \times \sqrt{6}CR}$$

gives

$$f = \frac{1}{6.28 \times 2.45 \times 10 \times 10^{-9} \times 10 \times 10^{3}}$$

from which

$$f = \frac{1}{6.28 \times 2.45 \times 10^{-4}} = \frac{10^4}{15.386} = 647 \text{ Hz}$$

Wien bridge oscillator

An alternative approach to providing the phase shift required is the use of a Wien bridge network (Fig. 9.3). Like the *C–R* ladder, this network provides a phase shift which varies with frequency. The input signal is applied to A and B while the output is taken from C and D. At one particular frequency, the phase shift produced by the network will be exactly zero (i.e. the input and output signals will be in-phase). If we connect the network to an amplifier producing 0° phase shift which has sufficient gain to overcome the losses of the Wien bridge, oscillation will result.

The minimum amplifier gain required to sustain oscillation is given by:

$$A_{v} = 1 + \frac{C1}{C2} + \frac{R2}{R1}$$

In most cases, C1 = C2 and R1 = R2, hence the minimum amplifier gain will be 3.

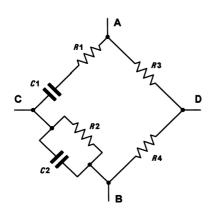


Figure 9.3 A Wien bridge network

The frequency at which the phase shift will be zero is given by:

$$f = \frac{1}{2\pi \times \sqrt{C1C2R1R2}}$$

When R1 = R2 and C1 = C2 the frequency at which the phase shift will be zero will be given by:

$$f = \frac{1}{2\pi \times \sqrt{C^2 R^2}} = \frac{1}{2\pi CR}$$

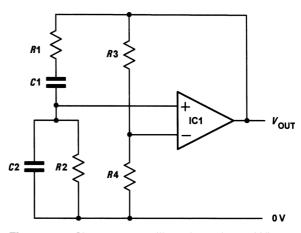
where R = R1 = R2 and C = C1 = C2.

Example 9.2

Fig. 9.4 shows the circuit of a Wien bridge oscillator based on an operational amplifier. If C1 = C2 = 100 nF, determine the output frequencies produced by this arrangement (a) when R1 = R2 = 1 k Ω and (b) when R1 = R2 = 6 k Ω .

Solution

(a) When $R1 = R2 = 1 \text{ k}\Omega$


$$f = \frac{1}{2\pi CR}$$

where R = R1 = R1 and C = C1 = C2.

Thus

$$f = \frac{1}{6.28 \times 100 \times 10^{-9} \times 1 \times 10^{3}}$$

$$f = \frac{10^4}{6.28} = 1.59 \text{ kHz}$$

Figure 9.4 Sine wave oscillator based on a Wien bridge network (see Example 9.2)

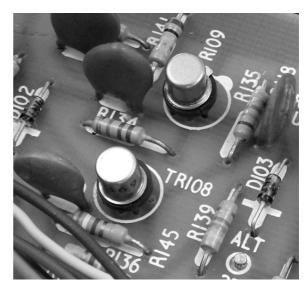
(b) When
$$R1 = R1 = 6 \text{ k}\Omega$$

$$f = \frac{1}{2\pi CR}$$
 where $R = R1 = R1$ and $C = C1 = C2$. Thus
$$f = \frac{1}{6.28 \times 100 \times 10^{-9} \times 6 \times 10^{3}}$$

$$f = \frac{10^{4}}{37.68} = 265 \text{ Hz}$$

Multivibrators

There are many occasions when we require a square wave output from an oscillator rather than a sine wave output. Multivibrators are a family of oscillator circuits that produce output waveforms consisting of one or more rectangular pulses. The term 'multivibrator' simply originates from the fact that this type of waveform is rich in harmonics (i.e. 'multiple vibrations').


Multivibrators use regenerative (i.e. positive) feedback; the active devices present within the oscillator circuit being operated as switches, being alternately cut-off and driven into saturation.

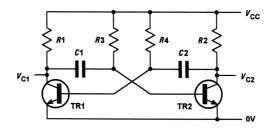
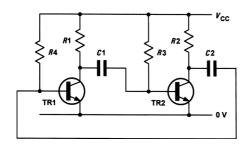
The principal types of multivibrator are:

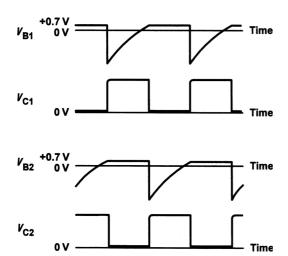
- (a) astable multivibrators that provide a continuous train of pulses (these are sometimes also referred to as free-running multivibrators):
- (b) monostable multivibrators that produce a single output pulse (they have one stable state and are thus sometimes also referred to as 'one-shot');
- **(c) bistable multivibrators** that have two stable states and require a trigger pulse or control signal to change from one state to another.

The astable multivibrator

Fig. 9.6 shows a classic form of astable multivibrator based on two transistors. Fig. 9.7 shows how this circuit can be redrawn in an arrangement that more closely resembles a two-stage common-emitter amplifier with its output connected back to its input. In Fig. 9.6, the values of the base resistors, *R*3 and *R*4, are such that

Figure 9.5 This high-speed bistable multivibrator uses two general-purpose silicon transistors and works at frequencies of up to 1 MHz triggered from an external signal


Figure 9.6 Astable multivibrator using BJTs

the sufficient base current will be available to completely saturate the respective transistor. The values of the collector load resistors, *R*1 and *R*2, are very much smaller than *R*3 and *R*4. When power is first applied to the circuit, assume that TR2 saturates before TR1 when the power is first applied (in practice one transistor would always saturate before the other due to variations in component tolerances and transistor parameters).

As TR2 saturates, its collector voltage will fall rapidly from $+V_{\rm CC}$ to 0 V. This drop in voltage will be transferred to the base of TR1 via C1. This negative-going voltage will ensure that TR1 is initially placed in the non-conducting state. As long as TR1 remains cut-off, TR2 will continue to be saturated. During this time, C1 will charge via R4 and TR1's base voltage will rise exponentially

Figure 9.7 Circuit of Fig. 9.6 redrawn to show two common-emitter amplifier stages with positive feedback

Figure 9.8 Waveforms for the BJT multivibrator shown in Fig. 9.6

from $-V_{\rm cc}$ towards $+V_{\rm cc}$. However, TR1's base voltage will not rise much above 0 V because, as soon as it reaches +0.7 V (sufficient to cause base current to flow), TR1 will begin to conduct. As TR1 begins to turn on, its collector voltage will rapidly fall from $+V_{\rm cc}$ to 0 V. This fall in voltage is transferred to the base of TR2 via C1 and, as a consequence, TR2 will turn off. C1 will then charge via C1 and TR2's base voltage will rise exponentially from $-V_{\rm cc}$ towards $+V_{\rm cc}$. As before, TR2's base voltage will not rise much above 0 V because, as soon as it reaches +0.7 V (sufficient to cause base current to flow), TR2 will start to conduct. The cycle is then repeated indefinitely. The time for which the collector voltage of TR2

is low and TR1 is high (T1) will be determined by the time constant, $R4 \times C1$. Similarly, the time for which the collector voltage of TR1 is low and

TR2 is high (T2) will be determined by the time constant, $R3 \times C1$.

The following approximate relationships apply:

$$T1 = 0.7 C2 R4$$
 and $T2 = 0.7 C1 R3$

Since one complete cycle of the output occurs in a time, T = T1 + T2, the periodic time of the output is given by:

$$T = 0.7 (C2 R4 + C1 R3)$$

Finally, we often require a symmetrical **square wave** output where T1 = T2. To obtain such an output, we should make R3 = R4 and C1 = C2, in which case the periodic time of the output will be given by:

$$T = 1.4 CR$$

where C = C1 = C2 and R = R3 = R4. Waveforms for the astable oscillator are shown in Fig. 9.8.

Example 9.3

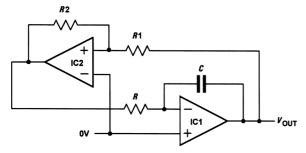
The astable multivibrator in Fig. 9.6 is required to produce a square wave output at 1 kHz. Determine suitable values for *R*3 and *R*4 if *C*1 and *C*2 are both 10 nF.

Solution

Since a square wave is required and *C*1 and *C*2 have identical values, *R*3 must be made equal to *R*4. Now:

$$T = \frac{1}{f} = \frac{1}{1 \times 10^3} = 1 \times 10^{-3} \text{ s}$$

Re-arranging T = 1.4CR to make R the subject gives:


$$R = \frac{T}{1.4C} = \frac{1 \times 10^{-3}}{1.4 \times 10 \times 10^{-9}} = \frac{1 \times 10^{6}}{14} = 0.071 \times 10^{6}$$

hence

$$R = 71 \times 10^3 = 71 \text{ k}\Omega$$

Other forms of astable oscillator

Fig. 9.9 shows the circuit diagram of an alternative form of astable oscillator which produces a triangular output waveform. Operational amplifier IC1 forms an integrating stage while IC2 is connected with positive feedback to ensure that oscillation takes place.

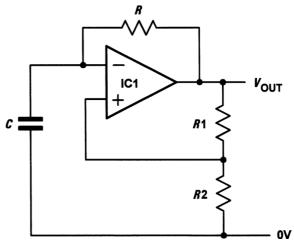
Figure 9.9 Astable oscillator using operational amplifiers

Assume that the output from IC2 is initially at, or near, $+V_{\rm CC}$ and capacitor, C, is uncharged. The voltage at the output of IC2 will be passed, via R, to IC1. Capacitor, C, will start to charge and the output voltage of IC1 will begin to fall.

Eventually, the output voltage will have *fallen* to a value that causes the polarity of the voltage at the non-inverting input of IC2 to change from positive to negative. At this point, the output of IC2 will rapidly fall to $-V_{\rm CC}$. Again, this voltage will be passed, via R, to IC1. Capacitor C will then start to charge in the other direction and the output voltage of IC1 will begin to rise.

Some time later, the output voltage will have *risen* to a value that causes the polarity of the non-inverting input of IC2 to revert to its original (positive) state and the cycle will continue indefinitely.

The upper threshold voltage (i.e. the maximum positive value for V_{out}) will be given by:


$$V_{\rm UT} = V_{\rm CC} \times \left(\frac{R1}{R2}\right)$$

The lower threshold voltage (i.e. the maximum negative value for V_{out}) will be given by:

$$V_{\rm LT} = -V_{\rm CC} \times \left(\frac{R1}{R2}\right)$$

Single-stage astable oscillator

A simple form of astable oscillator that produces a square wave output can be built using just one operational amplifier, as shown in Fig. 9.10. The circuit employs positive feedback with the output fed back to the non-inverting input via the potential

Figure 9.10 Single-stage astable oscillator using an operational amplifier

divider formed by R1 and R2. This circuit can make a very simple square wave source with a frequency that can be made adjustable by replacing R with a variable or preset resistor.

Assume that C is initially uncharged and the voltage at the inverting input is slightly less than the voltage at the non-inverting input. The output voltage will rise rapidly to $+V_{\rm CC}$ and the voltage at the inverting input will begin to rise exponentially as capacitor C charges through R.

Eventually the voltage at the inverting input will have reached a value that causes the voltage at the inverting input to exceed that present at the non-inverting input. At this point, the output voltage will rapidly fall to $-V_{\rm CC}$. Capacitor C will then start to charge in the other direction and the voltage at the inverting input will begin to fall exponentially.

Eventually, the voltage at the inverting input will have reached a value that causes the voltage at the inverting input to be less than that present at the non-inverting input. At this point, the output voltage will rise rapidly to $+V_{\rm CC}$ once again and the cycle will continue indefinitely.

The upper threshold voltage (i.e. the maximum positive value for the voltage at the inverting input) will be given by:

$$V_{\rm UT} = V_{\rm CC} \times \left(\frac{R2}{R1 + R2}\right)$$

The lower threshold voltage (i.e. the maximum negative value for the voltage at the inverting input) will be given by:

$$V_{\rm LT} = -V_{\rm CC} \times \left(\frac{R2}{R1 + R2}\right)$$


Finally, the time for one complete cycle of the output waveform produced by the astable oscillator is given by:

$$T = 2CR \ln \left(1 + 2 \left(\frac{R2}{R1} \right) \right)$$

Crystal controlled oscillators

A requirement of some oscillators is that they accurately maintain an exact frequency of oscillation. In such cases, a quartz crystal can be used as the frequency determining element. The quartz crystal (a thin slice of quartz in a hermetically sealed enclosure, see Fig. 9.11) vibrates whenever a potential difference is applied across its faces (this phenomenon is known as the piezoelectric effect). The frequency of oscillation is determined by the crystal's 'cut' and physical size.

Most quartz crystals can be expected to stabilize the frequency of oscillation of a circuit to within a few parts in a million. Crystals can be manufactured for operation in **fundamental mode** over a frequency range extending from

Figure 9.11 A quartz crystal (this crystal is cut to be resonant at 4 MHz and is supplied in an HC18 wire-ended package)

100 kHz to around 20 MHz and for **overtone** operation from 20 MHz to well over 100 MHz. Fig. 9.12 shows a simple crystal oscillator circuit in which the crystal provides feedback from the drain to the source of a junction gate FET.

Practical oscillator circuits

Fig. 9.13 shows a practical sine wave oscillator based on a three-stage *C–R* ladder network. The circuit provides an output of approximately 1V peak–peak at 1.97 kHz.

A practical Wien bridge oscillator is shown in Fig. 9.14. This circuit produces a sine wave output at 16 Hz. The output frequency can easily be varied by making R1 and R2 a 10 k Ω dual-gang potentiometer and connecting a fixed resistor of 680 Ω in series with each. In order to adjust the loop gain for an optimum sine wave output it may be necessary to make R3/R4 adjustable. One way of doing this is to replace both components with a 10 k Ω multi-turn potentiometer with the sliding contact taken to the inverting input of IC1.

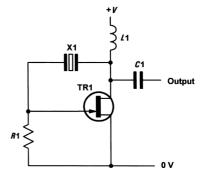
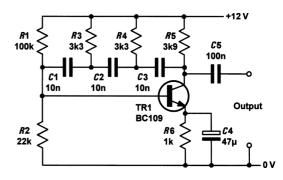
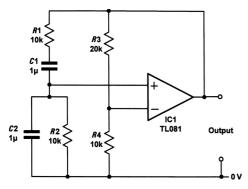
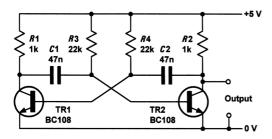




Figure 9.12 A simple JFET oscillator

Figure 9.13 A practical sine wave oscillator based on a phase shift ladder network


Figure 9.14 Practical sine wave oscillator based on a Wien bridge

An astable multivibrator is shown in Fig. 9.15. This circuit produces a square wave output of 5 V peak–peak at approximately 690 Hz.

A triangle wave generator is shown in Fig. 9.16. This circuit produces a symmetrical triangular output waveform at approximately 8 Hz. If desired, a simultaneous square wave output can be derived from the output of IC2. The circuit requires symmetrical supply voltage rails (not shown in Fig. 9.14) of between ±9V and ±15 V.

Fig. 9.17 shows a single-stage astable oscillator. This circuit produces a square wave output at approximately 13 Hz.

Finally, Fig. 9.18 shows a high-frequency crystal oscillator that produces an output of approximately 1V peak–peak at 4 MHz. The precise frequency of operation depends upon the quartz crystal employed (the circuit will operate with fundamental mode crystals in the range 2 MHz to about 12 MHz).

Figure 9.15 A practical square wave oscillator based on an astable multivibrator

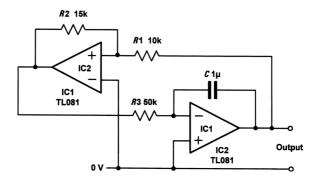
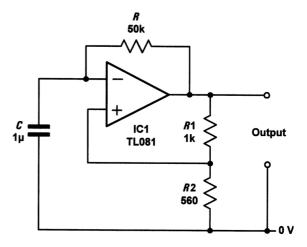
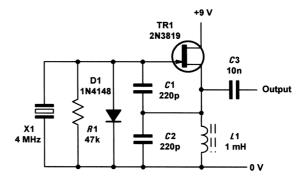




Figure 9.16 A practical triangle wave generator

Figure 9.17 A single-stage astable oscillator that produces a square wave output

Figure 9.18 A practical high-frequency crystal oscillator

Practical investigation

Objective

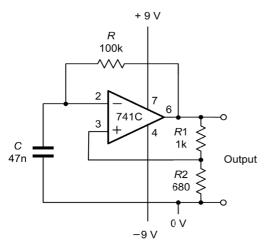
To investigate a simple operational amplifier astable oscillator.

Components and test equipment

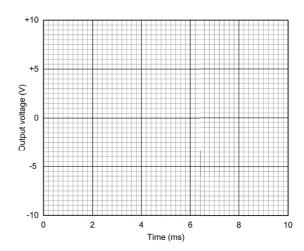
Breadboard, oscilloscope, ± 9 V d.c. power supply (or two 9 V batteries), 741CN (or similar operational amplifier), 10 n, 22 n, 47 n and 100 n capacitors, resistors of 100 k Ω , 1 k Ω and 680 Ω 5% 0.25 W, test leads, connecting wire.

Procedure

Connect the circuit shown in Fig. 9.19 with C = 47 nF. Set the oscilloscope timebase to the 2 ms/cm range and Y-attenuator to 1 V/cm. Adjust the oscilloscope so that it triggers on a positive edge and display the output waveform produced by the oscillator. Make a sketch of the waveform using the graph layout shown in Fig. 9.20.


Measure and record (see Table 9.1) the time for one complete cycle of the output. Repeat this measurement with C = 10 nF, 22 nF and 100 nF.

Calculations


For each value of *C*, calculate the periodic time of the oscillator's output and compare this with the measured values.

Conclusion

Comment on the performance of the astable oscillator. Is this what you would expect? Do the measured values agree with those obtained by calculation? If not, suggest reasons for any

Figure 9.19 Astable oscillator circuit used in the Practical investigation

Figure 9.20 Graph layout for sketching the output waveform produced by the astable oscillator

Table 9.1 Table of results and calculated values

С	Measured periodic time	Calculated periodic time
10 nF		
22 nF		
47 nF		
100 nF		

differences. Suggest typical applications for the circuit.

Symbol introduced in this chapter

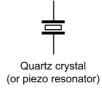


Figure 9.21 Symbol introduced in this chapter

Important formulae introduced in this chapter

Gain with positive feedback (page 180):

$$G = \frac{A_{\downarrow}}{1 - \beta A_{\downarrow}}$$

Loop gain: (page 180)

$$L = \beta A_{\nu}$$

Output frequency of a three-stage *C–R* ladder network oscillator:

(page 181)

$$f = \frac{1}{2\pi \times \sqrt{6CR}}$$

Output frequency of a Wien bridge oscillator: (page 182)

$$f = \frac{1}{2\pi CR}$$

Time for which a multivibrator output is 'high': (page 184)

$$T1 = 0.7 C2 R4$$

Time for which a multivibrator output is 'low': (page 184)

$$T2 = 0.7 C1 R3$$

Periodic time for the output of a square wave mutivibrator:

(page 184)

$$T = 0.7 (C2 R4 + C1 R3)$$

when
$$C = C1 = C2$$
 and $R = R3 = R4$

$$T = 1.4 CR$$

Periodic time for the output of a single-stage astable oscillator:

(page 185)

$$T = 2CR \ln \left(1 + 2 \left(\frac{R2}{R1} \right) \right)$$

Problems

- 9.1 An amplifier with a gain of 8 has 10% of its output fed back to the input. Determine the gain of the stage (a) with negative feedback, (b) with positive feedback.
- 9.2 A phase-shift oscillator is to operate with an output at 1 kHz. If the oscillator is based on a three-stage ladder network, determine the required values of resistance if three capacitors of 10 nF are to be used.

- 9.3 A Wien bridge oscillator is based on the circuit shown in Fig. 9.4 but *R*1 and *R*2 are replaced by a dual-gang potentiometer. If *C*1 = *C*2 = 22 nF, determine the values of *R*1 and *R*2 required to produce an output at exactly 400 Hz.
- 9.4 Determine the peak–peak voltage developed across *C*1 in the oscillator circuit shown in Fig. 9.22.
- 9.5 Determine the periodic time and frequency of the output signal produced by the oscillator circuit shown in Fig. 9.22.
- 9.6 An astable multivibrator circuit is required to produce an asymmetrical rectangular output which has a period of 4 ms and is to be 'high' for 1 ms and 'low' for 3 ms. If the timing capacitors are both to be 100 nF, determine the values of the two timing resistors required.
- 9.7 Explain, briefly, how the astable multivibrator shown in Fig. 9.23 operates. Illustrate your answer using a waveform sketch.

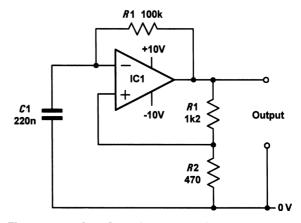


Figure 9.22 See Questions 9.4 and 9.5

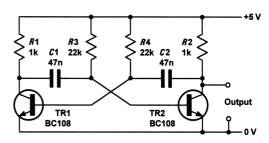


Figure 9.23 See Questions 9.7 and 9.8

9 Oscillators

- 9.8 Determine the output frequency of the signal produced by the circuit shown in Fig. 9.23.
- 9.9 Explain, briefly, how the Wien bridge oscillator shown in Fig. 9.24 operates. What factors affect the choice of values for *R*3 and *R*4?
- 9.10 Determine the output frequency of the signal produced by the circuit shown in Fig. 9.24.
- 9.11 Sketch the circuit of an oscillator that will produce a triangular waveform output. Explain briefly how the circuit operates and suggest a means of varying the output frequency over a limited range.
- 9.12 Distinguish between the following types of mulitivibrator circuit:
 - (a) astable multivibrators, (b) monostable multivibrators, (c) bistable multivibrators.

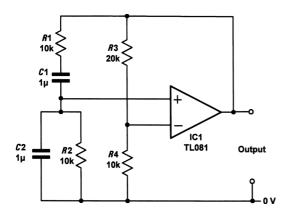


Figure 9.24 See Questions 9.9 and 9.10

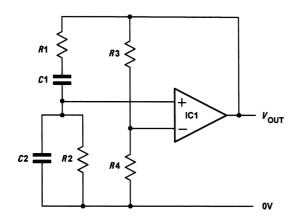


Figure 9.25 See Question 9.13

- 9.13 Derive an expression (in terms of *R*3 and *R*4) for the minimum value of voltage gain required to produce oscillation in the circuit shown in Fig. 9.25.
- 9.14 Design an oscillator circuit that will generate the output waveform shown in Fig. 9.26. Sketch a circuit diagram for the oscillator and specify all component values (including supply voltage). Give reasons for your choice of oscillator circuit.
- 9.15 Design an oscillator circuit that will generate the output waveform shown in Fig. 9.27. Sketch a circuit diagram for the oscillator and specify all component

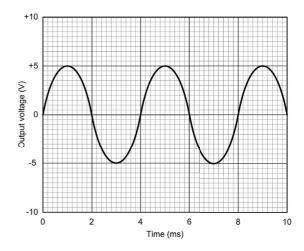


Figure 9.26 See Question 9.14

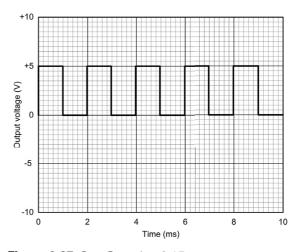


Figure 9.27 See Question 9.15

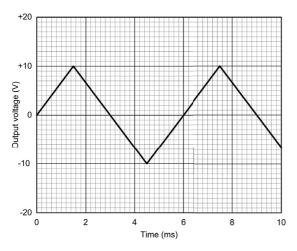


Figure 9.28 See Question 9.16

- values (including supply voltage). Give reasons for your choice of oscillator circuit.
- 9.16 Design an oscillator circuit that will generate the output waveform shown in Fig. 9.28. Sketch a circuit diagram for the oscillator and specify all component values (including supply voltage). Give reasons for your choice of oscillator circuit.
- 9.17 Briefly explain the term 'piezoelectric effect'.
- 9.18 Sketch the circuit diagram of a simple single-stage crystal oscillator and explain the advantages of using a quartz crystal as the frequency determining element.

Answers to these problems appear on page 451.

Logic circuits

Chapter summary

This chapter introduces electronic circuits and devices that are associated with digital rather than analogue circuitry. These logic circuits are used extensively in digital systems and form the basis of clocks, counters, shift registers and timers.

The chapter starts by introducing the basic logic functions (AND, OR, NAND, NOR, etc.) together with the symbols and truth tables that describe the operation of the most common logic gates. We then show how these gates can be used in simple combinational logic circuits before moving on to introduce bistable devices, counters and shift registers. The chapter concludes with a brief introduction to the two principal technologies used in modern digital logic circuits, TTL and CMOS.

Logic functions

Electronic logic circuits can be used to make simple decisions like:

If dark then put on the light.

and

If temperature is less then 20 °C then connect the supply to the heater.

They can also be used to make more complex decisions like:

If 'hour' is greater than 11 and '24 hour clock' is not selected then display message 'pm'.

All of these logical statements are similar in form. The first two are essentially:

If {condition} then {action}.

while the third is a compound statement of the form:

If {condition 1} and not {condition 2} then {action}.

Both of these statements can be readily implemented using straightforward electronic circuits. Because this circuitry is based on discrete states and since the behaviour of the circuits can be described by a set of logical statements, it is referred to as **digital logic**.

Switch and lamp logic

In the simple circuit shown in Fig. 10.1 a battery is connected to a lamp via a switch. There are two possible states for the switch, open and closed, but the lamp will only operate when the switch is closed. We can summarize this using Table 10.1.

Since the switch can only be in one of the two states (i.e. open or closed) at any given time, the open and closed conditions are mutually exclusive. Furthermore, since the switch cannot exist in any other state than completely open or completely closed (i.e. there is no intermediate or half-open state) the circuit uses binary or 'two-state' logic. The logical state of the switch can be represented by the **binary digits**, 0 and 1. For example, if logical 0 is synonymous with open (or 'off') and logical 1 is equivalent to closed (or 'on'), then:

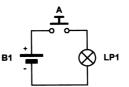


Figure 10.1 Simple switch and lamp circuit

Table 10.1 Simple switching logic

Condition	Switch	Comment
1	Open	No light produced
2	Closed	Light produced

Switch open (off) = 0

Switch closed (on) = 1

We can now rewrite the **truth table** in terms of the binary states as shown in Fig. 10.2 where:

No light (off) = 0

Light (on) = 1

AND logic

Now consider the circuit with two switches shown in Fig. 10.3. Here, the lamp will only operate when switch A is closed *and* switch B is closed. However, let's look at the operation of the circuit in a little more detail.

Since there are two switches (A and B) and there are two possible states for each switch (open or closed), there is a total of four possible conditions for the circuit. We summarize these conditions in Table 10.2.

Since each switch can only be in one of the two states (i.e. open or closed) at any given time, the open and closed conditions are mutually exclusive. Furthermore, since the switches cannot exist in any other state than completely open or completely closed (i.e. there are no intermediate states) the circuit uses **binary logic**. We can thus represent the logical states of the two switches by the binary digits, 0 and 1.

Once again, if we adopt the convention that an open switch can be represented by 0 and a closed switch by 1, we can rewrite the truth table

A	LP1
0	0
1	1

Figure 10.2 Truth table for the switch and lamp

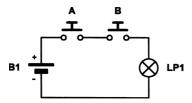


Figure 10.3 AND switch and lamp logic

Table 10.2 Simple AND switching logic

Condition	Switch A	Switch B	Comment
1	Open	Open	No light produced
2	Open	Closed	No light produced
3	Closed	Open	No light produced
4	Closed	Closed	Light produced

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

Figure 10.4 Truth table for the switch and lamp

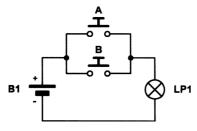


Figure 10.5 OR switch and lamp logic

in terms of the binary states shown in Fig. 10.4 where:

No light (off) = 0Light (on) = 1

OR logic

Fig. 10.5 shows another circuit with two switches. This circuit differs from that shown in Fig. 10.3 by virtue of the fact that the two switches are connected in parallel rather than in series. In this case the lamp will operate when either of the two switches is closed. As before, there is a total of four possible conditions for the circuit. We summarize these conditions in Table 10.3.

Once again, adopting the convention that an open switch can be represented by 0 and a closed switch by 1, we can rewrite the truth table in terms of the binary states as shown in Fig. 10.6.

Example 10.1

Fig. 10.7 shows a simple switching circuit. Describe the logical state of switches A, B and C in order to operate the lamp. Illustrate your answer with a truth table.

Table 10.3 Simple OR switching logic

Condition	Switch A	Switch B	Comment
1	Open	Open	No light produced
2	Open	Closed	Light produced
3	Closed	Open	Light produced
4	Closed	Closed	Light produced

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

Figure 10.6 Truth table for OR logic

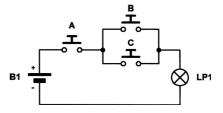


Figure 10.7 See Example 10.1

Solution

In order to operate the lamp, switch A *and* either switch B *or* switch C must be operated. The truth table is shown in Fig. 10.8.

Logic gates

Logic gates are circuits designed to produce the basic logic functions, AND, OR, etc. These circuits are designed to be interconnected into larger, more complex, logic circuit arrangements. Since these circuits form the basic building blocks of all digital systems, we have summarized the action of each of the gates in the next section. For each gate we have included its British Standard (BS) symbol together with its American Standard (MIL/ ANSI) symbol. We have also included the truth tables and Boolean expressions (using '+' to denote OR, '.' to denote AND, and '-' to denote NOT). Note that, while inverters and buffers each have only one input, exclusive-OR gates have two inputs and the other basic gates (AND, OR, NAND and NOR) are commonly available with up to eight inputs.

Buffers (Fig. 10.9)

Buffers do not affect the logical state of a digital signal (i.e. a logic 1 input results in a logic 1 output whereas a logic 0 input results in a logic 0 output). Buffers are normally used to provide extra current drive at the output but can also be used to regularize the logic levels present at an interface. The Boolean expression for the output, *Y*, of a buffer with an input, *X*, is:

$$Y = X$$

Inverters (Fig. 10.10)

Inverters are used to complement the logical state (i.e. a logic 1 input results in a logic 0 output and vice versa). Inverters also provide extra current drive and, like buffers, are used in interfacing applications where they provide a means of regularizing logic levels present at the input or output of a digital system. The Boolean expression for the output, Y, of a buffer with an input, X, is:

$$Y = \overline{X}$$

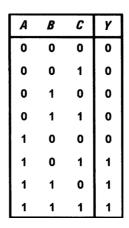


Figure 10.8 See Example 10.1

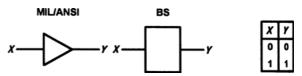
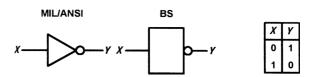
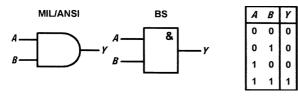



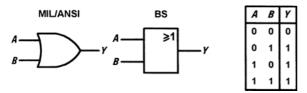
Figure 10.9 Symbols and truth table for a buffer

Figure 10.10 Symbols and truth table for an inverter

AND gates (Fig. 10.11)


AND gates will only produce a logic 1 output when all inputs are simultaneously at logic 1. Any other input combination results in a logic 0 output. The Boolean expression for the output, *Y*, of an AND gate with inputs, *A* and *B*, is:

$$Y = A \cdot B$$


OR gates (Fig. 10.12)

OR gates will produce a logic 1 output whenever any one, or more, inputs are at logic 1. Putting this another way, an OR gate will only produce a logic 0 output whenever all of its inputs are simultaneously at logic 0. The Boolean expression for the output, *Y*, of an OR gate with inputs *A* and *B* is:

$$Y = A + B$$

Figure 10.11 Symbols and truth table for an AND gate

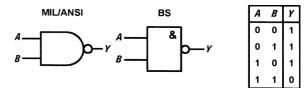
Figure 10.12 Symbols and truth table for an OR gate

NAND gates (Fig. 10.13)

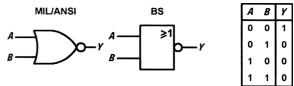
NAND (i.e. NOT-AND) gates will only produce a logic 0 output when all inputs are simultaneously at logic 1. Any other input combination will produce a logic 1 output. A NAND gate, therefore, is nothing more than an AND gate with its output inverted! The circle shown at the output denotes this inversion. The Boolean expression for the output, *Y*, of a NAND gate with inputs *A* and *B* is:

$$Y = \overline{A \cdot B}$$

NOR gates (Fig. 10.14)


NOR (i.e. NOT-OR) gates will only produce a logic 1 output when all inputs are simultaneously at logic 0. Any other input combination will produce a logic 0 output. A NOR gate, therefore, is simply an OR gate with its output inverted. A circle is again used to indicate inversion. The Boolean expression for the output, *Y*, of a NOR gate with inputs, *A* and *B*, is:

$$Y = \overline{A + B}$$


Exclusive-OR gates (Fig. 10.15)

Exclusive-OR gates will produce a logic 1 output whenever either one of the inputs is at logic 1 and the other is at logic 0. Exclusive-OR gates produce a logic 0 output whenever both inputs have the same logical state (i.e. when both are at logic 0 or both are at logic 1). The Boolean expression for the output, *Y*, of an exclusive-OR gate with inputs *A* and *B* is:

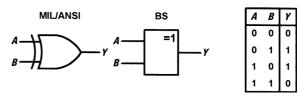

$$Y = A \cdot \overline{B} + B \cdot \overline{A}$$

Figure 10.13 Symbols and truth table for a NAND gate

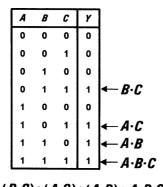
Figure 10.14 Symbols and truth table for a NOR gate

Figure 10.15 Symbols and truth table for an exclusive-OR gate

Combinational logic

By using a standard range of logic levels (i.e. voltage levels used to represent the logic 1 and logic 0 states) logic circuits can be combined in order to solve complex logic functions.

Example 10.2


A logic circuit is to be constructed that will produce a logic 1 output whenever two or more of its three inputs are at logic 1.

Solution

This circuit could be more aptly referred to as a **majority vote** circuit. Its truth table is shown in Fig. 10.16. Fig. 10.17 shows the logic circuitry required.

Example 10.3

Show how an arrangement of basic logic gates (AND, OR and NOT) can be used to produce the exclusive-OR function.

 $Y = (B \cdot C) + (A \cdot C) + (A \cdot B) + A \cdot B \cdot C$

Figure 10.16 See Example 10.2

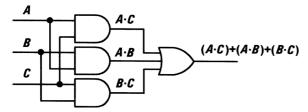


Figure 10.17 See Example 10.2

Solution

In order to solve this problem, consider the Boolean expression for the exclusive-OR function:

$$Y = A \cdot \overline{B} + B \cdot \overline{A}$$

This expression takes the form:

$$Y = P + Q$$
 where $P = A \cdot \overline{B}$ and $Q = B \cdot \overline{A}$

 $A \cdot \overline{B}$ and $Q = B \cdot \overline{A}$ can be obtained using two two-input AND gates and the result (i.e. P and Q) can then be applied to an OR gate with two inputs. \overline{A} and \overline{B} can be produced using inverters. The complete solution is shown in Fig. 10.18.

Bistables

The output of a bistable has two stable states (logic 0 or logic 1) and, once set in one or other of these states, the device will remain at a particular logic level for an indefinite period until reset. A bistable thus constitutes a simple form of 'memory cell' because it will remain in its latched state (whether **set** or **reset**) until a signal

is applied to it in order to change its state (or until the supply is disconnected).

R-S bistables

The simplest form of bistable is the R-S bistable. This device has two inputs, SET and RESET, and complementary outputs, Q and \overline{Q} . A logic 1 applied to the SET input will cause the Q output to become (or remain at) logic 1 while a logic 1 applied to the RESET input will cause the Q output to become (or remain at) logic 0. In either case, the bistable will remain in its SET or RESET state until an input is applied in such a sense as to change the state.

Two simple forms of R-S bistable based on cross-coupled logic gates are shown in Fig. 10.19. Fig. 10.19(a) is based on NAND gates while Fig. 10.19(b) is based on NOR gates.

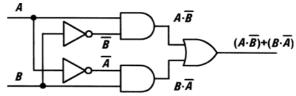
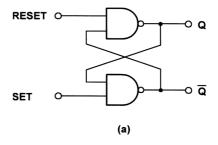
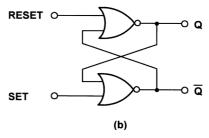
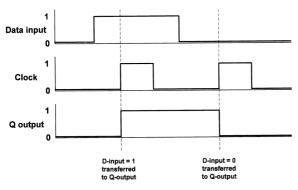




Figure 10.18 See Example 10.3

Figure 10.19 R-S bistables using cross-coupled NAND and NOR gates


The simple cross-coupled logic gate bistable has a number of serious shortcomings (consider what would happen if a logic 1 was simultaneously present on both the SET and RESET inputs!) and practical forms of bistable make use of much improved purpose-designed logic circuits such as D-type and J-K bistables.

D-type bistables

The D-type bistable has two inputs: D (standing variously for 'data' or 'delay') and CLOCK (CLK). The data input (logic 0 or logic 1) is clocked into the bistable such that the output state only changes when the clock changes state. Operation is thus said to be synchronous. Additional subsidiary inputs (which are invariably active low) are provided which can be used to directly set or reset the bistable. These are usually called PRESET (PR) and CLEAR (CLR). D-type bistables are used both as latches (a simple form of memory) and as binary dividers. The simple circuit arrangement in Fig. 10.20 together with the timing diagram shown in Fig. 10.21 illustrate the operation of D-type bistables.

Figure 10.20 D-type bistable operation

Figure 10.21 Timing diagram for the D-type bistable

J-K bistables

J-K bistables have two clocked inputs (J and K), two direct inputs (PRESET and CLEAR), a CLOCK (CK) input, and outputs (Q and Q). As with R-S bistables, the two outputs are complementary (i.e. when one is 0 the other is 1, and vice versa). Similarly, the PRESET and CLEAR inputs are invariably both active low (i.e. a 0 on the PRESET input will set the Q output to 1 whereas a 0 on the CLEAR input will set the Q output to 0). Tables 10.4 and 10.5 summarize the operation of a J-K bistable, respectively, for the PRESET and CLEAR inputs and for clocked operation.

Table 10.4 Input and output states for a J-K bistable (PRESET and CLEAR inputs)

Inputs		Output	Comments
PRESET	CLEAR	Q _{N+1}	
0	0	?	Indeterminate
0	1	0	Q output changes to 0 (i.e. Q is reset) regardless of the clock state
1	0	1	Q output changes to 1 (i.e. Q is set) regardless of the clock state
1	1	See below	Enables clocked operation (refer to Table 10.5)

Note: The preset and clear inputs operate regardless of the clock

Table 10.5 Input and output states for a J-K bistable (clocked operation)

Inputs		Output	Comments		
J	K	Q _{N+1}			
0	0	Q _N	No change in state of the Q output on the next clock transition		
0	1	0	Q output changes to 0 (i.e. Q is reset) on the next clock transition		
1	0	1	Q output changes to 1 (i.e. Q is set) on the next clock transition		
1	1	O _N	O output changes to the opposite state on the next clock transition		

Note: Q_{N+1} means 'Q after next clock transition' while Q_N means 'Q in whatever state it was before'

J-K bistables are the most sophisticated and flexible of the bistable types and they can be configured in various ways including binary dividers, shift registers and latches.

Fig. 10.22 shows the arrangement of a four-stage binary counter based on J-K bistables. The **timing diagram** for this circuit is shown in Fig. 10.23. Each stage successively divides the clock input signal by a factor of two. Note that a logic 1 input is transferred to the respective Q-output on the falling edge of the clock pulse and all J and K inputs must be taken to logic 1 to enable binary counting.

Fig. 10.24 shows the arrangement of a four- stage shift register based on J-K bistables. The timing diagram for this circuit is shown in Fig. 10.25. Note that each stage successively feeds data to

the next stage. Note that all data transfer occurs on the falling edge of the clock pulse.

Example 10.4

A logic arrangement has to be designed so that it produces the pulse train shown in Fig. 10.27. Devise a logic circuit arrangement that will generate this pulse train from a regular square wave input.

Solution

A two-stage binary divider (based on J-K bistables) can be used together with a two-input AND gate as shown in Fig. 10.26. The waveforms for this logic arrangement are shown in Fig. 10.28.

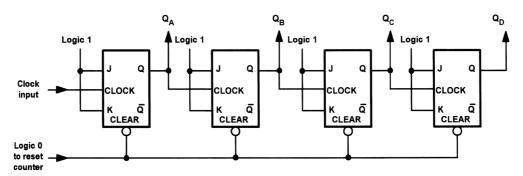


Figure 10.22 Four-stage binary counter using J-K bistables

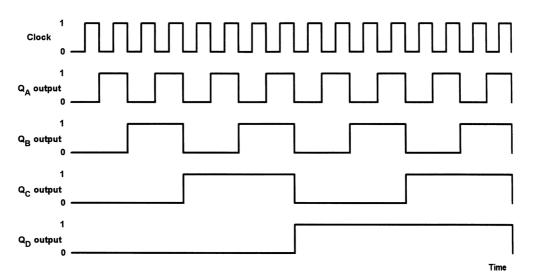


Figure 10.23 Timing diagram for the four-stage binary counter shown in Fig. 10.22

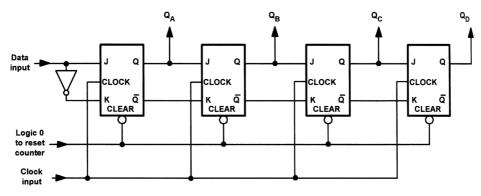
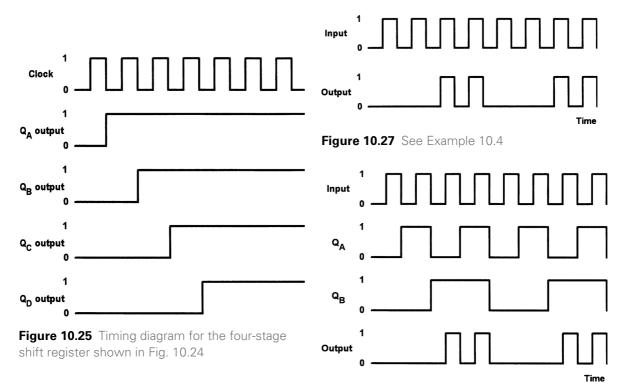



Figure 10.24 Four-stage shift register using J-K bistables

Figure 10.28 Waveforms for the logic arrangement shown in Fig. 10.26

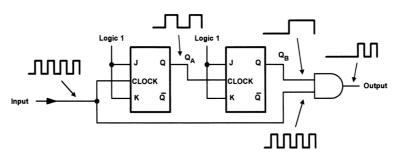


Figure 10.26 See Example 10.4

Integrated circuit logic devices

The task of realizing a complex logic circuit is made simple with the aid of digital integrated circuits. Such devices are classified according to the semiconductor technology used in their fabrication (the logic family to which a device belongs is largely instrumental in determining its operational characteristics, such as power consumption, speed and immunity to noise).

The relative size of a digital integrated circuit (in terms of the number of active devices that it contains) is often referred to as its scale of integration and the terminology in Table 10.6 is commonly used.

The two basic logic families are CMOS (complementary metal oxide semiconductor) and TTL (transistor transistor logic). Each of these families is then further sub-divided. Representative circuits for a two-input AND gate in both technologies are shown in Figs 10.29 and 10.30.

Table 10.6 Scale of integration

Scale of integration	Abbreviation	Number of logic gates*	
Small	SSI	1 to 10	
Medium	MSI	10 to 100	
Large	LSI	100 to 1,000	
Very large	VLSI	1,000 to 10,000	
Super large	SLSI	10,000 to 100,000	

^{*} or active circuitry of equivalent complexity

Table 10.7 TTL device coding – infix letters

Infix	Meaning
None	Standard TTL device
ALS	Advanced low-power Schottky
С	CMOS version of a TTL device
F	'Fast' (a high-speed version)
Н	High-speed version
S	Schottky input configuration (improved speed and noise immunity)
HC	High-speed CMOS version (CMOS compatible inputs)
HCT	High-speed CMOS version (TTL compatible inputs)
LS	Low-power Schottky

Table 10.8 CMOS device coding – the most common variants of the 4000 family are identified using these suffix letters

Infix	Meaning
None	Standard CMOS device
А	Standard (unbuffered) CMOS device
B, BE	Improved (buffered) CMOS device
UB, UBE	Improved (unbuffered) CMOS device

The most common family of TTL logic devices is known as the 74-series. Devices from this family are coded with the prefix number 74. Variants within the family are identified by letters which follow the initial 74 prefix, as shown in Table 10.7.

The most common family of CMOS devices is known as the 4000-series. Variants within the family are identified by the suffix letters given in Table 10.8.

Example 10.5

Identify each of the following integrated circuits:

(i) 4001UBE;

(ii) 74LS14.

Solution

Integrated circuit (i) is an improved (unbuffered) version of the CMOS 4001 device. Integrated circuit (ii) is a low-power Schottky version of the TTL 7414 device.

Date codes

It is also worth noting that the vast majority of logic devices and other digital integrated circuits are marked with a four-digit date code. The code often appears alongside or below the device code. The first two digits of this code give the year of manufacture while the last two digits specify the week of manufacture.

Example 10.6

An integrated circuit is marked '4050B 9832'. What type of device is it and when was it manufactured?

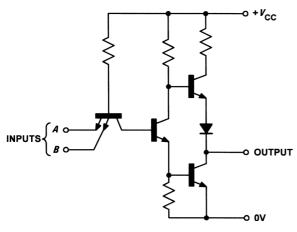


Figure 10.29 Two-input TTL NAND gate

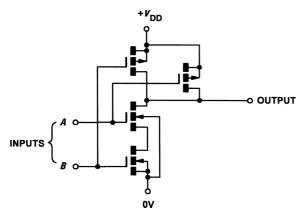


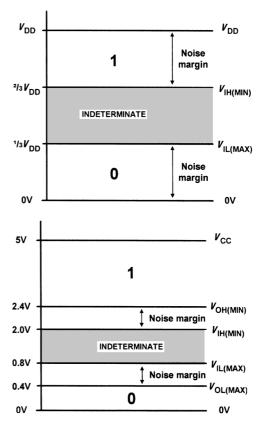
Figure 10.30 Two-input CMOS NAND gate

Solution

The device is a buffered CMOS 4050 manufactured in the 32nd week of 1998.

Logic levels

Logic levels are simply the range of voltages used to represent the logic states 0 and 1. The logic levels for CMOS differ markedly from those associated with TTL. In particular, CMOS logic levels are relative to the supply voltage used while the logic levels associated with TTL devices tend to be absolute (see Table 10.9).


Noise margin

The noise margin of a logic device is a measure of its ability to reject noise and spurious signals;

Table 10.9 Logic levels for CMOS and TTL logic devices

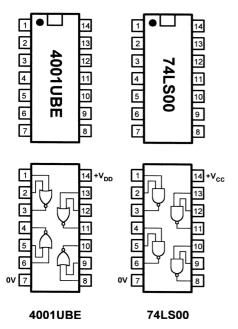
Condition	смоѕ	TTL
Logic 0	Less than $1/3V_{DD}$	More than 2 V
Logic 1	More than $2/3V_{DD}$	Less than 0.8 V
Indeterminate	Between 1/3 $V_{\rm DD}$ and 2/3 $V_{\rm DD}$	Between 0.8 V and 2 V

Note: $V_{\rm DD}$ is the positive supply associated with CMOS devices

Figure 10.31 Logic levels and noise margins for TTL and CMOS devices

the larger the noise margin the better is its ability to perform in an environment in which noise is present. Noise margin is defined as the difference between the minimum values of high-state output and high-state input voltage and the maximum values of low-state output and low-state input voltage. Hence:

Noise margin =
$$V_{OH(MIN)} - V_{IH(MIN)}$$


or

Noise margin =
$$V_{OL(MAX)} - V_{OH(MAX)}$$

where $V_{\rm OH(MIN)}$ is the minimum value of high-state (logic 1) output voltage, $V_{\rm IH(MIN)}$ is the minimum value of high-state (logic 1) input voltage, $V_{\rm OL(MAX)}$ is the maximum value of low-state (logic 0) output voltage, and $V_{\rm OH(MAX)}$ is the maximum value of low-state (logic 0) input voltage.

The noise margin for standard 7400 series TTL is typically 400 mV while that for CMOS is $1/3V_{\rm DD}$, as shown in Fig. 10.31.

Table 10.10 compares the more important characteristics of common members of the

Figure 10.32 Packages and pin connections for two common logic devices

TTL family with their buffered CMOS logic counterparts. Finally, Fig. 10.32 shows the packages and pin connections for two common logic devices, the 74LS00 (quad two-input NAND gate) and the 4001UBE (quad two-input NOR gate).

Example 10.7

Show how a 4001UBE device (see Fig. 10.32) can be connected to form a simple cross-coupled bistable. Sketch a circuit diagram showing pin connections and include LEDs that will indicate the output state of the bistable.

Solution

See Practical investigation below. Note that only two of the four logic gates have been used.

Practical investigation

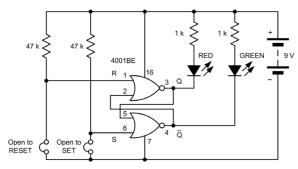
Objective

To investigate the operation of a simple bistable based on cross-coupled NOR gates.

Components and test equipment

Breadboard, 9 V d.c. power supply (or a 9 V battery), 4001BE quad two-input buffered CMOS NOR gate, red and green LEDs, operational amplifier), two 1 k Ω and two 47 k Ω 5% 0.25 W resistors, test leads, connecting wire.

Table 10.10 Characteristics of common logic families


Characteristic	Logic family			
	74	74LS	74HC	40BE
Maximum supply voltage (V)	5.25	5.25	5.5	18
Minimum supply voltage (V)	4.75	4.75	4.5	3
Static power dissipation (mW per gate at 100 kHz)	10	2	Negligible	Negligible
Dynamic power dissipation (mW per gate at 100 kHz)	10	2	0.2	0.1
Typical propagation delay (ns)	10	10	10	105
Maximum clock frequency (MHz)	35	40	40	12
Speed-power product (pJ at 100 kHz)	100	20	1.2	11
Minimum output current (mA at $V_0 = 0.4 \text{ V}$)	16	8	4	1.6
Fan-out (number of standard loads that can be driven)	40	20	10	4
Maximum input current (mA at $V_1 = 0.4 \text{ V}$)	-1.6	-0.4	0.001	-0.001

Procedure

Connect the circuit shown in Fig. 10.33 (see also Fig. 10.34 for the corresponding breadboard layout). Note that the green LED should become illuminated when the bistable is in the SET condition (i.e. when Q is at logic 1) and the red LED should become illuminated when the bistable is in the RESET condition. Note also that the 47 k Ω resistors act as **pull-up resistors**. They are used to ensure that the respective input goes to logic 1 when the corresponding link is removed. With both links in place (i.e. SET = 0 and

RESET = 0) observe and record (using a truth table) the state of the outputs.

Remove the RESET link (to make RESET = 1) while leaving the SET link in place (to keep

Figure 10.33 Bistable circuit used in the Practical investigation. The LEDs are used to indicate the state of the outputs

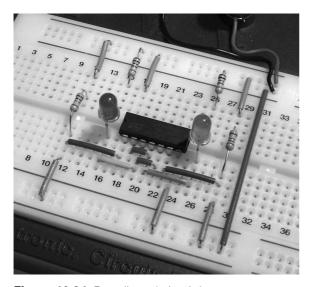


Figure 10.34 Breadboard circuit layout

SET = 0). Once again, observe and record the state of the outputs. Replace the RESET link (to make RESET = 0) and check that the bistable does not change state. Now remove the SET link (to make SET = 1). Once again, observe and record the state of the outputs. Replace the SET link (to make SET = 0) and once again check that the bistable does not change state. Finally, remove both links (to make SET = 1 and RESET = 1) and observe the state of the outputs in this **disallowed state**.

Conclusion

Comment on the truth table produced. Is this what you would expect? What happened when both SET and RESET inputs were at logic 1? Suggest a typical application for the circuit.

Symbols introduced in this chapter

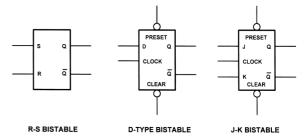


Figure 10.35 Bistable symbols

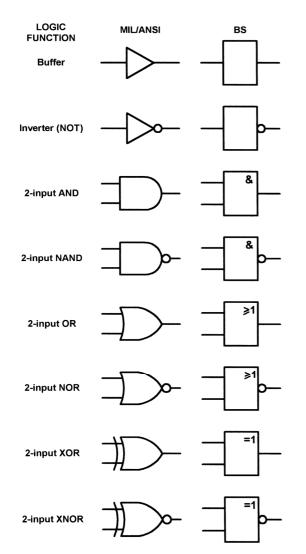


Figure 10.36 Logic gate symbols

Important formulae introduced in this chapter

Noise margin:

(page 202)

Noise margin =
$$V_{OH(MIN)} - V_{IH(MIN)}$$

or

Noise margin =
$$V_{OL(MAX)} - V_{OH(MAX)}$$

Problems

10.1 Show how a four-input AND gate can be made from three two-input AND gates.

- 10.2 Show how a four-input OR gate can be made from three two-input OR gates.
- 10.3 Construct the truth table for the logic gate arrangement shown in Fig. 10.37.
- 10.4 Using only two-input NAND gates, show how each of the following logical functions can be satisfied:
 - (a) two-input AND;
 - (b) two-input OR;

10.5

10.6

(c) four-input AND.

In each case, use the minimum number of gates. (Hint: a two-input NAND gate can be made into an inverter by connecting its two inputs together.)

The rocket motor of an air-launched missile will operate if, and only if, the following conditions are satisfied:

- (i) 'launch' signal is at logic 1;
- (ii) 'unsafe height' signal is at logic 0;
- (iii) 'target lock' signal is at logic 1.

Devise a suitable logic arrangement that will satisfy this requirement. Simplify your answer using the minimum number of logic gates.

An automatic sheet metal guillotine will operate if the following conditions are satisfied:

- (i) 'guard lowered' signal is at logic 1;
- (ii) 'feed jam' signal is at logic 0;
- (iii) 'manual start' signal is at logic 1.

The sheet metal guillotine will also operate if the following conditions are satisfied:

- (i) 'manual start' signal is at logic 1;
- (ii) 'test key' signal is at logic 1.

Devise a suitable logic arrangement that will satisfy this requirement. Use the minimum number of logic gates.

- 10.7 Devise a logic arrangement using no more than four two-input gates that will satisfy the truth table shown in Fig. 10.38.
- 10.8 Devise a logic arrangement that will produce the output waveform from the three input waveforms shown in Fig. 10.39.

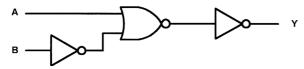


Figure 10.37 See Questions 10.3 and 10.22

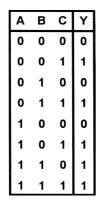


Figure 10.38 See Question 10.7

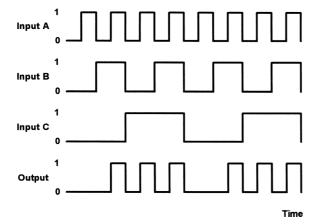


Figure 10.39 See Question 10.8.

- 10.9 A logic device is marked '74LS90 2798'. To which family and sub-family of logic does it belong and when was the device manufactured?
- 10.10 A logic family recognizes a logic 1 input as being associated with any voltage between 2.0 V and 5.5 V. The same family produces an output in the range 2.6 V to 5.0 V, corresponding to a logic 1 output. Determine the noise margin.
- 10.11 Sketch the circuit of a bistable using:
 - (a) two NAND gates;
 - (b) two NOR gates.

- Label the inputs and outputs on your diagram.
- 10.12 Sketch the symbol of each of the following types of bistable:
 - (a) an R-S bistable;
 - (b) a D-type bistable;
 - (c) a J-K bistable.

Label your drawings clearly.

- 10.13 With the aid of a diagram, explain how a three-stage binary counter can be built using J-K bistables.
- 10.14 With the aid of a diagram, explain how a three-stage shift register can be built using J-K bistables.
- 10.15 Identify each of the logic devices shown in Fig. 10.40.
- 10.16 Explain, in relation to the scale of integration, what is meant by the terms(a) MSI and (b) VLSI.

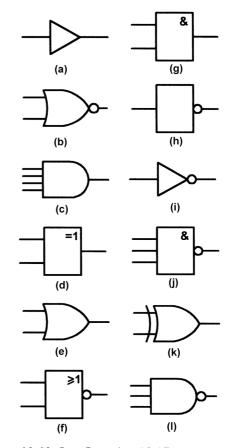
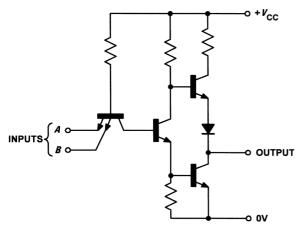



Figure 10.40 See Question 10.15

- 10.17 Fig. 10.41 shows the internal schematic for a logic device. Identify the logic family to which this device belongs and state its logic function.
- 10.18 Specify typical logic levels for the logic device shown in Fig. 10.41. In relation to your answer, explain the significance

Figure 10.41 See Questions 10.17 and 10.18

- of the indeterminate region and explain how this effects the noise margin of the device.
- 10.19 Sketch the logic gate arrangement of a four-input majority vote circuit. Using a truth table, briefly explain the operation of the circuit.
- 10.20 Show, with the aid of a logic diagram, how an exclusive-OR gate can be built using only two-input NAND gates.
- 10.21 Specify typical values for the power dissipation, propagation delay and maximum clock speed for (a) low-power Schottky TTL and (b) buffered CMOS.
- 10.22 Devise a logic gate arrangement using only two-input NAND gates that will perform the same logic function as the arrangement shown in Fig. 10.37. Simplify your answer as far as possible using the minimum number of logic gates.

Answers to these problems appear on page 451.

Microprocessors

Chapter summary

Many of today's complex electronic systems are based on the use of a microprocessor or microcontroller. Such systems comprise hardware that is controlled by software. If it is necessary to change the way that the system behaves it is the software (rather than the hardware) that is changed.

In this chapter we provide an introduction to microprocessors and explain, in simple terms, both how they operate and how they are used. We shall start by explaining some of the terminology that is used to describe different types of system that involve the use of a microprocessor or a similar device.

Microprocessor systems

Microprocessor systems are usually assembled on a single PCB comprising a microprocessor CPU together with a number of specialized support chips. These very large-scale integrated (VLSI) devices provide input and output to the system, control and timing, as well as storage for programs and data.

Typical applications for microprocessor systems include the control of complex industrial processes. Typical examples are based on families of chips such as the Z80CPU plus Z80PIO, Z80CTC, and Z80SIO.

Single-chip microcomputers

A single-chip microcomputer is a complete computer system (comprising CPU, RAM and ROM, etc.) in a single VLSI package. A single-chip microcomputer requires very little external circuitry in order to provide all of the functions associated with a complete computer system (but usually with limited input and output capability).

Single-chip microcomputers may be programmed using in-built programmable memories or via external memory chips. Typical applications of single-chip microcomputers include computer printers, instrument controllers, and displays. A typical example is the Z84C.

Microcontrollers

A microcontroller is a single-chip microcomputer that is designed specifically for control rather than general-purpose applications. They are often used to satisfy a particular control requirement, such as controlling a motor drive. Single-chip microcomputers, on the other hand, usually perform a variety of different functions and may control several processes at the same time.

Typical applications include control of peripheral devices such as motors, drives, printers, and minor sub-system components. Typical examples are the Z86E, 8051, 68705 and 89C51.

PIC microcontrollers

A PIC microcontroller is a general-purpose microcontroller device that is normally used in a stand-alone application to perform simple logic, timing and input/output control. PIC devices provide a flexible low-cost solution that very effectively bridges the gap between single-chip computers and the use of discrete logic and timer chips, as explained in Chapter 17.

A number of PIC and microcontroller devices have been produced that incorporate a high-level language interpreter. The resident interpreter allows developers to develop their programs' languages such as BASIC rather than having to resort to more complex assembly language. This feature makes PIC microcontrollers very easy to use. PIC microcontrollers are used in 'self-contained' applications involving logic, timing and simple analogue-to-digital and digital-to-analogue conversion. Typical examples are the PIC12C508 and PIC16C620.

Programmed logic devices

While not an example of a microprocessor device, a programmed logic device (PLD) is a programmable chip that can carry out complex logical operations. For completeness, we have included a reference to such devices here. PLDs are capable of replacing a large number of conventional logic gates, thus minimizing chipcount and reducing PCB sizes. Programming is relatively straightforward and simply requires the derivation of complex logic functions using Boolean algebra (see Chapter 10) or truth tables. Typical examples are the 16L8 and 22V10.

Programmable logic controllers

Programmable logic controllers (PLCs) are microprocessor-based systems that are used for controlling a wide variety of automatic processes, from operating an airport baggage handling system to brewing a pint of your favourite lager. PLCs are rugged and modular and they are designed specifically for operation in the process control environment.

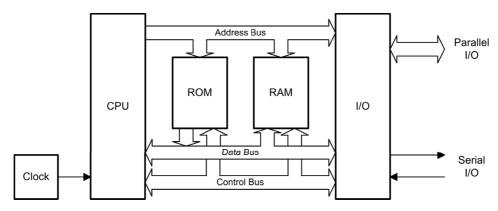


Figure 11.1 Block diagram of a microprocessor system

The control program for a PLC is usually stored in one or more semiconductor memory devices. The program can be entered (or modified) by means of a simple hand-held programmer, a laptop controller, or downloaded over a local area network (LAN). PLC manufacturers include Allen Bradley, Siemens and Mitsubishi.

Microprocessor systems

The basic components of any microprocessor system (see Fig. 11.1) are:

- (a) a central processing unit (CPU);
- (b) a memory, comprising both 'read/write' and 'read only' devices (commonly called RAM and ROM, respectively);
- (c) a means of providing input and output (I/O). For example, a keypad for input and a display for output.

In a microprocessor system the functions of the CPU are provided by a single VLSI microprocessor chip (see Fig. 11.2). This chip is equivalent to many thousands of individual transistors. Semiconductor devices are also used to provide the read/write and read-only memory. Strictly speaking, both types of memory permit 'random access' since any item of data can be retrieved with equal ease regardless of its actual location within the memory. Despite this, the term 'RAM' has become synonymous with semiconductor read/write memory.

The basic components of the system (CPU, RAM, ROM and I/O) are linked together using a

Figure 11.2 A Z80 microprocessor

multiple-wire connecting system know as a **bus** (see Fig. 11.1). Three different buses are present; these are:

- (a) the address bus used to specify memory locations;
- **(b)** the **data bus** on which data are transferred between devices; and
- **(c)** the **control bus** which provides timing and control signals throughout the system.

The number of individual lines present within the address bus and data bus depends upon the particular microprocessor employed. Signals on all lines, no matter whether they are used for address, data or control, can exist in only two basic states: logic 0 (low) or logic 1 (high). Data and addresses are represented by binary numbers (a sequence of 1s and 0s) that appear respectively on the data and address bus.

Many microprocessors designed for control and instrumentation applications make use of an 8-bit data bus and a 16-bit address bus. Others have data and address buses which can operate with as many as 128-bits at a time.

The largest binary number that can appear on an 8-bit data bus corresponds to the condition when all eight lines are at logic 1. Therefore the largest value of data that can be present on the bus at any instant of time is equivalent to the binary number 111111111 (or 255). Similarly, the highest address that can appear on a 16-bit address bus is 1111111111111111 (or 65,535). The full range of data values and addresses for a simple microprocessor of this type is thus:

Data from 00000000

to 11111111

to 111111111111111

Data representation

Binary numbers – particularly large ones – are not very convenient. To make numbers easier to handle we often convert binary numbers to **hexadecimal** (base 16). This format is easier for mere humans to comprehend and offers the advantage over denary (base 10) in that it can be converted to and from binary with ease. The first 16 numbers in binary, denary and hexadecimal are shown in Table 11.1. A single hexadecimal character (in the range zero to F) is used to represent a group of four binary digits (bits). This group of four bits (or single hex character) is sometimes called a **nibble**.

A **byte** of data comprises a group of eight bits. Thus a byte can be represented by just two hexadecimal (hex) characters. A group of 16 bits (a word) can be represented by four hex characters, 32 bits (a double word by eight hex characters, and so on).

The value of a byte expressed in binary can be easily converted to hex by arranging the bits in groups of four and converting each nibble into hexadecimal using Table 11.1.

Note that, to avoid confusion about whether a number is hexadecimal or decimal, we often place

Table 11.1 Binary, denary and hexadecimal

Binary (base 2)	Denary (base 10)	Hexadecimal (base 16)		
0000	0	0		
0001	1	1		
0010	2	2		
0011	3	3		
0100	4	4		
0101	5	5		
0110	6	6		
0111	7	7		
1000	8	8		
1001	9	9		
1010	10	А		
1011	11	В		
1100	12	С		
1101	13	D		
1110	14	Е		
1111	15	F		

a \$ symbol before a hexadecimal number or add an H to the end of the number. For example, 64 means decimal 'sixty-four'; whereas \$64 means hexadecimal 'six-four', which is equivalent to decimal 100. Similarly, 7FH means hexadecimal 'seven-F', which is equivalent to decimal 127.

Example 11.1

Convert hexadecimal A3 into binary.

Solution

From Table 11.1, A = 1010 and 3 = 0011. Thus A3 in hexadecimal is equivalent to 10100011 in binary.

Example 11.2

Convert binary 11101000 binary to hexadecimal.

Solution

From Table 11.1, 1110 = E and 1000 = 8. Thus 11101000 in binary is equivalent to E8 in hexadecimal.

Data types

A byte of data can be stored at each address within the total memory space of a microprocessor system. Hence one byte can be stored at each of the 65,536 memory locations within a microprocessor system having a 16-bit address bus.

Individual bits within a byte are numbered from 0 (least significant bit) to 7 (most significant bit). In the case of 16-bit words, the bits are numbered from 0 (least significant bit) to 15 (most significant bit).

Negative (or signed) numbers can be represented using **two's complement** notation where the leading (most significant) bit indicates the sign of the number (1 = negative, 0 = positive). For example, the signed 8-bit number 10000001 represents the denary number -1.

The range of integer data values that can be represented as bytes, words and long words are shown in Table 11.2.

Data storage

The semiconductor ROM within a microprocessor system provides storage for the program code as well as any permanent data that requires storage. All of these data are referred to as non-volatile because they remain intact when the power supply is disconnected.

The semiconductor RAM within a microprocessor system provides storage for the transient data and variables that are used by programs. Part of the RAM is also used by the microprocessor as a temporary store for data while carrying out its normal processing tasks.

It is important to note that any program or data stored in RAM will be lost when the power supply is switched off or disconnected. The only exception to this is CMOS RAM, which is kept

Table 11.2 Data types

Data type	Bits	Range of values
Unsigned byte	8	0 to 255
Signed byte	8	-128 to +127
Unsigned word	16	0 to 65,535
Signed word	16	-32,768 to + 32,767

alive by means of a small battery. This **battery-backed memory** is used to retain important data, such as the time and date.

When expressing the amount of storage provided by a memory device we usually use Kilobytes (Kbyte). It is important to note that a Kilobyte of memory is actually 1,024 bytes (not 1,000 bytes). The reason for choosing the Kbyte rather than the kbyte (1,000 bytes) is that 1,024 happens to be the nearest power of 2 (note that $2^{10} = 1,024$).

The capacity of a semiconductor ROM is usually specified in terms of an address range and the number of bits stored at each address. For example, 2 K × 8 bits (capacity 2 Kbytes), 4 K × 8 bits (capacity 4 Kbytes), and so on. Note that it is not always necessary (or desirable) for the entire memory space of a microprocessor to be populated by memory devices.

The microprocessor

The microprocessor **central processing unit** (**CPU**) forms the heart of any microprocessor or microcomputer system computer and, consequently, its operation is crucial to the entire system.

The primary function of the microprocessor is that of fetching, decoding and executing instructions resident in memory. As such, it must be able to transfer data from external memory into its own internal registers and vice versa. Furthermore, it must operate predictably, distinguishing, for example, between an operation contained within an instruction and any accompanying addresses of read/write memory locations. In addition, various system housekeeping tasks need to be performed including being able to suspend normal processing in order to respond to an external device that needs attention.

The main parts of a microprocessor CPU are:

- (a) registers for temporary storage of addresses and data;
- **(b)** an **arithmetic logic unit** (ALU) that performs arithmetic and logic operations;
- (c) a unit that receives and decodes instructions; and
- **(d)** a means of controlling and timing operations within the system.

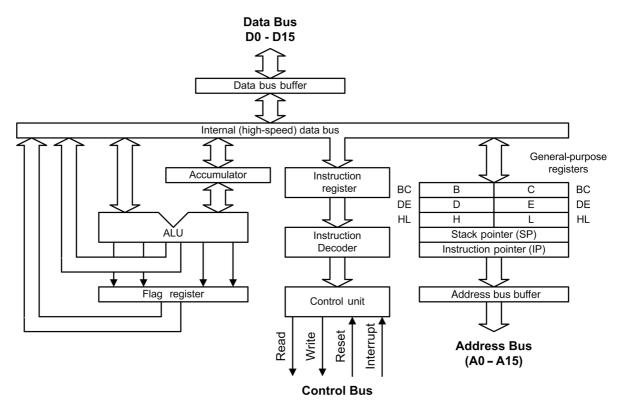


Figure 11.3 Internal architecture of a typical 8-bit microprocessor CPU

Fig. 11.3 shows the principal internal features of a typical 8-bit microprocessor. We will briefly explain each of these features in turn.

Accumulator

The accumulator functions as a source and destination register for many of the basic microprocessor operations. As a **source register** it contains the data that will be used in a particular operation, while as a **destination register** it will be used to hold the result of a particular operation. The accumulator (or **A-register**) features in a very large number of microprocessor operations, consequently more reference is made to this register than any others.

Instruction register

The instruction register provides a temporary storage location in which the current microprocessor instruction is held while it is being decoded. Program instructions are passed into

the microprocessor, one at time, through the data bus.

On the first part of each **machine cycle**, the instruction is fetched and decoded. The instruction is executed on the second (and subsequent) machine cycles. Each machine cycle takes a finite time (usually less than a microsecond) depending upon the frequency of the microprocessor's clock.

Data bus (D0 to D7)

The external data bus provides a highway for data that links all of the system components (such as random access memory, read-only memory and input/output devices) together. In an 8-bit system, the data bus has eight data lines, labelled D0 (the least significant bit) to D7 (the most significant bit) and data are moved around in groups of eight bits, or bytes. With a 16-bit data bus the data lines are labelled D0 to D15, and so on.

Data bus buffer

The data bus buffer is a temporary register through which bytes of data pass on their way into, and out of, the microprocessor. The buffer is thus referred to as **bi-directional** with data passing out of the microprocessor on a **write operation** and into the processor during a **read operation**. The direction of data transfer is determined by the **control unit** as it responds to each individual program instruction.

Internal data bus

The internal data bus is a high-speed data highway that links all of the microprocessor's internal elements together. Data are constantly flowing backwards and forwards along the internal data bus lines.

General-purpose registers

Many microprocessor operations (for example, adding two 8-bit numbers together) require the use of more than one register. There is also a requirement for temporarily storing the partial result of an operation while other operations take place. Both of these needs can be met by providing a number of general-purpose registers. The use to which these registers are put is left mainly up to the programmer.

Stack pointer

When the time comes to suspend a particular task in order to briefly attend to something else, most microprocessors make use of a region of external random access memory (RAM) known as a stack. When the main program is interrupted, the microprocessor temporarily places in the stack the contents of its internal registers together with the address of the next instruction in the main program. When the interrupt has been attended to, the microprocessor recovers the data that have been stored temporarily in the stack together with the address of the next instruction within the main program. It is thus able to return to the main program exactly where it left off and with all the data preserved in its registers. The stack pointer is simply a register that contains the address of the last used stack location.

Program counter

Programs consist of a sequence of instructions that are executed by the microprocessor. These instructions are stored in external random access memory (RAM) or read-only memory (ROM). Instructions must be fetched and executed by the microprocessor in a strict sequence. By storing the address of the next instruction to be executed, the program counter allows the microprocessor to keep track of where it is within the program. The program counter is automatically incremented when each instruction is executed.

Address bus buffer

The address bus buffer is a temporary register through which addresses (in this case comprising 16 bits) pass on their way out of the microprocessor. In a simple microprocessor, the address buffer is unidirectional with addresses placed on the address bus during both read and write operations. The address bus lines are labelled A0 to A15, where A0 is the least significant address bus line and A15 is the most significant address bus line. Note that a 16-bit address bus can be used to communicate with 65,536 individual memory locations. At each location a single byte of data is stored.

Control bus

The control bus is a collection of signal lines that are both used to control the transfer of data around the system and also to interact with external devices. The control signals used by microprocessors tend to differ with different types: however the following are commonly found:

- READ an output signal from the microprocessor that indicates that the current operation is a read operation.
- WRITE an output signal from the microprocessor that indicates that the current operation is a write operation.
- RESET a signal that resets the internal registers and initializes the program counter so that the program can be re-started from the beginning.

IRQ interrupt request from an external device attempting to gain the attention of the microprocessor (the request may be obeyed or ignored according to the state of the microprocessor at the time that the interrupt request is received).

NMI non-maskable interrupt (i.e. an interrupt signal that cannot be ignored by the microprocessor).

Address bus (A0 to A15)

The address bus provides a highway for addresses that links with all of the system components (such as random access memory, read-only memory and input/output devices). In a system with a 16-bit address bus, there are 16 address lines, labelled A0 (the least significant bit) to A15 (the most significant bit). In a system with a 32-bit address bus there are 32 address lines, labelled A0 to A31, and so on.

Instruction decoder

The instruction decoder is nothing more than an arrangement of logic gates that acts on the bits stored in the instruction register and determines which instruction is currently being referenced. The instruction decoder provides output signals for the microprocessor's control unit.

Control unit

The control unit is responsible for organizing the orderly flow of data within the microprocessor as well as generating, and responding to, signals on the control bus. The control unit is also responsible for the timing of all data transfers. This process is synchronized using an internal or external clock signal (not shown in Fig. 11.3).

Arithmetic logic unit (ALU)

As its name suggests, the ALU performs arithmetic and logic operations. The ALU has two inputs (in this case these are both 8 bits wide). One of these inputs is derived from the accumulator while the other is taken from the internal data bus via a temporary register (not shown in Fig. 11.3). The operations provided by the ALU usually include addition, subtraction, logical AND, logical OR, logical exclusive-OR,

shift left, shift right, etc. The result of most ALU operations appears in the accumulator.

Flag register (or status register)

The result of an ALU operation is sometimes important in determining what subsequent action takes place. The flag register contains a number of individual bits that are set or reset according to the outcome of an ALU operation. These bits are referred to as flags. The following flags are available in most microprocessors:

ZERO the zero flag is set when the result

of an ALU operation is zero (i.e. a

byte value of 0000000).

CARRY the carry flag is set whenever the

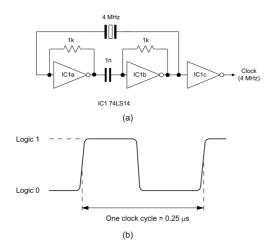
result of an ALU operation (such as addition) generates a carry bit (in other words, when the result cannot be contained within an 8-bit

register).

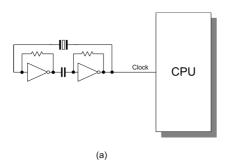
INTERRUPT the interrupt flag indicates whether

external interrupts are currently

enabled or disabled.


Clocks

The clock used in a microprocessor system is simply an accurate and stable square wave generator. In most cases the frequency of the square wave generator is determined by a quartz crystal. A simple 4 MHz square wave clock oscillator (together with the clock waveform that is produced) is shown in Fig. 11.4. Note that one complete clock cycle is sometimes referred to as a T-state.


Microprocessors sometimes have an internal clock circuit, in which case the quartz crystal (or other resonant device) is connected directly to pins on the microprocessor chip. In Fig. 11.5(a) an external clock is shown connected to a microprocessor, while in Fig.11.5(b) an internal clock oscillator is used.

Microprocessor operation

The majority of operations performed by a microprocessor involve the movement of data. Indeed, the program code (a set of instructions stored in ROM or RAM) must itself

Figure 11.4 (a) A typical microprocessor clock circuit (b) waveform produced by the clock circuit

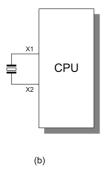
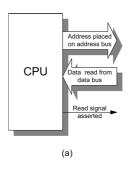


Figure 11.5 (a) An external CPU clock (b) an internal CPU clock


be fetched from memory prior to execution. The microprocessor thus performs a continuous sequence of instruction fetch and execute cycles. The act of fetching an instruction code (or operand or data value) from memory involves a read operation while the act of moving data from the

microprocessor to a memory location involves a write operation – see Fig. 11.6.

Each cycle of CPU operation is known as a machine cycle. Program instructions may require several machine cycles (typically between two and five). The first machine cycle in any cycle consists of an instruction fetch (the instruction code is read from the memory) and it is known as the M1 cycle. Subsequent cycles M2, M3 and so on depend on the type of instruction that is being executed. This fetch—execute sequence is shown in Fig. 11.7.

Microprocessors determine the source of data (when it is being read) and the destination of data (when it is being written) by placing a unique address on the address bus. The address at which the data are to be placed (during a write operation) or from which they are to be fetched (during a read operation) can either constitute part of the memory of the system (in which case it may be within ROM or RAM) or it can be considered to be associated with input/output (I/O).

Since the data bus is connected to a number of VLSI devices, an essential requirement of such chips (e.g. ROM or RAM) is that their data outputs should be capable of being isolated from the bus

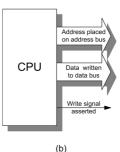


Figure 11.6 (a) Read and (b) write operations

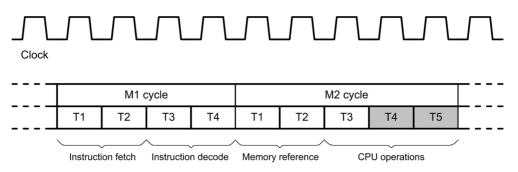
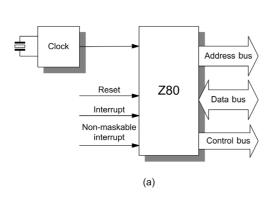



Figure 11.7 A typical timing diagram for a microprocessor's fetch-execute cycle

Main register set

Accumulator (A)	Flags (F)
(B)	(C)
(D)	(E)
(H)	(L)

Special-purpose registers

Interrupt Vector (I)	Memory Refresh (R)			
Index Register (IX)				
Index Register (IY)				
Stack Pointer (SP)				
Program Counter (PC)				

(b)

Figure 11.8 The Z80 microprocessor (showing some of its more important control signals) together with its register model

whenever necessary. These chips are fitted with select or enable inputs that are driven by address decoding logic (not shown in Fig. 11.7). This logic ensures that ROM, RAM and I/O devices never simultaneously attempt to place data on the bus!

The inputs of the address decoding logic are derived from one, or more, of the address bus lines. The address decoder effectively divides the available memory into blocks corresponding to a particular function (ROM, RAM, I/O, etc). Hence, where the processor is reading and writing to RAM, for example, the address decoding logic will ensure that only the RAM is selected while the ROM and I/O remain isolated from the data bus.

Within the CPU, data are stored in several registers. Registers themselves can be thought

of as a simple pigeon-hole arrangement that can store as many bits as there are holes available. Generally, these devices can store groups of 16 or 32 bits. Additionally, some registers may be configured as either one register of 16 bits or two registers of 32 bits.

Some microprocessor registers are accessible to the programmer, whereas others are used by the microprocessor itself. Registers may be classified as either general purpose or dedicated. In the latter case a particular function is associated with the register, such as holding the result of an operation or signalling the result of a comparison. A typical microprocessor and its register model is shown in Fig. 11.8.

11 Microprocessors

The arithmetic logic unit

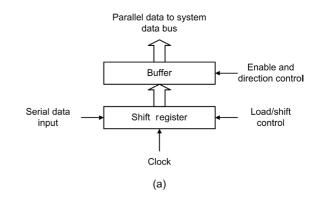
The ALU can perform arithmetic operations (addition and subtraction) and logic (complementation, logical AND, logical OR, etc). The ALU operates on two inputs (16 or 32 bits in length depending upon the CPU type) and it provides one output (again of 16 or 32 bits). In addition, the ALU status is preserved in the **flag register** so that, for example, an overflow, zero or negative result can be detected.

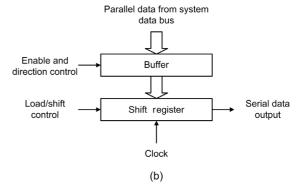
The control unit is responsible for the movement of data within the CPU and the management of control signals, both internal and external. The control unit asserts the requisite signals to read or write data as appropriate to the current instruction.

Input and output

The transfer of data within a microprocessor system involves moving groups of 8, 16 or 32 bits using the bus architecture described earlier. Consequently it is a relatively simple matter to transfer data into and out of the system in parallel form. This process is further simplified by using a **Programmable Parallel I/O** device (a Z80PIO, 8255 or equivalent VLSI chip). This device provides registers for the temporary storage of data that not only buffer the data but also provide a degree of electrical isolation from the system data bus.

Parallel data transfer is primarily suited to high-speed operation over relatively short distances, a typical example being the linking of a microcomputer to an adjacent printer. There are, however, some applications in which parallel data transfer is inappropriate, the most common example being data communication by means of telephone lines. In such cases data must be sent serially (one bit after another) rather than in parallel form.


To transmit data in serial form, the parallel data from the microprocessor must be reorganized into a stream of bits. This task is greatly simplified by using an LSI interface device that contains a shift register that is loaded with parallel data from the data bus. This data are then read out as a serial bit stream by successive shifting. The reverse process, serial-to-parallel conversion, also uses a


shift register. Here data are loaded in serial form, each bit shifting further into the register until it becomes full. Data are then placed simultaneously on the parallel output lines. The basic principles of parallel-to-serial and serial-to-parallel data conversion are illustrated in Fig. 11.9.

An example program

The following example program (see Table 11.3) is written in assembly code. The program transfers 8-bit data from an input port (Port A), complements (i.e. inverts) the data (by changing 0s to 1s and 1s to 0s in every bit position) and then outputs the result to an output port (Port B). The program repeats indefinitely.

Just three microprocessor instructions are required to carry out this task together with a fourth (jump) instruction that causes the three instructions to be repeated over and over again. A program of this sort is most easily written in assembly code which consists of a series of easy

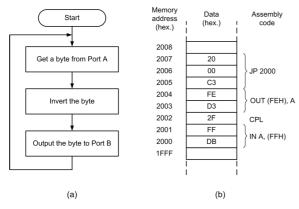


Figure 11.9 (a) Serial-to-parallel data conversion (b) parallel-to-serial data conversion

Table 11.3 A simple example program

Address	Data	Assembly code	Comment
2002	DB FF	IN A, (FFH)	Get a byte from Port A
2002	2F	CPL	Invert the byte
2003	D3 FE	OUT (FEH), A	Output the byte to Port B
2005	C3 00 20	JP 2000	Go round again

Figure 11.10 (a) Flowchart for the example program and (b) the eight bytes of program code stored in memory

to remember mnemonics. The flowchart for the program is shown in Fig. 11.10(a).

The program occupies a total of eight bytes of memory, starting at a hexadecimal address of 2000 as shown in Fig. 11.10(b). You should also note that the two ports, A and B, each have unique addresses; Port A is at hexadecimal address FF and Port B is at hexadecimal address FE.

Interrupts

A program that simply executes a loop indefinitely has a rather limited practical application. In most microprocessor systems we want to be able to interrupt the normal sequence of program flow in order to alert the microprocessor to the need to do something. We can do this with a signal known as an **interrupt**. There are two types of interrupt; maskable and non-maskable.

When a **non-maskable interrupt** input is asserted, the processor must suspend execution of the current instruction and respond

immediately to the interrupt. In the case of a **maskable interrupt**, the processor's response will depend upon whether interrupts are currently enabled or disabled (when enabled, the CPU will suspend its current task and carry out the requisite interrupt service routine).

The response to interrupts can be enabled or disabled by means of appropriate program instructions. In practice, interrupt signals may be generated from a number of sources and since each will require its own customized response a mechanism must be provided for identifying the source of the interrupt and calling the appropriate interrupt service routine. In order to assist in this task, the microprocessor may use a dedicated programmable interrupt controller chip.

A microcontroller system

Fig. 11.11 shows the arrangement of a typical microcontroller system. The sensed quantities (temperature, position, etc.) are converted to corresponding electrical signals by means of a number of sensors. The outputs from the sensors (in either digital or analogue form) are passed as input signals to the microcontroller. The microcontroller also accepts inputs from the user. These user-set options typically include target values for variables (such as desired room temperature), limit values (such as maximum shaft speed) or time constraints (such as 'on' time and 'off' time, delay time, etc.).

The operation of the microcontroller is controlled by a sequence of software instructions known as a control program. The control program operates continuously, examining inputs from sensors, user settings and time data before making changes to the output signals sent to one or more controlled devices

The controlled quantities are produced by the controlled devices in response to output signals from the microcontroller. The controlled device generally converts energy from one form into energy in another form. For example, the controlled device might be an electrical heater that converts electrical energy from the AC mains supply into heat energy, thus producing a given temperature (the controlled quantity).

In most real-world systems there is a requirement for the system to be automatic or self-regulating. Once set, such systems will continue to operate without continuous operator intervention. The output of a self-regulating system is fed back to its input in order to produce what is known as a closed-loop system. A good example of a closed-loop system is a heating control system that is designed to maintain a constant room temperature and humidity within a building regardless of changes in the outside conditions.

In simple terms, a microcontroller must produce a specific state on each of the lines connected to its output ports in response to a particular combination of states present on each of the lines connected to its input ports (see Fig. 11.11). Microcontrollers must also have a central processing unit (CPU) capable of performing simple arithmetic, logical and timing operations.

The input port signals can be derived from a number of sources, including:

- switches (including momentary action push-buttons);
- sensors (producing logic-level compatible outputs);
- ▶ keypads (both encoded and unencoded types).

The output port signals can be connected to a number of devices, including:

- ▶ LED indicators (both individual and multiple bar types);
- ► LED seven-segment displays (via a suitable interface);
- motors and actuators (both linear and rotary types) via a suitable buffer/driver or a dedicated interface;
- ▶ relays (both conventional electromagnetic types and optically couple solid-state types);
- ► transistor drivers and other solid-state switching devices.

Input devices

Input devices supply information to the computer system from the outside world. In an ordinary personal computer, the most obvious input device is the keyboard. Other input devices available on a PC are the mouse (pointing device), scanner, and modem. Microcontrollers use much simpler input devices. These need be nothing more than individual switches or contacts that make and break, but many other types of device are also used including many types of sensor that provide logic-level outputs (such as float switches, proximity detectors, light sensors, etc.).

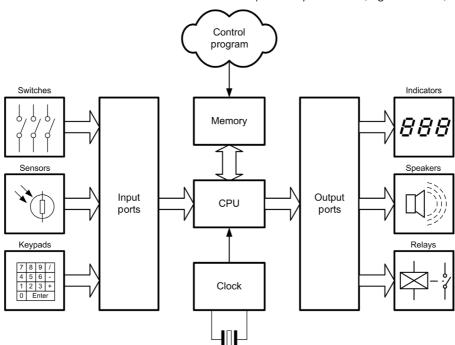
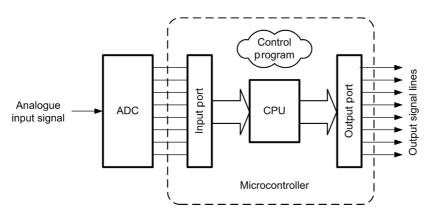


Figure 11.11 A microcontroller system with typical inputs and outputs

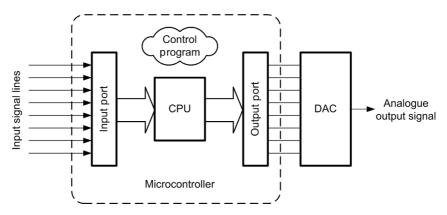
It is important to note that, in order to be connected directly to the input port of a microcontroller, an input device must provide a logic compatible signal. This is because microcontroller inputs can only accept digital input signals with the same voltage levels as the logic power source. The 0 V ground level (often referred to as V_{SS} in the case of a CMOS microcontroller) and the positive supply (V_{DD} in the case of a CMOS microcontroller) is invariably 5 V ± 5%. A level of approximately 0 V indicates a logic 0 signal and a voltage approximately equal to the positive power supply indicates a logic 1 signal.

Other input devices may sense analogue quantities (such as velocity) but use a digital code to represent their value as an input to the microcontroller system. Some microcontrollers provide an internal analogue-to-digital converter (ADC) in order to greatly simplify the connection of analogue sensors as input devices, but where this facility isn't available it will be necessary to use an external ADC which usually takes the form of a single integrated circuit. The resolution of the ADC will depend upon the number of bits used and 8-, 10- and 12-bit devices are common in control applications.

Output devices


Output devices are used to communicate information or actions from a computer system to the outside world. In a personal computer system, the most common output device is the flat-screen display. Other output devices include printers and modems. As with input devices,

microcontroller systems often use much simpler output devices. These may be nothing more than LEDs, piezoelectric sounders, relays and motors. In order to be connected directly to the output port of a microcontroller, an output device must, once again, be able to accept a logic compatible signal.


Where analogue quantities (rather than simple digital on/off operation) are required at the output a digital-to-analogue converter (DAC) will be needed. All of the functions associated with a DAC can be provided by a single integrated circuit. As with an ADC, the output resolution of a DAC depends on the number of bits and 8, 10 and 12 bits are common in control applications.

Interface circuits

Finally, where input and output signals are not logic compatible (i.e. when they are outside the range of signals that can be connected directly to the microcontroller) some additional interface circuitry may be required in order to shift the voltage levels or to provide additional current drive. Additional circuitry may also be required when a load (such as a relay or motor) requires more current than is available from a standard logic device or output port. For example, a common range of interface circuits (solid-state relays) is available that will allow a microcontroller to be easily interfaced to an a.c. mains-connected load. It then becomes possible for a small microcontroller (operating from only a 5 V d.c. supply) to control a central heating system operating from 240 V a.c. mains.

Figure 11.12 An analogue input signal can be connected to a microcontroller input port via an analogue-to-digital converter (ADC)

Figure 11.13 An analogue output signal can be produced by connecting a digital-to-analogue converter (DAC) to a microcontroller output port

Practical investigation

Objective

To investigate the operation of a Z80 microprocessor using a simulator to run a simple assembly language program.

Simulator

Oshonsoft Z80 Simulator or similar Integrated Development Environment (IDE). The Oshonsoft IDE can be downloaded from www.oshonsoft.com. Alternatively, a Z80 development system with resident assembler and I/O ports can be used (note that port addresses used in the Practical Investigation may need to be modified in order to agree with those available).

System configuration and required operation

For the purposes of this investigation we shall assume that the system has eight input switches connected to port address 80H and eight LED indicators connected to output port address 82H. The LEDs are to be operated from their corresponding input switches on the following basis:

Inputs (Port 80H)

Switch 'on' = logic 1

Switch 'off' = logic 0

Outputs (Port 82H)

Logic 1 = LED 'off'

Logic 0 = LED 'on'

Note that in order to illuminate an LED the logic 1 input must be inverted in order to produce a logic 0 output. Hence it will be necessary to read the byte from port 80H, invert (i.e. complement) it, and then output it to port 82H.

The program is to continue to run, detecting the state of the input switches and turning the appropriate LEDs on, until such a time as all of the input switches are set to the 'off' position. If this situation is detected the program is to halt.

Procedure

Start the Z80 Simulator (see Fig. 11.14) then select Tools and Assembler and enter the assembly language code shown in Fig. 11.15. When complete select File and Save your assembly language source code with a suitable name (e.g. switch.asm).

Next select Tools and Assemble. Correct any errors in the assembly language source code and repeat the process until the source code assembles without error. Save the final assembly code and then quit the assembler in order to return to the main IDE screen.

Select File and Load Program and then select the object code (switch.obj) that has just been produced by the assembler. You will then need

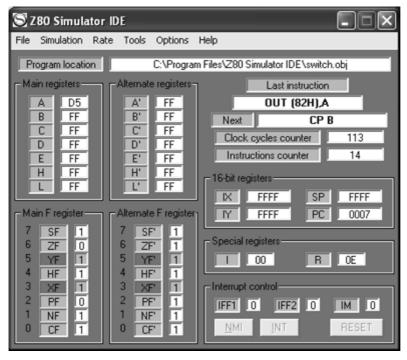


Figure 11.14 The Z80 Simulator Integrated Development Environment (IDE)

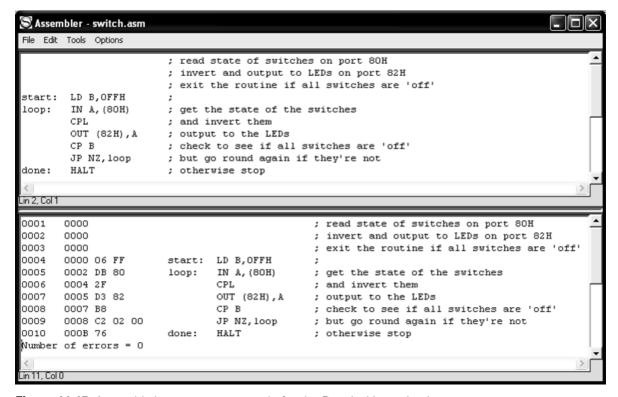
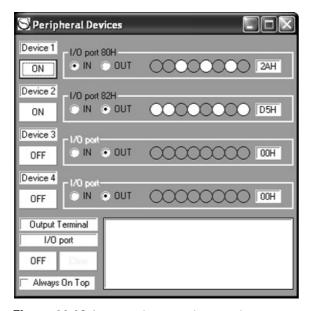



Figure 11.15 Assembly language source code for the Practical investigation

to configure the input and output ports before you run the program. You can do this by selecting Tools and Peripheral Devices (see Fig. 11.16). Configure the peripheral devices so that the input port address is 80H and the output port address

Figure 11.16 Input and output data can be set and viewed (respectively) using the Peripheral Devices dialogue

is 82H. Then set some of the input bits by clicking on the indicators (which will change colour).

Next, return to the main IDE, select Tools and Simulation Log Viewer and then Rate and Slow. Finally, select Simulation and Start (or press the F1 key). You will see the program instructions and the contents of the Z80's registers displayed as the program is executed (see Fig. 11.17). If you have left the Peripheral Devices window open you will also be able to change the switch settings and observe the effect that this has. Finally, you should set all of the switches to the 'off' position and check that the program exits from the loop and reaches the HALT instruction.

A further program

If you have been able to run the simple program successfully you might like to try your hand at developing your own assembly language program using some of the assembly language instructions shown in Table 11.4. This program should shift the bits on output Port 82H to the left by the number of places indicated by data from Port 80H. The two ports can be preset before running the program.

File											
No.	PC	Instruction	Α	SZYHXPNC	В	C	D	E	Н	L	
1	0000	LD B,OFFH	FF	11111111	FF	FF	FF	FF	FF	FF	Ŀ
2	0002	IN A,(80H)	2A	11111111	FF	FF	FF	FF	FF	FF	Г
3	0004	CPL	D5	11111111	FF	FF	FF	FF	FF	FF	ш
4	0005	OUT (82H),A	D5	11111111	FF	FF	FF	FF	FF	FF	н
5	0007	CP B	D5	10111011	FF	FF	FF	FF	FF	FF	ш
6	0008	JP NZ,0002H	D5	10111011	FF	FF	FF	FF	FF	FF	ı
7	0002	IN A,(80H)	2A	10111011	FF	FF	FF	FF	FF	FF	ш
8	0004	CPL	D5	10111011	FF	FF	FF	FF	FF	FF	н
9	0005	OUT (82H),A	D5	10111011	FF	FF	FF	FF	FF	FF	н
10	0007	CP B	D5	10111011	FF	FF	FF	FF	FF	FF	ı
11	8000	JP NZ,0002H	D5	10111011	FF	FF	FF	FF	FF	FF	ш
12	0002	IN A,(80H)	EA	10111011	FF	FF	FF	FF	FF	FF	ш
13	0004	CPL	15	10111011	FF	FF	FF	FF	FF	FF	ı
14	0005	OUT (82H),A	15	10111011	FF	FF	FF	FF	FF	FF	ľ
15	0007	CP B	15	00111011	FF	FF	FF	FF	FF	FF	Ŀ
4										•	

Figure 11.17 Simulation log showing execution of individual program instructions

Table 11.4 Some selected Z80 assembly language instructions

Assembly code	Meaning
LD A, data	Load the Accumulator with 8-bit data
LD B, data	Load the B register with 8-bit data
LD C, data	Load the C register with 8-bit data
LD C,A	Load the C register with 8-bit data from the Accumulator
CP B	Compare the value in the B register with the value in the Accumulator
DEC C	Decrement the C register
CPL	Complement (i.e. invert) the contents of the Accumulator
SLA A	Shift the contents of the Accumulator left by one bit
JP NZ, label	Jump to the symbolic address label of the Zero flag has been set
HALT	Halt (suspend program execution)
IN A, (port)	Input the data from the specified port to the Accumulator
OUT (port), A	Output the data from the Accumulator to the specified port

Symbols introduced in this chapter

Bus Seven-segment indicator

Loudspeaker

Relay

Figure 11.18 Symbols introduced in this chapter

Problems

- 11.1 Convert 3A hexadecimal to binary.
- 11.2 Convert 11000010 binary to hexadecimal.
- 11.3 Convert 63 decimal to
 - (a) binary
 - (b) hexadecimal.
- 11.4 Which of the following numbers is the largest?
 - (a) 19H
 - (b) \$13
 - (c) 33_{10}
 - (d) 11101₂.

- 11.5 How many unique addresses are available to a microprocessor CPU that has a 20-bit address bus?
- 11.6 What is the largest unsigned data value that can appear on a 10-bit data bus?
- 11.7 What is the largest negative data value that can be represented using signed 16-bit binary numbers?
- 11.8 The following fragment of assembly language code is executed using a Z80 microprocessor:

IN A, (FEH) CPL OUT (FFH), A HALT

- (a) What are the addresses of the input and output ports?
- (b) If a data value of 10101111 appears at the input port what value will appear at the output port after the code has been executed?
- 11.9 Give examples of (a) two input devices and (b) two output devices commonly used in microprocessor systems.

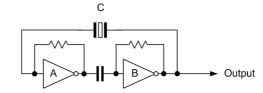


Figure 11.19 See Questions 11.10 and 11.11

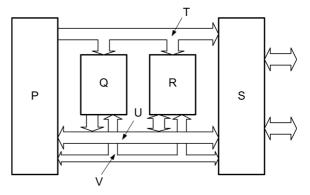


Figure 11.20 See Question 11.12

11 Microprocessors

- 11.10 Explain the purpose of the circuit shown in Fig. 11.19 and state the function of the components marked A, B and C.
- 11.11 Sketch two cycles of the typical output waveform produced by the circuit shown in Fig. 11.19. Include labelled axes of time and voltage.
- 11.12 Identify, and briefly explain the purpose of, the features labelled P, Q, R, S, T, U and V in the microcomputer system shown in Fig. 11.20.
- 11.13 Explain the function of four common control bus signals used in a microcomputer system.
- 11.14 Explain the need for an ADC when a temperature sensor is to be interfaced to a microcomputer system.

Answers to these problems appear on page 451.

The 555 timer

Chapter summary

The 555 timer is without doubt one of the most versatile integrated circuit chips ever produced. Not only is it a neat mixture of analogue and digital circuitry, but its applications are virtually limitless in the world of timing and digital pulse generation. The device also makes an excellent case study for newcomers to electronics because it combines a number of important concepts and techniques.

Internal features

To begin to understand how timer circuits operate, it is worth spending a few moments studying the internal circuitry of the 555 timer (see Fig 12.1). Essentially, the device comprises two operational amplifiers (used as comparators – see page 174) together with an R–S bistable element (see page 197). In addition, an inverting buffer (see page 193) is incorporated so that an appreciable current can be delivered to a load. The main features of the device are shown in Table 12.1. Unlike standard TTL logic devices, the 555 timer can both **source** and **sink** current. It's worth taking a little time to explain what we mean by these two terms:

- (a) When **sourcing** current, the 555's output (pin 3) is in the **high** state and current will then flow *out of* the output pin into the load and down to 0V, as shown in Fig. 12.2(a).
- **(b)** When **sinking** current, the 555's output (pin 3) is in the **low** state in which case current will flow from the positive supply (+V_{cc}) through the load and *into* the output (pin 3), as shown in Fig. 12.2(b).

Returning to Fig. 12.1, the single transistor switch, TR1, is provided as a means of rapidly discharging an external timing capacitor. Because the series chain of resistors, R1, R2 and R3, all have identical values, the supply voltage ($V_{\rm cc}$) is divided equally across the three resistors. Hence the voltage at the non-inverting input of IC1 is one-third of the supply voltage ($V_{\rm cc}$) while that at the inverting input of IC2 is two-thirds of the supply voltage ($V_{\rm cc}$). Hence if $V_{\rm cc}$ is 9 V, 3 V will appear at each resistor and the upper comparator will have 6 V applied to its inverting input while the lower comparator will have 3 V at its non-inverting input.

The 555 family

The standard 555 timer is housed in an eight-pin dual-in-line (DIL) package and operates from supply rail voltages of between 4.5 V and 15 V. This, of course, encompasses the normal range for TTL devices (5 V \pm 5%) and thus the device is ideally suited for use with TTL circuitry.

Table 12.1 Internal features of the 555 timer

_	F				
Feature	Function				
A	A potential divider comprising $R_{\rm 1}$, $R_{\rm 2}$ and R3 connected in series. Since all three resistors have the same values the input voltage ($V_{\rm CC}$) will be divided into thirds, i.e. one-third of $V_{\rm CC}$ will appear at the junction of $R_{\rm 2}$ and $R_{\rm 3}$ while two-thirds of $V_{\rm CC}$ will appear at the junction of $R_{\rm 1}$ and $R_{\rm 2}$.				
В	Two operational amplifiers connected as comparators. The operational amplifiers are used to examine the voltages at the threshold and trigger inputs and compare these with the fixed voltages from the potential divider (two-thirds and one-third of $V_{\rm cc'}$ respectively).				
С	An R–S bistable stage. This stage can be either set or reset depending upon the output from the comparator stage. An external reset input is also provided.				
D	An open-collector transistor switch. This stage is used to discharge an external capacitor by effectively shorting it out whenever the base of the transistor is driven positive.				
E	An inverting power amplifier. This stage is capable of sourcing and sinking enough current (well over 100 mA in the case of a standard 555 device) to drive a small relay or another low-resistance load connected to the output.				

Several versions of the 555 timer are available, including low-power (CMOS) and dual versions, as follows.

Low-power (CMOS) 555

This device is a CMOS version of the 555 timer that is both pin and function compatible with its standard counterpart. By virtue of its CMOS technology the device operates over a somewhat wider range of supply voltages (2 V to 18 V) and consumes minimal operating current (120 mA typical for an 18 V supply). Note that, by virtue of the low-power CMOS technology employed, the device does not have the same output current drive as that possessed by its standard counterparts. It can, however, supply up to two standard TTL loads.

Dual 555 timer (e.g. NE556A)

This is a dual version of the standard 555 timer housed in a 14-pin DIL package. The two devices

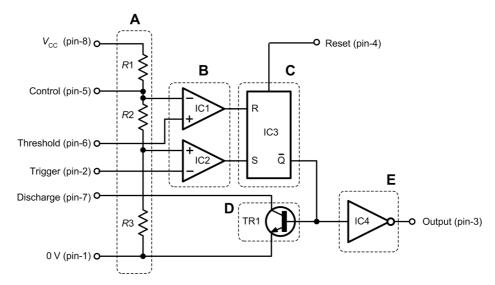
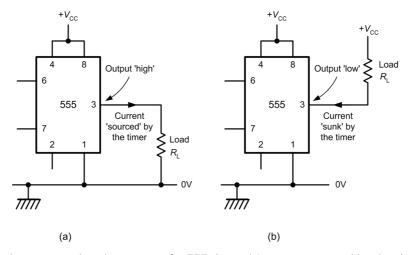
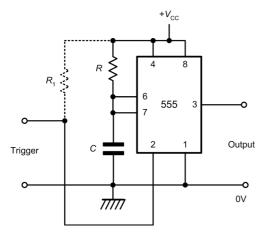



Figure 12.1 Internal arrangement of a 555 timer

Figure 12.2 Loads connected to the output of a 555 timer: (a) current sourced by the timer when the output is high (b) current sunk by the timer when the output is low

may be used entirely independently and share the same electrical characteristics as the standard 555.

Low-power (CMOS) dual 555 (e.g. ICM75561PA)


This is a dual version of the low-power CMOS 555 timer contained in a 14-pin DIL package. The two devices may again be used entirely independently and share the same electrical characteristics as the low-power CMOS 555.

Pin connecting details for the above devices can be found in Appendix 4.

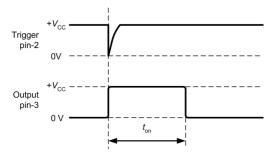

Monostable pulse generator

Fig. 12.3 shows a standard 555 timer operating as a **monostable pulse generator**. The monostable timing period (i.e. the time for which the output is high) is initiated by a falling edge trigger pulse applied to the **trigger** input (pin 2) (see Fig. 12.4).

When this falling edge trigger pulse is received and falls below one-third of the supply voltage, the output of IC2 (Fig. 12.1) goes **high** and the bistable will be placed in the **set** state. The

Figure 12.3 555 monostable configuration. C and R are the timing components

Figure 12.4 555 monostable configuration. C and R are the timing components

inverted Q output of the bistable then goes **low**, TR1 is placed in the **off** (non-conducting) state and the output voltage (pin 3) goes high.

The capacitor, C, then charges through the series resistor, R, until the voltage at the threshold input reaches two-thirds of the supply voltage (V_{cc}). At this point, the output of the upper comparator changes state and the bistable is **reset**. The inverted Q output then goes high, TR1 is driven into conduction and the final output goes **low**. The device then remains in the inactive state until another falling trigger pulse is received.

The trigger and output waveforms produced by the circuit of Fig. 12.3 are shown in Fig. 12.4. The waveform has the following properties:

Time for which output is high: $t_{on} = 1.1 CR$

Recommended trigger pulse width: $t_{\rm tr} < \frac{t_{\rm on}}{4}$

where $t_{\rm on}$ and $t_{\rm tr}$ are in seconds, C is in farads and R is in ohms.

The period of the 555 monostable output can be changed very easily by simply altering the values of the timing resistor, R, and/or timing capacitor, C. Doubling the value of R will double the timing period. Similarly, doubling the value of C will double the timing period.

Values for *C* and *R* can be selected over quite a wide range but it is worth noting that the performance of the timer may become unpredictable if the values of these components are outside the recommended range:

$$C = 470 \text{ pF to } 470 \text{ } \mu\text{F}$$

$$R = 1 \text{ k}\Omega$$
 to 3.3 M Ω

For any particular monostable timing period, the required values for *C* and *R* can be determined from the formula shown earlier or by using the graph shown in Fig. 12.5. The output period can be easily adjusted by making *R* a preset resistor with a value of about twice that of the calculated value.

Example 12.1

Design a timer circuit that will produce a 10 ms pulse when a negative-going trigger pulse is applied to it.

Solution

Using the circuit shown in Fig. 12.4, the value of monostable timing period can be calculated from the formula:

$$t_{op} = 1.1 \ C R$$

We need to choose an appropriate value for C that is in the range stated earlier. Since we require a fairly modest time period we will choose a midrange value for C. This should help to ensure that the value of R is neither too small nor too large. A value of 100 nF should be appropriate and should also be easy to obtain. Making R the subject of the formula and substituting for C = 100 nF gives:

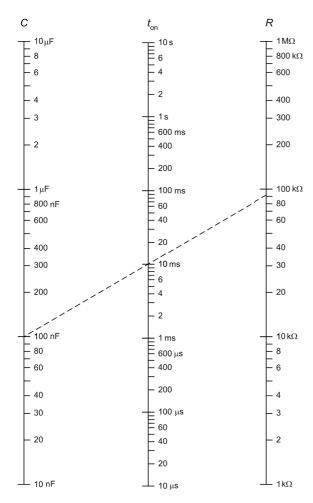
$$R = \frac{t_{\text{on}}}{1.1 \, \text{C}} = \frac{10 \text{ ms}}{1.1 \times 100 \text{ nF}} = \frac{10 \times 10^{-3}}{110 \times 10^{-9}}$$

From which:

$$R = \frac{10}{110} \times 10^6 = 0.091 \times 10^6 \ \Omega = 91 \ \text{k}\Omega$$

Alternatively, the chart shown in Fig. 12.5 can be used.

Example 12.2


Design a timer circuit that will produce a +5V output for a period of 60 s when a 'start' button is operated. The time period is to be aborted when a 'stop' button is operated.

Solution

For the purposes of this question we shall assume that the 'start' and 'stop' buttons both have normally open (NO) actions.

The value of monostable timing period can be calculated from the formula:

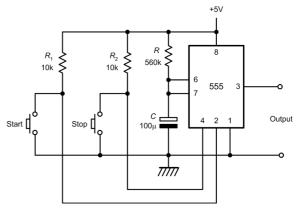
$$t_{op} = 1.1 \ C \ R$$

Figure 12.5 Chart for determining values of C, t_{on} and R for a 555 operating in monostable mode. The dotted line shows how a 10 ms pulse will be produced when C = 100 nF and R = 91 k Ω (see Example 12.1)

We need to choose an appropriate value for C that is in the range stated earlier. Since we require a fairly long time period we will choose a relatively large value of C in order to avoid making the value of R too high. A value of 100 μ F should be appropriate and should also be easy to obtain. Making R the subject of the formula and substituting for C = 100 μ F gives:

$$R = \frac{t_{\text{on}}}{1.1C} = \frac{60 \text{ s}}{1.1 \times 100 \text{ uF}} = \frac{60}{110 \times 10^{-6}}$$

From which:


$$R = \frac{60}{110} \times 10^6 = 0.545 \times 10^6 \ \Omega = 545 \ \text{k}\Omega$$

In practice 560 k Ω (the nearest preferred value – see page 23) would be adequate.

The 'start' button needs to be connected between pin 2 and ground while the 'stop' button needs to be connected between pin 4 and ground. Each of the inputs requires a **pull-up resistor** to ensure that the input is taken high when the switch is not being operated. The precise value of the 'pull-up' resistor is unimportant and a value of 10 k Ω will be perfectly adequate in this application. The complete circuit of the 60 s timer is shown in Fig. 12.6.

Astable pulse generator

Fig. 12.7 shows how the standard 555 can be used as an **astable pulse generator**. In order to understand how this circuit operates, assume that

Figure 12.6 60 s timer (see Example 12.2)

the output (pin 3) is initially high and that TR1 (Fig. 12.1) is in the non-conducting state. The capacitor, *C*, will begin to charge with current supplied by means of series resistors, *R*1 and *R*2.

When the voltage at the **threshold** input (pin 6) exceeds two-thirds of the supply voltage the output of the upper comparator, IC1, will change state and the bistable will become **reset** due to voltage transition that appears at R. This, in turn, will make the inverted Q output go **high**, turning TR1 at the same time. Due to the inverting action of the buffer, IC4, the final output (pin 3) will go **low**.

The capacitor, *C*, will now discharge, with current flowing through *R*2 into the collector of TR1. At a certain point, the voltage appearing at the **trigger** input (pin 2) will have fallen back to one-third of the supply voltage, at which point the lower comparator will change state and the voltage transition at S will return the bistable to its original **set** condition. The inverted Q output then goes low, TR1 switches **off** (no longer conducting), and the output (pin 3) goes **high**. Thereafter, the entire **charge/discharge cycle** is repeated indefinitely.

The output waveform produced by the circuit of Fig. 12.7 is shown in Fig. 12.8. The waveform has the following properties:

Time for which output is high:

$$t_{op} = 0.693 \ C (R_1 + R_2)$$

Time for which output is low:

$$t_{\rm off} = 0.693 \ C \ R_2$$

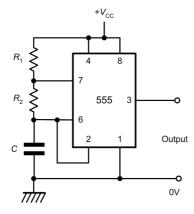


Figure 12.7 555 astable configuration

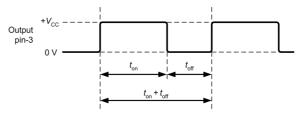


Figure 12.8 Waveforms for a stable operation

Period of output waveform:

$$t = t_{op} + t_{off} = 0.693 \ C (R_1 + 2R_2)$$

Pulse repetition frequency:

p.r.f. =
$$\frac{1.44}{C(R_1 + 2R_2)}$$

Mark to space ratio:

$$\frac{t_{\text{on}}}{t_{\text{off}}} = \frac{R_1 + R_2}{R_2}$$

Duty cycle:

$$\frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} = \frac{R_1 + R_2}{R_1 + 2R_2} \times 100\%$$

Where t is in seconds, C is in farads, R_1 and R_2 are in ohms.

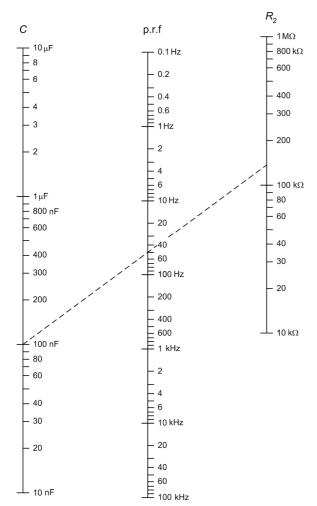
When $R_1 = R_2$ the duty cycle of the astable output from the timer can be found by letting $R = R_1 = R_2$. Hence:

$$\frac{t_{\text{on}}}{t_{\text{off}}} = \frac{R_1 + R_2}{R_2} = \frac{R + R}{R} = \frac{2}{1} = 2$$

In this case the duty cycle will be given by:

$$\frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} = \frac{R + R}{R + 2R} \times 100\% = \frac{2}{3} \times 100\% \approx 67\%$$

The p.r.f. of the 555 astable output can be changed very easily by simply altering the values of R_1 , R_2 and C. The values chosen for R_1 , R_2 and C should normally be selected from within the following ranges in order to provide satisfactory performance:


$$C$$
 = 10 nF to 470 μ F
 R_1 = 1 k Ω to 1 M Ω
 R_2 = 1 k Ω to 1 M Ω

The required values of C, R_1 and R_2 for any required p.r.f. and duty cycle can be determined

from the formulae shown earlier. Alternatively, the graph shown in Fig. 12.9 can be used when $R_{\rm 1}$ and $R_{\rm 2}$ are equal in value (corresponding to a 67% duty cycle).

Square wave generators

Because the high time ($t_{\rm on}$) is always greater than the low time ($t_{\rm off}$), the mark to space ratio produced by a 555 timer can never be made equal to (or less than) unity. This could be a problem if we need to produce a precise square wave in

Figure 12.9 Chart for determining values of C, p.r.f. and R_2 for a 555 operating in astable mode where $R_2 >> R_1$ (i.e. for a square wave output). The dotted line shows how a 50 Hz square wave will be produced when C = 100 nF and R = 144 k Ω (see Example 12.4)

which $t_{\rm on} = t_{\rm off}$. However, by making R_2 very much larger than R_1 , the timer can be made to produce a reasonably symmetrical square wave output (note that the minimum recommended value for R_2 is 1 k Ω – see earlier).

If $R_2 >> R_1$ the expressions for p.r.f. and duty cycle simplify to:

p.r.f.
$$\simeq \frac{0.72}{CR_2}$$

$$\frac{t_{on}}{t_{on}} \simeq \frac{R_2}{2R_2} \times 100\% = \frac{1}{2} \times 100\% = 50\%$$

Example 12.3

Design a pulse generator that will produce a p.r.f. of 10 Hz with a 67% duty cycle.

Solution

Using the circuit shown in Fig. 12.7, the value of p.r.f. can be calculated from:

p.r.f. =
$$\frac{1.44}{C(R_1 + 2R_2)}$$

Since the specified duty cycle is 67% we can make R_1 equal to R_2 . Hence if $R = R_1 = R_2$ we obtain the following relationship:

p.r.f. =
$$\frac{1.44}{C(R+2R)} = \frac{1.44}{3CR} = \frac{0.48}{CR}$$

We need to choose an appropriate value for C that is in the range stated earlier. Since we require a fairly low value of p.r.f. we will choose a value for C of 1 μ F. This should help to ensure that the value of R is neither too small nor too large. A value of 1 μ F should also be easy to obtain. Making R the subject of the formula and substituting for C = 1 μ F gives:

p.r.f. =
$$\frac{1.44}{C(R_1 + 2R_2)}$$

 $R = \frac{480 \times 10^3}{100} = 4.8 \times 10^3 = 4.8 \text{ k}\Omega$

Example 12.4

Design a 5 V 50 Hz square wave generator using a 555 timer.

Solution

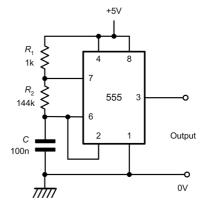
Using the circuit shown in Fig. 12.7, when $R_2 >> R_1$, the value of p.r.f. can be calculated from:

p.r.f.
$$\simeq \frac{0.72}{CR_2}$$

We shall use the minimum recommended value for R_1 (i.e. $10~\mathrm{k}\Omega$) and ensure that the value of R_2 that we calculate from the formula is at least ten times larger in order to satisfy the criteria that R_2 should be very much larger than R_1 . When selecting the value for C we need to choose a value that will keep the value of R_2 relatively large. A value of 100 nF should be about right and should also be easy to locate. Making R_2 the subject of the formula and substituting for $C=100~\mathrm{nF}$ gives:

$$R_2 = \frac{0.72}{\text{p.r.f.} \times C} = \frac{0.72}{50 \times 100 \times 10^{-9}}$$

$$R_2 = \frac{0.72}{5 \times 10^{-6}} = 0.144 \times 10^6 = 144 \text{ k}\Omega$$


Alternatively, the chart shown in Fig. 12.9 can be used.

The value of R_2 is thus more than 100 times larger than the value that we are using for R_1 . As a consequence the timer should produce a good square wave output.

The complete circuit of the 5 V 50 Hz square wave generator is shown in Fig. 12.10.

A variable pulse generator

Fig. 12.11 shows how a variable pulse generator can be constructed using two 555 times (or one 556 dual timer). The first timer, IC1, operates in astable mode while the second timer, IC2, operates in monostable mode. The

Figure 12.10 A 5 V 50 Hz square wave generator (see Example 12.4)

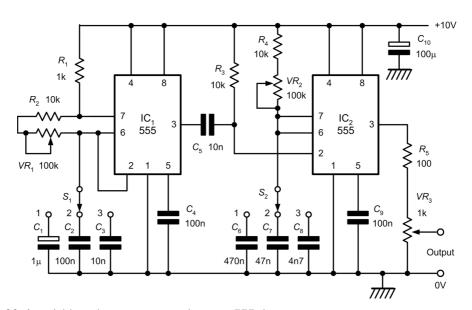


Figure 12.11 A variable pulse generator using two 555 timers

p.r.f. generated by IC1 is adjustable by means of switch selected capacitors, C_1 to C_3 , together with variable resistor, VR_1 . The output from IC1 (pin 3) is fed via C_5 to the trigger input of IC2 (pin 2).

The monostable period of IC2 is adjustable by means of switch selected capacitors, C_6 to C_8 , together with variable resistor, VR_2 . The output from IC2 (pin 3) is fed to the output via VR_2 .

The p.r.f. is adjustable over the range 10 Hz to 10 kHz while pulse widths can be varied from 50 μs to 50 ms. The output voltage is adjustable from 0 V to 10 V. Finally, R5 is included in order to limit the output current and provide a measure of protection in the event of a short-circuit present at the output.

Practical investigation

Objective

To investigate the operation of a 555 monostable timer circuit.

Simulator


Breadboard, 5 V d.c. power supply, 555 timer, resistors of 10 k Ω (two required), 220 Ω , 100 k Ω and 1 M Ω 5% 0.25 W, capacitors of 10 μ F and 100 μ F 16 V, LED, two normally open (NO) pushbutton switches, stopwatch or wristwatch with seconds display.

Procedure

Connect the circuit as shown in Fig. 12.12 with $C = 10 \ \mu\text{F}$ and $R = 100 \ \text{k}\Omega$. Connect the supply and press the 'stop' button. The LED should be off (indicating that the output is at 0 V).

Observe the time display and, at a convenient point, press the 'start' button. The LED should become illuminated after a period of about 1 s (this will probably be too short an interval to be measured accurately). Record the monostable time period (i.e. the time between pressing the 'start' button and the LED becoming illuminated) (see Table 12.2).

Repeat the procedure for each of the remaining *C-R* values shown in Table 12.2. Note that you

Figure 12.12 Monostable timer circuit used for the Practical investigation

can interrupt the timing period at any time by pressing the 'stop' button.

Calculations and graph

Record your results in Table 12.2. For each pair of C-R values calculate the product of C (in μ F) and R (in $M\Omega$). Plot a graph showing corresponding values of monostable time plotted against corresponding values of $C \times R$ using the graph layout shown in Fig. 12.13.

Conclusions

Comment on the shape of the graph. Is this what you would expect? Measure the slope of the graph and use this to confirm the relationship for the monostable timing period quoted on page 230. If the graph is not linear can you suggest any reasons for this?

Table 12.2 Table of results for the monostable timer circuit

С	R	Time
10 μF	100 kΩ	
10 μF	220 kΩ	
10 μF	470 kΩ	
10 μF	1 M kΩ	
100 μF	220 kΩ	
100 μF	470 kΩ	
100 μF	1 M kΩ	

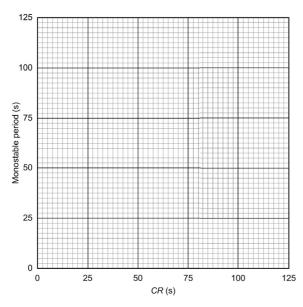


Figure 12.13 Graph layout for plotting the results

Further work

Connect a digital multimeter on the 20 V d.c. range so that you can accurately measure the d.c. voltage that appears between pin 6 (threshold input) and 0 V. With $C=100~\mu F$ and $R=1~M\Omega$ press the 'start' button and then measure the voltage at pin 6 at intervals of 10 s over the range 0 to 120 s. Particularly note the voltage reached at the end of the monostable timing period (this should be exactly two-thirds of the supply voltage). Plot a graph of voltage against time and justify the shape of this graph.

Important formulae introduced in this chapter

Monostable 555 timer: (page 230)

$$t_{on} = 1.1 \ CR$$

Astable 555 timer:

(page 232)

$$t_{op} = 0.693 \ C(R_1 + R_2)$$

$$t_{aff} = 0.693 \ CR_{a}$$

$$t = 0.693 \ C(R_1 + 2R_2)$$

p.r.f. =
$$\frac{1.44}{C(R_1 + 2R_2)}$$

 $\frac{t_{on}}{t_{off}} = \frac{R_1 + R_2}{R_2}$
 $\frac{t_{on}}{t_{on} + t_{off}} = \frac{R_1 + R_2}{R_1 + 2R_2} \times 100\%$

When $R_2 \gg R_1$: (page 233)

p.r.f.
$$\simeq \frac{0.72}{CR_0}$$

$$\frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} \simeq 50\%$$

Problems

- 12.1 Design a timer circuit that will produce a 10 V 2 ms pulse when a 10 V negative-going trigger pulse is applied to it.
- 12.2 Design a timer circuit that will produce time periods that can be varied from 1 s to 10 s. The timer circuit is to produce a +12V output.
- Design a timer circuit that will produce a 67% duty cycle output at 400 Hz.
- 12.4 Design a timer circuit that will produce a square wave output at 1 kHz.
- 12.5 Refer to the variable pulse generator circuit shown in Fig. 12.11. Identify the component(s) that:
 - (a) provides variable adjustment of pulse width
 - (b) provides decade range selection of pulse width
 - (c) limits the range of variable adjustment of pulse width
 - (d) provides variable adjustment of p.r.f.
 - (e) provides decade range selection of p.r.f.
 - (f) limits the range of variable adjustment of p.r.f.
 - (g) provides variable adjustment of output amplitude
 - (h) protects IC2 against a short-circuit connected at the output

- (i) removes any unwanted signals appearing on the supply rail
- (j) forms the trigger pulse required by the monostable stage.
- 12.6 A 555 timer is rated for a maximum output current of 120 mA. What is the minimum value of load resistance that can

be used if the device is to be operated from a 6 V d.c. supply?

Answers to these problems appear on page 452.

Test equipment and measurements

Chapter summary

This chapter is about making practical measurements on real electronic circuits. It describes and explains the use of the basic items of test equipment that you will find in any electronics laboratory or workshop. We begin the chapter by looking at how we use a moving coil meter to measure voltage, current and resistance and then quickly move on to more complex multi-range analogue and digital instruments and the oscilloscope. To help you make use of these test instruments we have included some DOs and DON'Ts. If you intend to become an electronic engineer these will become your 'tools of the trade'. Being able to use them effectively is just the first step on the ladder!

Meters

Straightforward measurements of voltage, current and resistance can provide useful information on the state of almost any circuit. To get the best from a meter it is not only necessary to select an appropriate measurement function and range, but also to be aware of the limitations of the instrument and the effect that it might have on the circuit under investigation. When fault finding, it is interpretation that is put on the meter readings rather than the indications themselves.

Figs 13.2(a) and 13.2(b), respectively, show the circuit of a simple voltmeter and a simple ammeter. Each instrument is based on the moving coil indicator shown in Fig. 13.1. The voltmeter consists of a **multiplier** resistor connected in series with the basic moving coil movement while the ammeter consists of a **shunt** resistor connected in parallel with the basic moving coil instrument. When determining the value of multiplier or shunt resistance (R_m and $R_{\rm s}$, respectively, in Fig. 13.2) it is important to remember that the coil of the moving coil meter also has a resistance. We have shown this as a resistor, r, connected with the moving coil in Fig. 13.3. In both cases, the current required to produce full-scale deflection of the meter movement is I_m .

In the voltmeter circuit shown in Fig. 13.3(a):

$$V = I_m R_m + I_m r$$

from which:

$$I_{\rm m} R_{\rm m} = V - I_{\rm m} r$$

Thus:

$$R_{\rm m} = \frac{V - I_{\rm m} r}{I_{\rm m}}$$

In the ammeter circuit shown in Fig. 13.3(b):

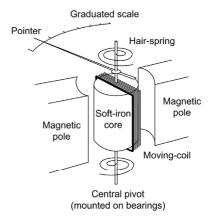
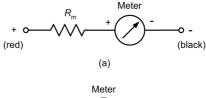
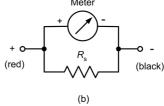
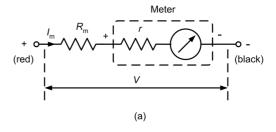
$$(I-I_{\rm m})$$
 $R_{\rm s} = I_{\rm m} r$

from which:

$$R_{\rm s} = \frac{I_{\rm m}r}{I-I}$$

Example 13.1

A moving coil meter has a full-scale deflection current of 1 mA. If the meter coil has a resistance

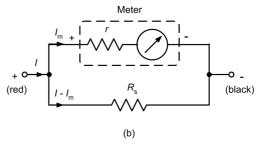

Figure 13.1 A moving coil meter movement

Figure 13.2 A moving coil meter connected (a) as a voltmeter and (b) an ammeter

Figure 13.3 Circuit for determining the values of (a) a multiplier resistor and (b) a shunt resistor

of 500 Ω , determine the value of multiplier resistor if the meter is to be used as a voltmeter reading 0 to 5 V.

Solution

Using
$$R_{\rm m} = \frac{V - I_{\rm m}r}{I_{\rm m}}$$
 gives:

$$R_{\rm m} = \frac{5 - (1 \times 10^{-3} \times 500)}{1 \times 10^{-3}} = \frac{5 - 0.5}{1 \times 10^{-3}}$$

$$= 4.5 \times 10^{3} = 4.5 \text{ kO}$$

Example 13.2

A moving coil meter has a full-scale deflection current of 10 mA. If the meter coil has a resistance of 40 Ω , determine the value of shunt resistor if the meter is to be used as an ammeter reading 0 to 100 mA.

Solution

Using
$$R_s = \frac{I_m r}{I - I_m}$$
 gives:

$$R_s = \frac{10 \times 10^{-3} \times 40}{100 \times 10^{-3} - 10 \times 10^{-3}} = \frac{400 \times 10^{-3}}{90 \times 10^{-3}}$$

$$= \frac{400}{90} = 4.44 \Omega$$

The circuit of a simple ohmmeter is shown in Fig. 13.4. The battery is used to supply a current that will flow in the unknown resistor, $R_{\rm x}$, which is indicated on the moving coil meter. Before use, the variable resistor, RV, must be adjusted in order to produce full-scale deflection (corresponding to zero on the ohm scale). Zero resistance thus corresponds to maximum indication. Infinite resistance (i.e. when the two terminals are left open-circuit) corresponds to minimum indication. The ohm scale is thus reversed when compared with a voltage or current scale. The scale is also non-linear, as shown in Fig. 13.5.

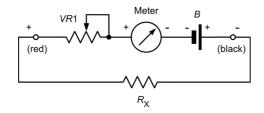


Figure 13.4 A simple ohmmeter

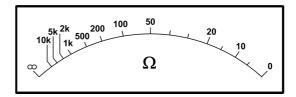


Figure 13.5 A typical ohmmeter scale

Multi-range meters

For practical measurements on electronic circuits it is often convenient to combine the functions of a voltmeter, ammeter and ohmmeter into a single instrument (known as a multi-range meter or simply a **multimeter**). In a conventional multimeter as many as eight or nine measuring functions may be provided with up to six or eight ranges for each measuring function. Besides the normal voltage, current and resistance functions, some meters also include facilities for checking transistors and measuring capacitance. Most multi-range meters normally operate from internal batteries and thus they are independent of the mains supply. This leads to a high degree of portability which can be all-important when measurements are to be made away from a laboratory or workshop.

Displays

Analogue instruments employ conventional moving coil meters and the display takes the form of a pointer moving across a calibrated scale. This arrangement is not so convenient to use as that employed in digital instruments because the position of the pointer is rarely exact and may require interpolation. Analogue instruments do, however, offer some advantages, not the least of which lies in the fact that it is very easy to make adjustments to a circuit while observing the relative direction of the pointer; a movement in one direction represents an increase and in the other a decrease. Despite this, the principal disadvantage of many analogue meters is the rather cramped, and sometimes confusing, scale calibration. To determine the exact reading requires first an estimation of the pointer's position and then the application of some mental arithmetic based on the range switch setting.

Digital meters, on the other hand, are usually extremely easy to read and have displays that are clear, unambiguous and capable of providing a very high resolution. It is thus possible to distinguish between readings that are very close. This is just not possible with an analogue instrument. Typical analogue and digital meters are shown in Fig. 13.6.

The type of display used in digital multi-range meters is either the liquid crystal display (LCD) or the light emitting diode (LED). The former type requires very little electrical power and thus is to be preferred on the grounds of low battery consumption. LCD displays are, however, somewhat difficult to read under certain light conditions and, furthermore, the display response can be rather slow. LED displays can be extremely bright but unfortunately consume considerable power and this makes them unsuitable for use in battery-powered portable instruments.

Loading

Another very significant difference between analogue and digital instruments is the input resistance that they present to the circuit under investigation when taking voltage measurements. The resistance of a reasonable quality analogue multi-range meter can be as low as 50 k Ω on 2.5 V. With a digital instrument, on the other hand, the input resistance is typically 10 M Ω on the 2 V range. The digital instrument is thus to be

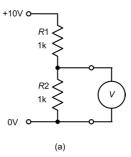


Figure 13.6 Typical analogue (left) and digital (right) multimeters

preferred when accurate readings are to be taken. This is particularly important when measurements are to be made on high-impedance circuits, as illustrated by the following:

Two multi-range meters are used to measure the voltage produced by the two potential dividers shown in Fig. 13.7. One of the meters is an analogue type having an internal resistance of 10 kW on the 10 V range. The other is a digital type that has the much higher internal resistance of 10 MW. The two potential dividers each consist of resistors or identical value. However, the potential divider of Fig. 13.7(b) has a much lower resistance than that of Fig. 13.7(a). In both cases the 'true' voltage produced by the potential divider should be half the supply, i.e. exactly 5 V. The actual readings obtained from the instruments are shown in Table 13.1.

The large difference in the case of Fig. 13.7(b) illustrates the effect of voltmeter **loading** on a high-resistance circuit. An appreciable current is drawn away from the circuit into the measuring instrument. Clearly this is a very undesirable effect!

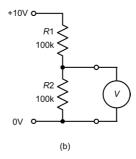


Figure 13.7 Examples of voltmeter loading: (a) a low-resistance circuit (b) a high-resistance circuit

Table 13.1 Readings obtained from Fig. 13.7

Meter	High-resistance circuit Fig. 13.7(a)	Low-resistance circuit Fig. 13.7(b)
Analogue type (100 k Ω)	4.9 V	3.3 V
Digital type (10 MΩ)	4.99 V	4.97 V

Sensitivity

The sensitivity of an analogue meter may be expressed in several ways. One is to specify the basic **full-scale deflection** (f.s.d.) current of the moving coil meter. This is typically 50 μ A or less. An alternative method is that of quoting an **ohms-per-volt** rating. This is, in effect, the resistance presented by the meter when switched to the 1 V range.

The **ohms-per-volt** rating is inversely proportional to the basic full-scale sensitivity of the meter movement and, to determine the resistance of a meter on a particular voltage range, it is only necessary to multiply the range setting by the 'ohms-per-volt' rating. Table 13.2 shows how meter f.s.d. and ohms-per-volt are related. From this we can conclude that:

Meter f.s.d. =
$$\frac{1}{\text{Ohms-per-volt}}$$

or

Ohms-per-volt =
$$\frac{1}{\text{Meter f.s.d.}}$$

Table 13.2 Relationship between meter sensitivity and ohms-per-volt

Meter f.s.d.	Ohms-per-volt
10 μΑ	100 kΩ /V
20 μΑ	50 kΩ /V
50 μΑ	20 kΩ /V
100 μΑ	10 kΩ /V
200 μΑ	5 kΩ /V
500 μΑ	2 kΩ /V
1 mA	1 kΩ /V

Example 13.3

A meter has a full-scale deflection of 40 μ A. What will its ohms-per-volt rating be?

Solution

Ohms-per-volt =
$$\frac{1}{\text{Meter f.s.d.}} = \frac{1}{40 \times 10^{-6}} = 25 \text{k}\Omega$$

Example 13.4

A 20 k Ω /V meter is switched to the 10 V range. What current will flow in the meter when it is connected to a 6 V source?

Solution

The resistance of the meter will be given by:

$$R_{\rm m} = 10 \times 20 \text{ k}\Omega = 200 \text{ k}\Omega$$

The current flowing in the meter will thus be given by:

$$I_{\rm m} = \frac{6 \text{ V}}{R_{\rm m}} = \frac{6}{200 \times 10^3} = 30 \times 10^{-6} = 30 \text{ }\mu\text{A}$$

Digital multi-range meters

Low-cost digital multi-range meters have been made possible by the advent of mass-produced LSI devices and liquid crystal displays. A 3½-digit display is the norm and this consists of three full digits that can display '0' to '9' and a fourth (most significant) digit which can only display '1'. Thus, the maximum display indication, ignoring the range switching and decimal point, is 1999; anything greater over-ranges the display.

The **resolution** of the instrument is the lowest increment that can be displayed and this would normally be an increase or decrease of one unit in the last (least significant) digit. The **sensitivity** of a digital instrument is generally defined as the smallest increment that can be displayed on the lowest (most sensitive) range. Sensitivity and resolution are thus not quite the same. To put this into context, consider the following example:

A digital multi-range meter has a 3½-digit display. When switched to the 2 V range, the maximum indication would be 1.999 V and any input of 2 V, or greater, would produce an over-range indication. On the 2 V range, the instrument has a resolution of 0.001 V (or 1 mV). The lowest range of the instrument is 200 mV (corresponding to

a maximum display of 199.9 mV) and thus the meter has a sensitivity of 0.1 mV (or 100 μ V).

Nearly all digital meters have automatic zero and polarity indicating facilities and some also have **autoranging**. This feature, which is only found in the more expensive instruments, automatically changes the range setting so that maximum resolution is obtained without over-ranging. There is thus no need for manual operation of the range switch once the indicating mode has been selected. This is an extremely useful facility since it frees you from the need to make repeated adjustments to the range switch while measurements are being made.

Example 13.5

A digital multi-range meter has a 4½-digit display. When switched to the 200 V range, determine:

- (a) the maximum indication that will appear on the display
- **(b)** the resolution of the instrument.

Solution

- (a) The maximum indication that will appear on the display is 199.99 V
- **(b)** The resolution of the instrument will be 0.01 V or 10 mV.

Using an analogue multi-range meter

Fig. 13.8 shows the controls and display provided by a simple analogue multi-range meter. The range selector allows you to select from a total of 20 ranges and six measurement functions. These functions are:

- ▶ d.c. voltage (DC, V)
- ▶ d.c. current (DC, mA)
- ▶ a.c. voltage (AC, V)
- ► Resistance (OHM)
- ► Continuity test (BUZZ)
- ▶ Battery check (BAT)

Note that more complex instruments may have several more ranges.

D.C. voltage measurement

Fig. 13.9 shows how to make d.c. voltage measurements. In both cases, the red and black test leads are connected to the '+' and '-' sockets, respectively. In Fig. 13.9, the range selector is set to DCV, 50 V. The pointer is reading just less than 45 on the range that has 50 as its full-scale indication (note that there are three calibrated voltage scales with maximum indications of 10 V, 50 V and 250 V, respectively. The reading indicated is approximately 45 V.

D.C. current measurement

Fig. 13.10 shows how to make a d.c. current measurement. Once again, the red and black test leads are connected to the '+' and '-' sockets, respectively. The range selector is set to DC, 5 mA. In Fig. 13.10, the pointer is reading between 35 and 40 (and is actually a little closer to 35 than it is to 40) on the range that has 50 as its full-scale indication. The actual reading indicated is thus approximately 3.7 mA.

D.C. high-current measurement

In common with many simple multi-range meters, both analogue and digital, the high current range (e.g. 10 A) is not only selected using the range selector switch but a separate input connection must also be made. The reason for this is simply that the range switch and associated wiring is not designed to carry a high current. Instead, the high-current shunt is terminated separately at its own '10 A' socket.

Fig. 13.11 shows the connections and range selector settings to permit high-current d.c. measurement. The range selector is set to DC 10 A and the red and black test leads are connected to '10 A' and '-', respectively. The pointer is reading mid-way between 9 and 10 on the range that has 10 as its full-scale indication. The actual reading indicated is thus 9.5 A.

A.C. voltage measurement

Fig. 13.12 shows how to make a.c. voltage measurements. Once again, the red and black test leads are connected to the '+' and '-' sockets, respectively. In Fig. 13.12, the range selector is set to AC, 10 V. The pointer is reading

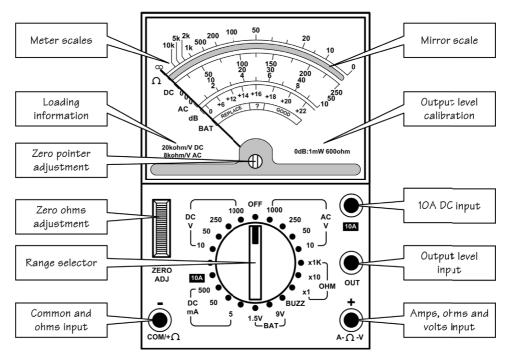


Figure 13.8 Analogue multimeter display and controls

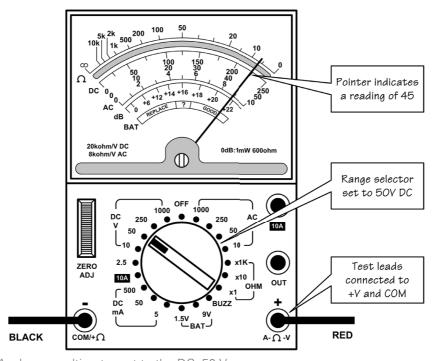


Figure 13.9 Analogue multimeter set to the DC, 50 V range

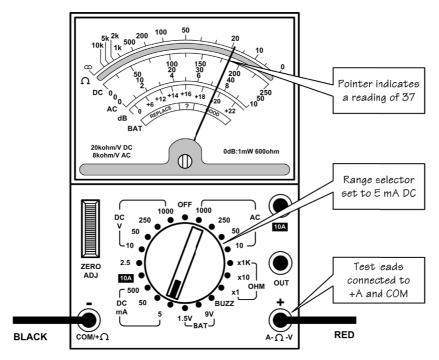


Figure 13.10 Analogue multimeter set to the DC, 5 mA range

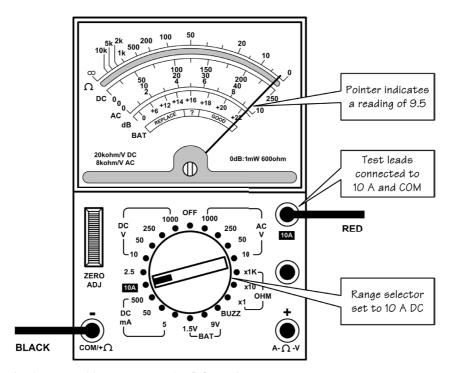


Figure 13.11 Analogue multimeter set to the DC, 10 A range

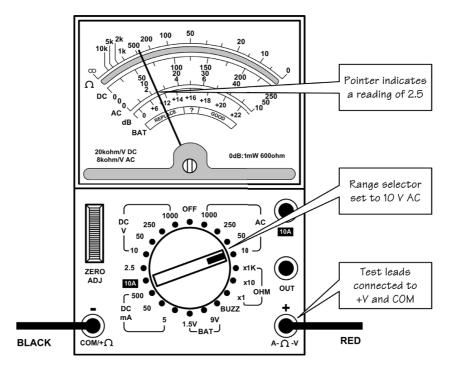


Figure 13.12 Analogue multimeter set to the AC, 10 V range

mid-way between 2 and 3 and the indicated reading is approximately 2.5 V.

Output level measurement

Fig. 13.13 shows how to make output level measurements. The red and black test leads are respectively connected to 'OUT' and '-'. The range selector is set to AC, 10 V (note that the output level facility is actually based on a.c. voltage measurement).

Output level indications are indicated in decibels (dB) where 0 dB (the **reference level**) corresponds to a power level of 1 mW in a resistance of 600 Ω . The pointer is reading mid-way between +18 and +20 on the dB scale and the indicated reading is +19 dB.

Resistance

Fig. 13.14 shows how to make resistance measurements. In all three cases, the red and black test leads are connected to the '+' and '-' sockets, respectively. Before making any measurements it is absolutely essential to zero the meter. This is achieved by shorting the test leads together and adjusting the ZERO ADJ

control until the meter reads full-scale (i.e. zero on the ohm scale). In Fig. 13.14 the range selector is set to OHM, $\times 1$. The pointer is reading mid-way between 0 and 10 and the resistance indicated is approximately 5 Ω .

DOs and DON'Ts of using an analogue multimeter

DO ensure that you have selected the correct range and measuring function before attempting to connect the meter into a circuit.

DO select a higher range than expected and then progressively increase the sensitivity as necessary to obtain a meaningful indication.

DO remember to zero on the ohm range before measuring resistance.

DO switch the meter to the 'off' position (if one is available) before attempting to transport the meter.

DO check and, if necessary, replace the internal batteries regularly.

DO use properly insulated test leads and prods.

DON'T attempt to measure resistance in a circuit that has the power applied to it.

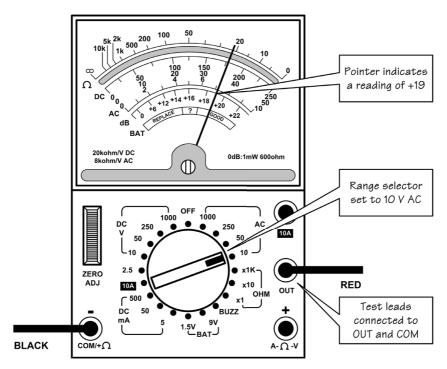


Figure 13.13 Analogue multimeter set to the dB (output level) range

DON'T rely on voltage readings made on highimpedance circuits (the meter's own internal resistance may have a significant effect on the voltages that you measure).

DON'T rely on voltage and current readings made on circuits where high-frequency signals may be present (in such cases an analogue meter may produce readings that are wildly inaccurate or misleading).

DON'T subject the instrument to excessive mechanical shock or vibration (this can damage the sensitive meter movement).

DON'T leave the instrument for very long periods without removing the batteries (these may leak and cause damage).

Using a digital multi-range meter

Digital multi-range meters offer a number of significant advantages when compared with their more humble analogue counterparts. The display fitted to a digital multi-range meter usually consists of a 3½-digit seven-segment display –

the ½ simply indicates that the first digit is either blank (zero) or 1. Consequently, the maximum indication on the 2 V range will be 1.999 V and this shows that the instrument is capable of offering a resolution of 1 mV on the 2 V range (i.e. the smallest increment in voltage that can be measured is 1 mV). The resolution obtained from a comparable analogue meter would be of the order of 50 mV or so, and thus the digital instrument provides a resolution that is many times greater than its analogue counterpart.

Fig. 13.15 shows the controls and display provided by a simple digital multi-range meter. The mode switch and range selector allow you to select from a total of 20 ranges and eight measurement functions. These functions are:

- d.c. voltage (DC, V)
- d.c. current (DC, A)
- ▶ a.c. voltage (AC, V)
- ▶ a.c. current (AC, A)
- ► Resistance (OHM)
- ► Capacitance (CAP)
- Continuity test (buzzer)
- ► Transistor current gain (h_{EE})

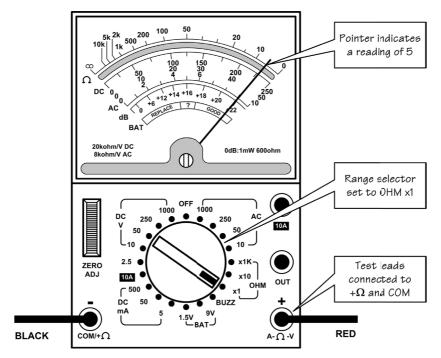


Figure 13.14 Analogue multimeter set to the OHM, x1 range

D.C. voltage measurement

Fig. 13.16 shows how to make d.c. voltage measurements using a digital multi-range meter. The red and black test leads are connected to the 'V-OHM' and 'COM' sockets, respectively. In Fig. 13.6 the mode switch and range selector are set to DCV, 200 V, and the display indicates a reading of 124.5 V.

D.C. current measurements

Fig. 13.17 shows how to make a d.c. current measurement. Here, the red and black test leads are connected to the 'mA' and 'COM' sockets, respectively. The mode switch and range selectors are set to DC, 200 mA, and the display indicates a reading of 85.9 mA.

D.C. high-current measurement

In common with simple analogue multi-range meters, the meter uses a shunt which is directly connected to a separate '10 A' terminal. Fig. 13.18 shows the connections, mode switch and range selector settings to permit high-current

d.c. measurement. The mode switch and range selectors are set to DC, 2,000 mA (2 A) and the red and black test leads are connected to '10 A' and 'COM', respectively. The display indicates a reading of 2.99 A.

A.C. voltage measurement

Fig. 13.19 shows how to make a.c. voltage measurements. Once again, the red and black test leads are connected to the 'V-OHM' and 'COM' sockets, respectively. In Fig. 13.19 the mode switch and range selectors are set to AC, 10 V, and the display indicates a reading of 1.736 V.

Resistance measurement

Fig. 13.20 shows how to make resistance measurements. As before, the red and black test leads are respectively connected to 'V-OHM' and 'COM'. In Fig. 13.20 the mode switch and range selectors are set to OHM, 200Ω , and the meter indicates a reading of 55.8 Ω . Note that it is not necessary to 'zero' the meter by shorting the test

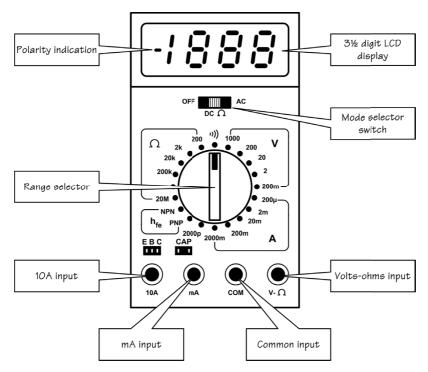


Figure 13.15 Digital multimeter display and controls

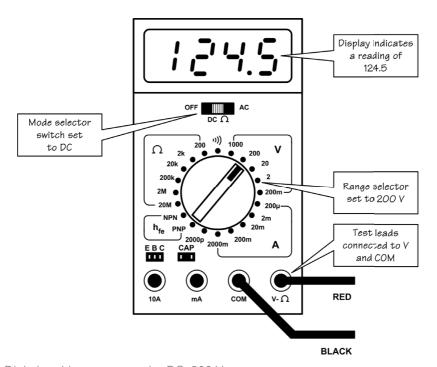


Figure 13.16 Digital multimeter set to the DC, 200 V range

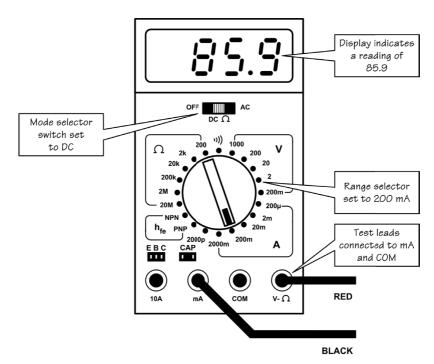


Figure 13.17 Digital multimeter set to the DC, 200 mA range

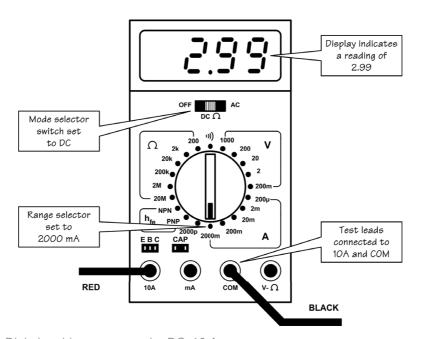


Figure 13.18 Digital multimeter set to the DC, 10 A range

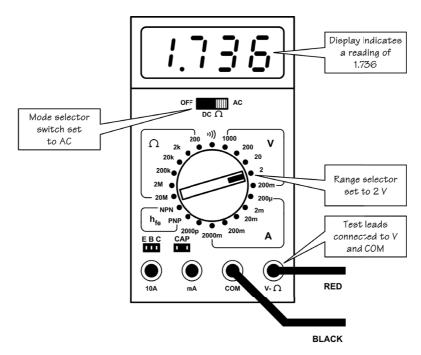


Figure 13.19 Digital multimeter set to the AC, 2 V range

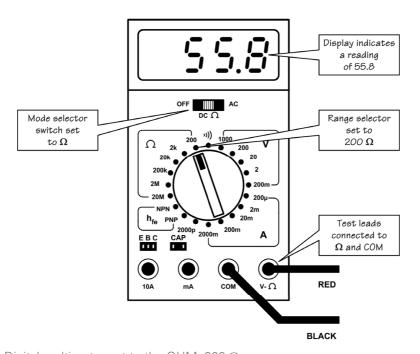


Figure 13.20 Digital multimeter set to the OHM, 200 Ω range

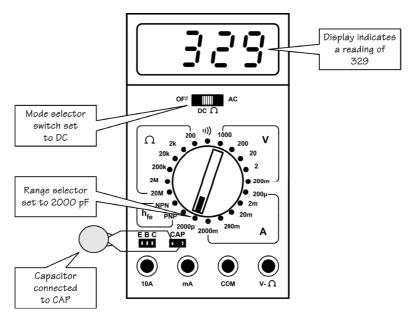


Figure 13.21 Digital multimeter set to the capacitance, 2,000 pF range

probes together before taking any measurements (as would be the case with an analogue meter).

Capacitance measurement

Many modern digital multi-range meters incorporate capacitance measuring although this may be limited to just one or two ranges. Fig. 13.21 shows how to carry out a capacitance measurement. The capacitor on test is inserted into the two-way connector marked 'CAP' while the mode switch and range selector controls are set to DC, 2,000 pF. The display indication shown in Fig. 13.21 corresponds to a capacitance of 329 pF.

Transistor current gain ($h_{\rm FE}$) measurement Many modern digital multi-range meters also provide some (fairly basic) facilities for checking transistors. Fig. 13.22 shows how to measure the current gain ($h_{\rm FE}$) of an NPN transistor (see page 101). The transistor is inserted into the three-way connector marked 'EBC', taking care to ensure that the emitter lead is connected to 'E', the base lead to 'B' and the collector lead to 'C'. The mode switch and range selector controls are set to DC, NPN respectively. The display

indication in Fig. 13.22 shows that the device has a current gain of 93. This means that, for the device in question, the ratio of collector current ($I_{\rm C}$) to base current ($I_{\rm B}$) is 93.

Connecting a meter into a circuit

Fig. 13.23 shows how a meter is connected to read the voltages and currents present at various points in a simple transistor audio amplifier.

- (a) At A, the supply current is measured by removing the **supply rail fuse** and inserting the meter in its place. A suitable meter range is 2 A, DC.
- (b) At B, the collector current for TR4 is measured by removing the service link and inserting the meter in its place. A suitable meter range is 2 A, DC.
- (c) At C, the emitter current for TR4 can be measured by connecting the meter across the emitter resistor, R11, and measuring the voltage drop across it. The emitter current can then be calculated using Ohm's Law. This can be much quicker than disconnecting the emitter lead and inserting the meter switched to the current range. A suitable range for the

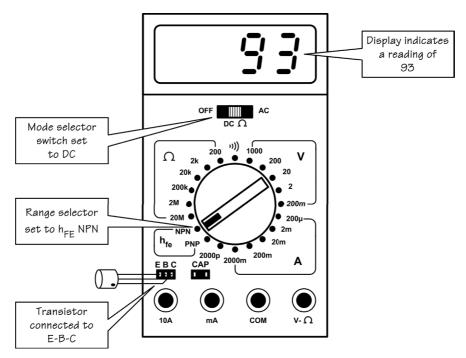


Figure 13.22 Digital multimeter set to the transistor current gain, NPN range

meter is 2 V, DC (note that 2 V is dropped across 1 Ω when a current of 2 A is flowing).

- (d) At D, the voltage at the junction of R11 and R12 is measured by connecting the meter between the junction of R11 and R12 and common/ground. A suitable meter range is 20 V, DC.
- (e) At E, the base-emitter voltage for TR2 is measured by connecting the meter with its positive lead to the base of TR2 and its negative lead to the emitter of TR2. A suitable meter range is 2 V, DC.

DOs and DON'Ts of using a digital multimeter
DO ensure that you have selected the correct

range and measuring function before attempting to connect the meter into a circuit.

DO select a higher range than expected and then progressively increase the sensitivity as necessary to obtain a meaningful indication.

DO switch the meter to the 'off' position in order to conserve battery life when the instrument is not being used.

DO check and, if necessary, replace the internal battery regularly.

DO use properly insulated test leads and prods.

DO check that a suitably rated fuse is used in conjunction with the current ranges (if the current ranges aren't working it's probably the fuse that's blown!).

DON'T attempt to measure resistance in a circuit that has the power applied to it.

DON'T rely on voltage and current readings made on circuits where high-frequency signals may be present (as with analogue instruments, digital meters may produce readings that are wildly inaccurate or misleading in such circumstances).

DON'T rely on measurements made when voltage/current is changing or when a significant amount of a.c. may be present superimposed on a d.c. level.

The oscilloscope

An oscilloscope is an extremely comprehensive and versatile item of test equipment which can be used in a variety of measuring applications, the most important of which is the display of time-related voltage waveforms.

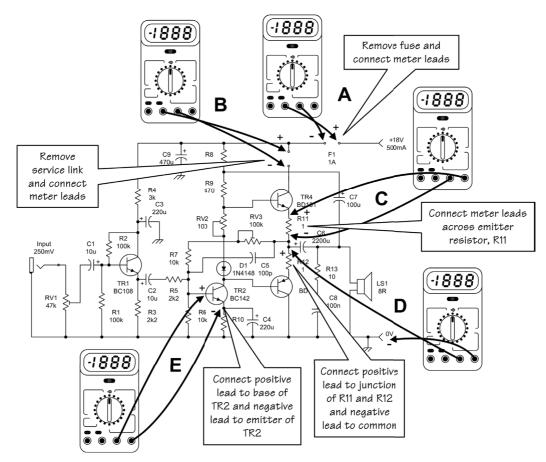
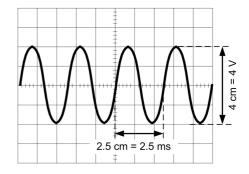



Figure 13.23 Connecting a meter to display currents and voltages in a simple audio amplifier

The oscilloscope display is provided by a **cathode ray tube** (CRT) that has a typical screen area of 8 cm \times 10 cm. The CRT is fitted with a **graticule** that may either be integral with the tube face or a separate translucent sheet. The graticule is usually ruled with a 1 cm grid to which further bold lines may be added to mark the major axes on the central viewing area. Accurate voltage and time measurements may be made with reference to the graticule, applying a scale factor derived from the appropriate range switch.

A word of caution is appropriate at this stage, however. Before taking meaningful measurements from the CRT screen it is absolutely essential to ensure that the front panel variable controls are set in the **calibrate** (CAL) position. Results will almost certainly be inaccurate if this is not the case!

The use of the graticule is illustrated by the following example:

Timebase: 1 ms/cm Vertical attenuator: 1 V/cm

Figure 13.24 Using an oscilloscope graticule

An oscilloscope screen is depicted in Fig. 13.24. This diagram is reproduced actual size and the fine graticule markings are shown every 2 mm along the central vertical and horizontal axes.

The oscilloscope is operated with all relevant controls in the 'CAL' position. The timebase (horizontal deflection) is switched to the 1 ms/cm range and the vertical attenuator (vertical deflection) is switched to the 1 V/cm range. The overall height of the trace is 4 cm and thus the peak–peak voltage is $4 \times 1 \text{ V} = 4 \text{ V}$. Similarly, the time for one complete cycle (period) is $2.5 \times 1 \text{ ms} = 2.5 \text{ ms}$. One further important piece of information is the shape of the waveform that, in this case, is sinusoidal.

The front panel layout for a typical general-purpose two-channel oscilloscope is shown in Figs 13.25 and 13.26. The controls and adjustments are summarized in Table 13.3

Using an oscilloscope

An oscilloscope can provide a great deal of information about what is going on in a circuit. In effect, it allows you to 'see' into the circuit, displaying waveforms that correspond to the

signals that are present. The procedure and adjustments differ according to the type of waveform being investigated and whether the oscilloscope is being used to display a single waveform (i.e. single-channel operation) or whether it is being used to display two waveforms simultaneously (i.e. dual-channel operation).

Sinusoidal waveforms (single-channel operation)

The procedure for displaying a repetitive sine wave waveform is shown in Fig. 13.27. The signal is connected to the Channel 1 input (with 'AC' input selected) and the mode switch in the Channel 1 position. 'Channel 1' must be selected as the trigger source and the trigger level control adjusted for a stable display. Where accurate measurements are required it is essential to ensure that the 'Cal' position is selected for both the variable gain and time controls.

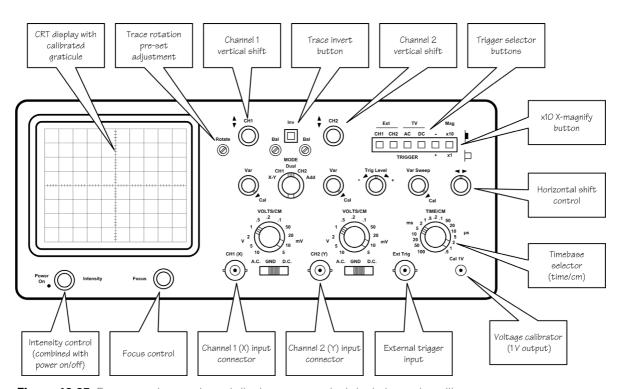


Figure 13.25 Front panel controls and displays on a typical dual-channel oscilloscope

Table 13.3 Oscilloscope controls and adjustments

Control	Adjustment
Cathode ray tube display	
Focus	Provides a correctly focused display on the CRT screen.
Intensity	Adjusts the brightness of the display.
Astigmatism	Provides a uniformly defined display over the entire screen area and in both x and y directions. The control is normally used in conjunction with the focus and intensity controls.
Trace rotation	Permits accurate alignment of the display with respect to the graticule.
Scale illumination	Controls the brightness of the graticule lines.
Horizontal deflection system	
Timebase (time/cm)	Adjusts the timebase range and sets the horizontal time scale. Usually this control takes the form of a multi-position rotary switch and an additional continuously variable control is often provided. The 'CAL' position is usually at one, or other, extreme setting of this control.
Stability	Adjusts the timebase so that a stable displayed waveform is obtained.
Trigger level	Selects the particular level on the triggering signal at which the timebase sweep commences.
Trigger slope	This usually takes the form of a switch that determines whether triggering occurs on the positive- or negative-going edge of the triggering signal.
Trigger source	This switch allows selection of one of several waveforms for use as the timebase trigger. The options usually include an internal signal derived from the vertical amplifier, a 50 Hz signal derived from the supply mains, and a signal which may be applied to an external trigger input.
Horizontal position	Positions the display along the horizontal axis of the CRT.
Vertical deflection system	
Vertical attenuator (V/cm)	Adjusts the magnitude of the signal attenuator (V/cm) displayed and sets the vertical voltage scale. This control is invariably a multi-position rotary switch; however, an additional variable gain control is sometimes also provided. Often this control is concentric with the main control and the 'CAL' position is usually at one, or other, extreme setting of the control.
Vertical position	Positions the display along the vertical axis of the CRT.
a.cd.cground	Normally an oscilloscope employs d.c. coupling throughout the vertical amplifier; hence a shift along the vertical axis will occur whenever a direct voltage is present at the input. When investigating waveforms in a circuit one often encounters a.c. superimposed on d.c. levels; the latter may be removed by inserting a capacitor in series with the signal. With the a.cd.cground switch in the a.c. position a capacitor is inserted in the input lead, whereas in the d.c. position the capacitor is shorted. If ground is selected, the vertical input is taken to common (0 V) and the oscilloscope input is left floating. This last facility is useful in allowing the accurate positioning of the vertical position control along the central axis. The switch may then be set to d.c. and the magnitude of any d.c. level present at the input may be easily measured by examining the shift along the vertical axis.
Chopped-alternate	This control, which is only used in dual-beam oscilloscopes, provides selection of the beam splitting mode. In the chopped position, the trace displays a small portion of one vertical channel waveform followed by an equally small portion of the other. The traces are, in effect, sampled at a relatively fast rate, the result being two apparently continuous displays. In the alternate position, a complete horizontal sweep is devoted to each channel alternately.

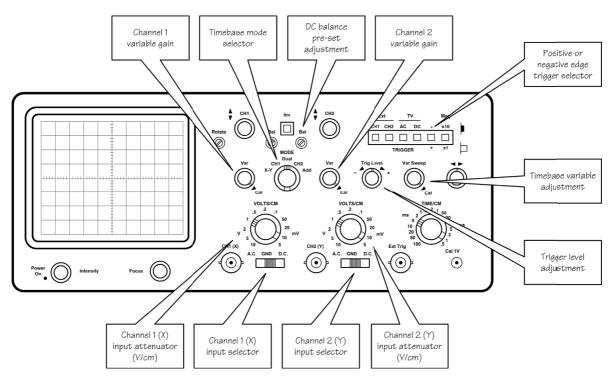


Figure 13.26 Front panel controls and displays on a typical dual-channel oscilloscope

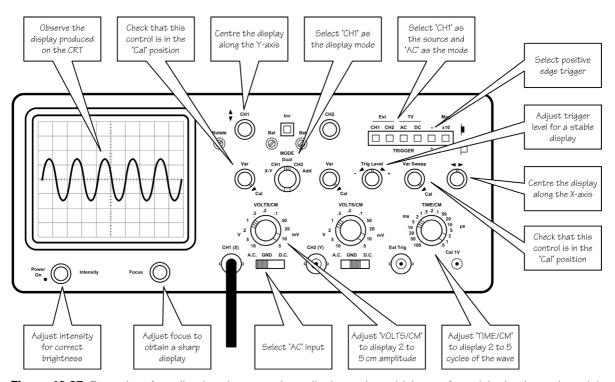


Figure 13.27 Procedure for adjusting the controls to display a sinusoidal waveform (single-channel mode)

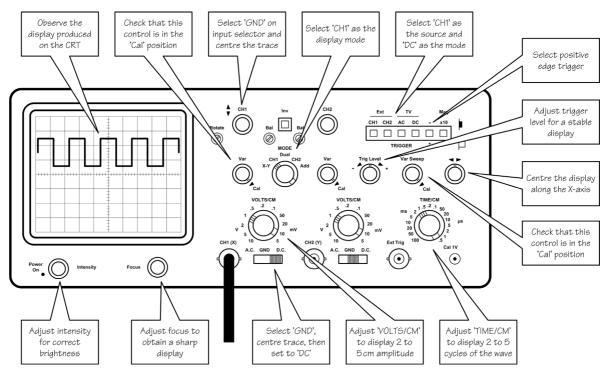


Figure 13.28 Procedure for adjusting the controls to display a square waveform (single-channel mode)

Square waveforms (single-channel operation)

The procedure for displaying a repetitive square waveform is shown in Fig. 13.28. Once again, the signal is connected to the Channel 1 input (but this time with 'DC' input selected) and the mode switch in the Channel 1 position. 'Channel 1' must be selected as the trigger source and the trigger level control adjusted for a stable display (which can be triggered on the positive- or negative-going edge of the waveform according to the setting of the trigger polarity button). Any d.c. level present on the input can be measured from the offset produced on the y-axis. To do this, you must first select 'GND' on the input selector then centre the trace along the y-axis before switching to 'DC' and noting how far up or down the trace moves (above or below 0 V). This may sound a little difficult but it is actually quite easy to do! The same technique can be used for measuring any d.c. offset present on a sinusoidal signal.

Sine/square waveforms (dual-channel operation)

The procedure for displaying two waveforms (either sine or square or any other repetitive

signal) simultaneously is shown in Fig. 13.29. The two signals are connected to their respective inputs (Channel 1 and Channel 2) and the mode switch set to the 'Dual' position. The oscilloscope can be triggered by either of the signals (Channel 1 or Channel 2) as desired. Once again, the display can be triggered on the positive- or negative-going edge of the waveform depending upon the setting of the trigger polarity button. Dual-channel operation can be invaluable when it is necessary to compare two waveforms, e.g. the input and output waveforms of an amplifier.

Connecting an oscilloscope into a circuit

Fig. 13.30 shows how an oscilloscope can be connected to display the waveforms present at various points in a simple transistor audio amplifier. To reduce the likelihood of picking up hum and noise, the input to the oscilloscope is via a screened lead fitted with a probe. The ground (outer screen) is connected to the common 0 V rail while the probe is simply moved around the circuit from point to point. Note that, because of

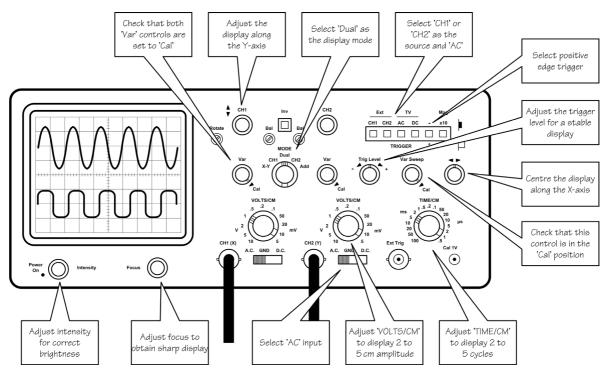


Figure 13.29 Procedure for adjusting the controls to display two waveforms (dual-channel mode)

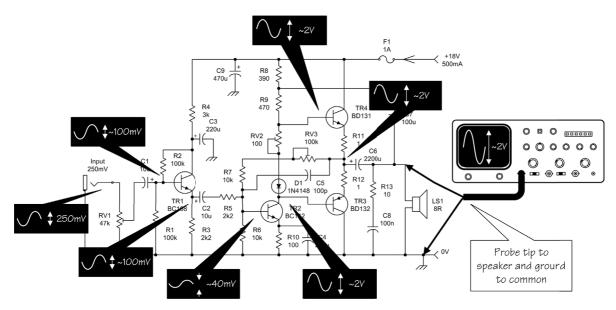
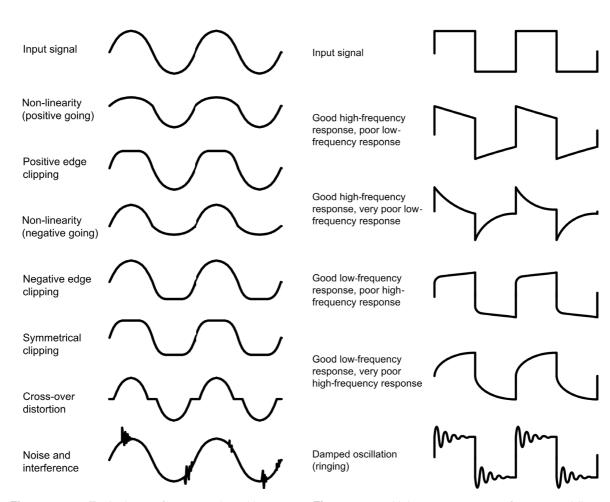


Figure 13.30 Using an oscilloscope to display the waveforms in a simple audio amplifier

the ground connection to the oscilloscope it is NOT usually possible to display a waveform that appears 'across' a component (e.g. between the base and emitter of a transistor). For this reason, waveforms are nearly always displayed relative to ground (or common).

Checking distortion

Oscilloscopes are frequently used to investigate **distortion** in amplifiers and other electronic systems. Different forms of distortion have a different effect on a waveform and thus it is possible to determine which type of distortion is present. A 'pure' sine wave is used as an input signal and the output is then displayed on the oscilloscope. Fig. 13.31 shows waveforms that correspond to the most common forms of distortion.


Checking frequency response

An oscilloscope can also be used to provide a rapid assessment of the frequency response

of an amplifier or other electronic system. Instead of using a sine wave as an input signal, a square wave input is used. Different frequency response produces a different effect on a waveform and thus it is possible to assess whether the frequency response is good or poor (a perfect square wave output corresponds to a perfect frequency response). Fig. 13.32 shows waveforms that correspond to different frequency response characteristics.

Measuring pulse parameters

When dealing with rectangular waveforms and pulses it is often necessary to be able to use an oscilloscope to measure parameters such as:

Figure 13.31 Typical waveforms produced by different types of distortion

Figure 13.32 Using a square waveform to rapidly assess frequency response

Periodic time, t

This is the time (measured at the 50% amplitude points) for one complete cycle of a repetitive pulse waveform. The periodic time is sometimes referred to as the **period** (see page 73). Note also that the **pulse repetition frequency (p.r.f.)** is the reciprocal of the periodic time.

On time, t

This is the time for which the pulse amplitude exceeds 50% of its amplitude. The on-time is sometimes referred to as the **high time**.

Off time, toff

This is the time for which the pulse amplitude falls below 50% of its amplitude. The off time is sometimes referred to as the **low time**.

Rise time, t_{rise}

This is the time measured between the 10% and 90% points on the rising (or **positive-going**) edge of the pulse.

Fall time, t_{fall}

This is the time measured between the 90% and 10% points on the falling (or **negative-going**) edge of the pulse.

These **pulse parameters** are shown in Fig. 13.33.

DOs and DON'Ts of using an oscilloscope

DO ensure that the vertical gain and variable timebase controls are set to the calibrate (CAL)

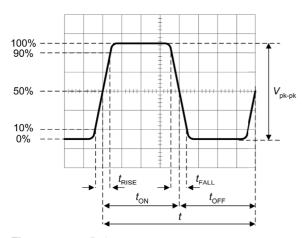


Figure 13.33 Pulse parameters

positions before attempting to make accurate measurements based on the attenuator/timebase settings and graticule.

DO check that you have the correct trigger source selected for the type of waveform under investigation.

DO remember to align the trace with the *x*-axis of the graticule with the input selector set to 'GND' prior to taking d.c. offset measurements.

DO make use of the built-in calibrator facility to check the accuracy of the attenuator and the 'CAL' setting of the variable gain control.

DO use properly screened leads and a suitable probe for connecting to the circuit under investigation.

DO check that you have made a proper connection to ground or 0 V prior to taking measurements.

DON'T leave the intensity control set at a high level for any length of time.

DON'T leave a bright spot on the display for even the shortest time (this may burn the phosphor coating of the screen).

DON'T rely on voltage measurements on circuits where high-frequency signals may be outside the bandwidth of the oscilloscope.

DON'T forget to set the a.c.-d.c.-gnd switch to the d.c. position when making measurements of the d.c. offset present on a.c. signals.

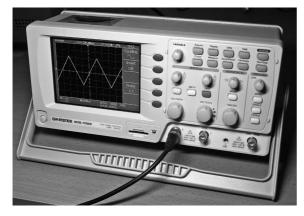

DON'T place the oscilloscope where there is a strong local magnetic field. This may cause unwanted deflection of the electron beam!

Figure 13.34 A typical bench oscilloscope

Digital storage oscilloscopes

In recent years digital storage oscilloscopes (DSOs) have provided an increasingly cost-effective alternative to the use of conventional analogue CRT-based oscilloscopes. DSOs use digital signal processing to capture analogue waveforms and save them for later analysis and colour liquid crystal displays (LCD) to replace the CRT displays fitted to analogue oscilloscopes. The result is an instrument that has more in common

Figure 13.35 A low-cost digital storage oscilloscope

with a small computer than a conventional CRTbased oscilloscope, but which is eminently portable and software configurable.

The simplified block schematic diagram of a typical DSO is shown in Fig. 13.36. The two input channels (Ch. 1 or A and Ch. 2 or B) are fed via a high-impedance JFET amplifier to a multiplexer that allows the two input signals to be combined in various ways (A, B, A + B, A - B, etc.). The analogue output of the two multiplexers is fed a variable gain amplifier and from there, via a lowpass filter (LPF) to a dual high-speed analogueto-digital converter (ADC). The multi-bit digitally encoded output of the ADC is then fed to a field programmable gate array (FPGA). This high-speed application-specific integrated circuit provides the necessary hardware logic to process the sampled digital signals and store them in static random access memory (SRAM). The captured data is also made accessible to the CPU, which provides further signal processing as well as the ability to accept commands via the keyboard interface and output data for display on the LCD panel. A USB interface is also provided for connection to an external computer for data logging and further data analysis.

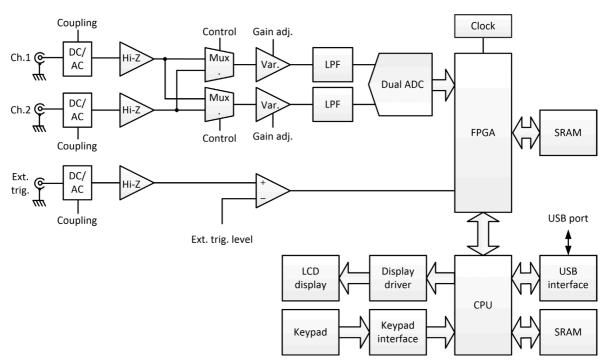
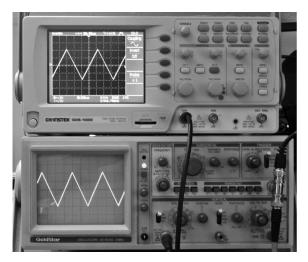



Figure 13.36 Block schematic layout of a typical DSO

Figure 13.37 A comparison of the display produced by a low-cost DSO with that produced by a conventional analogue oscilloscope

The ability to store waveforms for later analysis is extremely valuable as it permits a detailed comparison of system performance over time (typically before and after a fault condition occurs). Digital oscilloscopes can usually also display a variety of waveform parameters such as average, maximum and r.m.s. values and frequencies of repetitive waveforms. In addition, the displayed trace can often be manipulated after acquisition

so that, for example, a portion of the display can be magnified to make fine detail more easily visible. The front panel controls and displays of a typical low-cost DSO are shown in Fig. 13.38. A typical screen grab of a DSO's LCD display is shown in Fig. 13.39.

Basic operation of a DSO

The basic operation of a DSO is extremely straightforward and all of the instrument's controls are accessed through a control keypad and menu system. It is worth comparing this interface with the controls and adjustments provided on a conventional analogue oscilloscope (see Fig. 13.37).

The settings for data collection or the parameters used for the display of any view can be easily changed using the instrument's menu system. As with a conventional instrument, the time base control is marked in terms of 'time per division'; however, it may also be possible to configure a DSO in terms of 'time per scan', which may make more sense in the case of certain types of measurement.

For dual-channel DSOs you can select which of the two channels (or both) to display on the screen. With two channels, each channel has

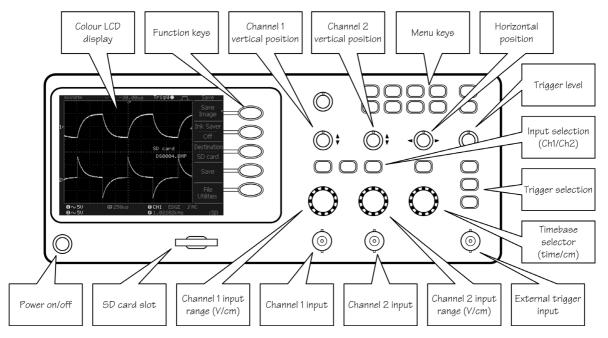
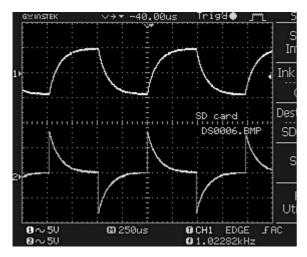



Figure 13.38 Front panel controls and display on a typical dual-channel DSO

Figure 13.39 Screen grab of the LCD display in a low-cost dual-channel DSO

a separate axis and each trace and its axis can usually be displayed in a different colour (unlike a conventional oscilloscope).

Voltage ranges are selected in much the same way as for a conventional oscilloscope (i.e. in terms of 'volts per division'), but an **auto** ranging facility may also be included. The auto ranging option can be particularly useful if you are switching between different, but consistent, signals. You may also be able to add custom ranges so that the values are displayed in some other units, for example pressure or acceleration.

Spectrum analysis

The technique of **Fast Fourier Transformation** (FFT) of the data captured by a DSO makes it eminently possible to produce frequency spectrum displays. Such displays can be used to investigate the harmonic content of waveforms as well as the relationship between several signals within a composite waveform. This type of display is just not possible with a conventional analogue oscilloscope, where only voltage/time displays are available.

Cost considerations

Today, the cost of an entry-level DSO is comparable with that of a good second-hand CRT-based analogue oscilloscope and, while there is much to be said for an instrument that provides waveform storage and digital readout of parameters such as voltage and frequency, a good CRT-based instrument can often outperform a low-cost DSO. In the end the choice is yours, but if cash is limited there are two alternative solutions, one of which could involve no cash outlay at all!

PC with external hardware

The first low-cost alternative to a dedicated DSO instrument is that of using external hardware (effectively a high-speed, multi-channel ADC) connected to a PC via a USB port. The necessary DSO software is usually supplied on CD-ROM or can be downloaded from the manufacturer's website. It is important to note that although the DSO hardware cannot usually be used without the appropriate software, some manufacturers supply software drivers that will allow you to control the DSO and capture data into your own applications. However, for most of us this isn't an option since the supplied software will usually outperform anything that we can write ourselves!

Several types of external hardware-based DSO are currently available. These can be conveniently arranged into three different basic categories according to their application:

- ► low-cost DSO
- ▶ high-speed DSO
- high-resolution DSO.

Unfortunately, there is often some confusion between the last two categories. A high-speed DSO is designed for examining waveforms that are rapidly changing. Such an instrument does not necessarily provide high-resolution measurement. Similarly, a high-resolution DSO is useful for displaying waveforms with a high degree of precision, but it may not be suitable for examining fast waveforms. The difference between these two types of DSO should become a little clearer later on, but first it is worth explaining how the sampling rate of a DSO impacts on the frequency range over which it can be reliably used.

Sampling rate and bandwidth

The upper signal frequency limit of a DSO is determined primarily by the rate at which it can

sample an incoming signal. Typical *sampling rates* for different types of DSO are:

Type of DSO	Typical sampling rate	
Low-cost DSO	20 K to 100 K per second	
High-speed DSO	100 M to 1,000 M per second	
High-resolution DSO	20 M to 100 M per second	

In order to display waveforms with reasonable accuracy it is normally suggested that the sampling rate should be at least twice, and preferably more than five times, the highest signal frequency. Thus, in order to display a 10 MHz signal with any degree of accuracy a sampling rate of 50 M samples per second will be required.

The **five times rule** merits a little explanation. When sampling signals in a digital-to-analogue converter we usually apply the **Nyquist criterion** that the sampling frequency must be at least twice the highest analogue signal frequency. Unfortunately, this no longer applies in the case of a DSO, where we need to sample at an even faster rate if we are to accurately display the signal. In practice we would need a minimum of about five points within a single cycle of a sampled waveform in order to reproduce it with approximate fidelity. Hence the sampling rate should be at least five times that of the highest signal frequency for a DSO to be able to display a waveform reasonably faithfully.

A special case exists with dual-channel DSOs. Here the sampling rate may be shared between the two channels. Thus an effective sampling rate of 20 M samples per second might equate to 10 M samples per second for *each* of the two channels. In such a case the upper frequency limit would not be 4 MHz but only a mere 2 MHz!

The approximate bandwidth required to display different types of signals with reasonable precision is given below:

Signal	Bandwidth required (approx.)
Low frequency and power	d.c. to 10 kHz
Audio frequency (general)	20 Hz to 20 kHz
Audio frequency (high quality)	d.c. to 50 kHz
Square and pulse waveforms (up to 5 kHz)	d.c. to 100 kHz
Fast pulses with small rise-times	d.c. to 1 MHz

Video	d.c. to 10 MHz
Radio (LF, MF and HF)	d.c. to 50 MHz

The general rule is that for sinusoidal signals the bandwidth should ideally be at least double that of the highest signal frequency, while for square wave and pulse signals the bandwidth should be at least ten times that of the highest signal frequency.

It is worth noting that most manufacturers define the bandwidth of an instrument as the frequency at which a sine wave input signal will fall to 0.707 of its true amplitude (i.e. the –3 dB point). To put this into context, at the cut-off frequency any displayed trace at the –3 dB point will be in error by a whopping 29%!

Resolution and accuracy

The relationship between resolution and signal accuracy (not bandwidth) is simply that the more bits used in the conversion process the more discrete voltage levels can be resolved by the DSO. The relationship is as follows:

$$x = 2^n$$

where *x* is the number of discrete voltage levels and *n* is the number of bits. Thus, each time we use an additional bit in the conversion process we double the resolution of the DSO, as shown below:

Number of bits, n	Number of discrete voltage levels, x
8-bit	256
10-bit	1,024
12-bit	4,096
16-bit	65,536

DSO stores its captured waveform samples in a buffer memory. Hence, for a given sampling rate, the size of this memory buffer will determine for how long the DSO can capture a signal before its buffer memory becomes full. The relationship between sampling rate and buffer memory capacity is important. A DSO with a high sampling rate but small memory will only be able to use its full sampling rate on the top few time base ranges.

To put this into context, it's worth considering a simple example. Assume that we need to display 10,000 cycles of a 10 MHz square wave. This

signal will occur in a time frame of 1 ms. If we are applying the five times rule we would need a bandwidth of at least 50 MHz to display this signal accurately.

To reconstruct the square wave we would need a minimum of about five samples per cycle so a minimum sampling rate would be 5×10 MHz = 50 M samples per second. To capture data at the rate of 50 M samples per second for a time interval of 1 ms requires a memory that can store 50,000 samples. If each sample uses 16 bits we would require 100 kbyte of extremely fast memory!

The **measurement resolution** or **measurement accuracy** of a DSO (in terms of the smallest voltage change that can be measured) depends on the actual range that is selected. So, for example, on the 1 V range an 8-bit DSO is able to detect a voltage change of one 256th of a volt, or 1/256 V or about 4 mV. For most measurement applications this will prove to be perfectly adequate as it amounts to an accuracy of about 0.4% of full scale.

Low-cost DSOs are primarily designed for lowfrequency signals (typically signals up to around 20 kHz) and are usually able to sample their signals at rates of between 10 K and 100 K samples per second. Resolution is usually limited to either 8 or 12 bits (corresponding to 256 and 4,096 discrete voltage levels, respectively). Such instruments may be either single or dual channel units and, by virtue of their low cost and simplicity, they are ideal for educational purposes as well as basic measurements. Most low-cost DSOs provide all of the functionality associated with a conventional oscilloscope but with many additional software-driven features at a fraction of the price of a comparable conventional test instrument. That said, there are two important limitations of low-cost DSOs:

- **1.** Their bandwidth is generally limited so they are only suitable for examining low-frequency and audio signals.
- **2.** Their resolution is generally limited to 8 bits or 256 discrete steps of voltage.

High-speed DSOs are usually dual-channel instruments that are designed to replace conventional general-purpose oscilloscopes (but

with the added advantage that captured data can be stored for subsequent processing and analysis). These instruments have all the features associated with a conventional oscilloscope, including trigger selection, time base and voltage ranges, and an ability to operate in X–Y mode.

Additional features available with a computer-based instrument that are not usually available from conventional bench-top oscilloscopes include the ability to capture transient signals (as with a storage oscilloscope) and save waveforms for future analysis. The ability to analyse a signal in terms of its frequency spectrum is yet another feature that is only possible with a DSO.

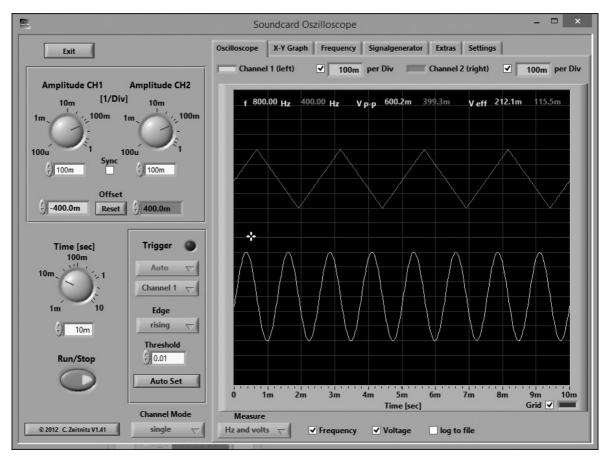
Auto ranging is another very useful feature that is often provided with a DSO. If you regularly use a conventional oscilloscope for a variety of measurements you will know only too well how many times you need to make adjustments to the vertical sensitivity of the instrument. To have this adjustment performed for you automatically is an absolute boon!

High-resolution DSOs are used for precision applications where it is necessary to faithfully reproduce a waveform and also to be able to perform an accurate analysis of noise floor and harmonic content. Typical applications include small-signal work and high-quality audio.

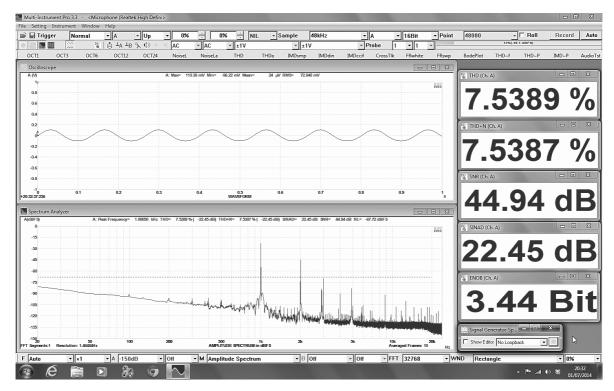
Unlike the low-cost DSOs which typically have 8-bit resolution and poor d.c. accuracy, high-resolution DSOs are usually accurate to better than 1% and have either 12-bit or 16-bit resolution. This makes them ideal for audio, noise and vibration measurements. The increased resolution also allows the instrument to be used as a spectrum analyser with very wide dynamic range (up to 100 dB). This feature is ideal for performing noise and distortion measurements on low-level analogue circuits and high-fidelity equipment generally (such as CD and MP3 players).

Bandwidth alone is not enough to ensure that a DSO can accurately capture a high-frequency signal. The goal of manufacturers is to achieve a flat frequency response. This response is sometimes referred to as a Maximally Flat Envelope Delay (MFED). A frequency response of this type delivers excellent pulse fidelity with minimum overshoot, undershoot and ringing.

It is important to remember that if the input signal is not a pure sine wave it will contain a number of higher-frequency harmonics. For example, a square wave will contain odd harmonics that have levels that become progressively reduced as their frequency increases. Thus, to display a 1 kHz square wave accurately you need to take into account the fact that there will be signal components present at 3 kHz, 5 kHz, 7 kHz, 9 kHz, 11 kHz and so on.


As mentioned earlier, it is wise to purchase a DSO with a bandwidth that is five times higher than the maximum frequency of any signal you wish to measure. Note, however, that with some instruments the specified bandwidth is not available on all voltage ranges, so it is worth checking the manufacturer's specification carefully.

Most DSOs have two different sampling rates (modes) depending on the signal being measured: real time and **equivalent time sampling** (ETS) – often called **repetitive sampling**. However, since this mode works by building up the waveform from successive acquisitions, ETS only works if the signal you are measuring is stable and repetitive.


Sound card oscilloscopes

If cash is limited and if you only need to display waveforms over a relatively low range of frequencies, the most cost-effective solution might be that of making use of the sound card fitted to a PC.

Any PC with a standard sound card (or equivalent interface integrated with the motherboard)

Figure 13.40 Soundcard Scope from Christian Zeitnitz (see Appendix 9) is available for free download for private (non-commercial) and public educational use. The excellent software will work with any 16-bit sound card at a sampling rate of 44.1 kHz. It also has an integrated signal generator which produces sine, triangle, square, sawtooth and white noise output waveforms

Figure 13.41 Sound card oscilloscopes can carry out a wide variety of measurements including harmonic distortion and signal-to-noise ratio. This is the Multi-instrument display from the Virtins sound card oscilloscope showing simultaneous displays of voltage against time (top) and voltage against frequency (bottom)

can be used to record and playback analogue signals. In order to do this, the sound card interface incorporates 16-bit or 24-bit analogue-to-digital and digital-to-analogue converters (ADC and DAC).

Sound cards can usually be configured for stereo or mono operation with either 16 or 24 bits and sampling rates of 44.1 kHz (CD quality) up to 192 kHz. Note that more expensive plug-in (e.g. PCI cards) and external (professional quality) sound systems can usually achieve higher sample rates than those provided by integrated sound cards. The stereo capability makes it possible to have two independent channels (as with most conventional oscilloscopes). In addition, the output capability of a PC sound card can be used to provide test signals within the audio and low-frequency spectrum and sound card oscilloscope software usually provides this function in addition to waveform display of signals applied to the stereo input channels.

Sound card oscilloscope limitations

As mentioned earlier, the upper signal frequency limit of a DSO is determined primarily by the rate at which it can sample an incoming signal. Using a maximum sound card sampling rate of 44.1 kHz, a sinusoidal signal at 20 kHz can be displayed with acceptable accuracy (the Nyquist criterion). However, in order to display nonsinusoidal signals faithfully, we need to sample at an even faster rate if we are to accurately display the signal. In practice we would need a minimum of about five points within a single cycle of a sampled waveform in order to reproduce it with approximate fidelity. Hence the sampling rate should be at least five times that of the highest signal frequency for a DSO to be able to display a waveform with reasonable accuracy. With a fixed 44.1 kHz sampling rate this would suggest that audio frequency signals of up to 4 kHz will be faithfully displayed using a sound card; however, it is also necessary to take into account the fact

that a sound card interface is a.c. coupled and therefore is unable to respond to d.c. levels!

Provided you are willing to accept the bandwidth limitation (typically 20 Hz to no more than about 9 kHz with a 44.1 kHz sampling rate) the ability to convert an analogue signal into digital stored data makes it possible to use a sound card as the ADC component of a very basic DSO. With the aid of appropriate software (available either for free download or at minimal cost) the stored data produced by a sound card can be made to display on a screen in much the same way as it appears on the screen of a conventional DSO. Furthermore, the use of Fast Fourier Transformation (FFT) software makes it possible to produce a frequency domain display as well as the more conventional time domain display.

While it is possible to use a sound card without any external interface (most sound cards have ample sensitivity so additional gain from a preamplifier stage is unlikely to be required) there are several good reasons for using purpose-designed probes (see Fig. 13.42) or some other form of input interface:

the usual input impedance of a sound card (typically around 50 k Ω) is appropriate for most audio equipment but is far too low for measurement applications;

Figure 13.42 The Virtins (see Appendix 9) sound card oscilloscope probes are designed to be connected directly to the audio input jack connectors of a PC

- the usual input impedance of a sound card (typically around 50 kΩ) is too low for use with conventional oscilloscope probes, which are usually designed to work with standard 1 MΩ oscilloscope inputs;
- ▶ the sensitivity of most sound cards varies according to software gain settings and the size/resolution of PC displays also tends to vary widely, hence some method of calibration is essential if accurate measurements are to be made.

The foregoing limitations can be overcome by means of a simple interface of the type shown in Fig. 13.43. This circuit incorporates two identical channels for the Y1 and Y2 inputs. The input signal is fed to a switched potential divider attenuator (R10 to R15 and R20 to R25) which has a constant input impedance of 1 M Ω . Junction gate field effect transistors (TR10 and TR20) are connected as unity gain source followers with the output voltage developed across the two variable gain controls (VR10 and VR20). Capacitors, C10 and C20, are used to provide d.c. isolation at the input while C11 and C21 provide d.c. isolation at the output.

The sound card input interface incorporates its own a.c. mains supply, which also provides a 1 V peak-peak calibration signal at 50 Hz. Diodes, D1 and D2, provide full-wave bi-phase rectification with an output of approximately 8.5 V appearing across the reservoir capacitor, C1. Secondary current from T1 is also fed to the anti-parallel diode clamp, D3 and D4. A potential divider, R2 and R3, provides the 1 V peak-peak calibration signal, which is applied to the input attenuator when switch S2 is set to the 'calibrate' position. Light emitting diodes, D5 and D6, indicate whether S2 the instrument is set to the 'calibrate' or the 'operate' position. If the calibration facilities are not required, a 9 V PP3 battery can be used to supply the unit. Just connect the battery (in series with a suitable on/off switch) across C1.

Finally, it is important to note that one side of the oscilloscope input is connected to ground/earth and because of this it is essential to ensure that the ground connection is not connected directly to any point in a circuit that is at other than true ground potential!

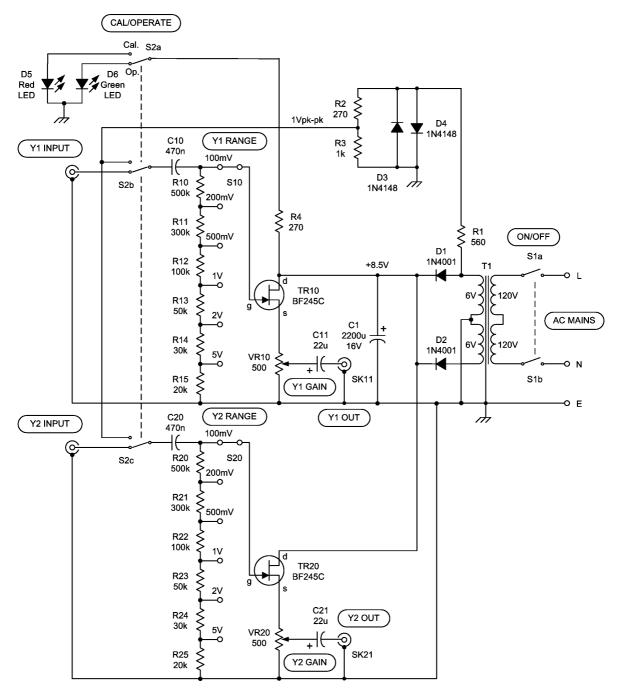


Figure 13.43 The sound card input interface

Practical investigation

Objective

To investigate the voltages, currents and waveforms in a simple audio amplifier.

Components and test equipment

Breadboard, 17 V d.c. power supply (with a current limited output of up to at least 500 mA), BC141, BD131 and BD132 transistors (the latter to be fitted with small heatsinks), 1N4148

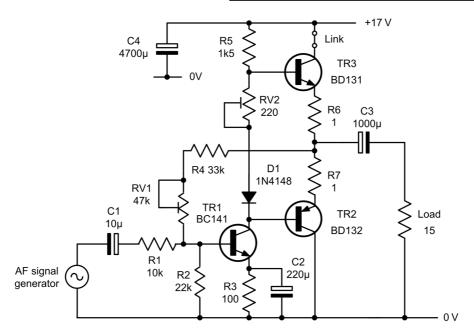


Figure 13.44 Circuit used in the Practical investigation

diode, fixed resistors of 1 Ω (two required), 100 Ω , 1.5 k Ω , 10 k Ω , 22 k Ω and 33 k Ω , 5% 0.25 W, capacitors of 10 μ F, 220 μ F, 1,000 μ F and 4,700 μ F at 25 V d.c., oscilloscope, digital multimeter, AF signal generator with sine wave output at 1 kHz, test leads and probes.

Procedure

Connect the circuit as shown in Fig. 13.44. With the signal generator disconnected, connect the d.c. supply and use the digital multimeter on the 20 V d.c. range to measure the d.c. voltage at the junction of R6 and R7. Adjust RV1 so that this voltage is exactly half that of the supply (i.e. 8.5 V).

Now remove the link and use the digital multimeter set to the 200 mA d.c. range to measure the collector current for TR3. Adjust RV2 for a current of exactly 24 mA. Repeat these two adjustments until no further change is noted. Replace the link and set the digital multimeter to the 20 V d.c. range. Measure the d.c. voltages present at the collector, base and emitter of TR1, TR2 and TR3. Also measure the d.c. voltage at the anode and cathode of D1. Record your measurements in a table.

Connect the AF signal generator to the input of the amplifier and set the output to 200 mV

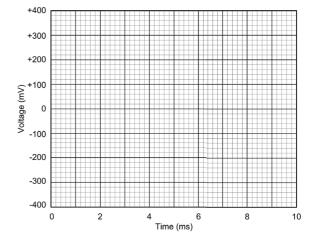


Figure 13.45 Layout for the waveform sketches

peak–peak at 1 kHz sine wave. Set the Channel 1 and Channel 2 inputs of the oscilloscope to 100 mV/cm with the a.c.-d.c.-ground switches in the a.c. position. Set the trigger to internal and the timebase to 1 ms/cm. Display the waveforms at the input and output of the amplifier and sketch these using the layout shown in Fig. 13.45.

Conclusions

Comment on the measured voltages. Are these what you would have expected? Justify them

by calculation and state any assumptions made. Comment on the waveforms obtained. What was the voltage gain of the amplifier at 1 kHz? What output power was produced in the load with 200 mV peak–peak input? Suggest a typical application for the circuit.

Formulae introduced in this chapter

Voltmeter multiplier resistor (page 239)

$$R_{\rm m} = \frac{V - I_{\rm m} r}{I_{\rm m}}$$

Ammeter shunt resistor (page 239)

$$R_{\rm s} = \frac{I_{\rm m}r}{I - I_{\rm m}}$$

Ohms-per-volt (page 242)

Ohms-per-volt =
$$\frac{1}{\text{Meter f.s.d.}}$$

Problems

- 13.1 A moving coil meter has a full-scale deflection current of 500 μ A. If the meter coil has a resistance of 400 Ω , determine the value of multiplier resistor if the meter is to be used as a voltmeter reading 0 to 10 V.
- 13.2 A moving coil meter has a full-scale deflection current of 5 mA. If the meter coil has a resistance of 100 Ω , determine the value of shunt resistor if the meter is to be used as an ammeter reading 0 to 50 mA.
- 13.3 A meter has a full-scale deflection of 60 μ A. What will its ohms-per-volt rating be?
- 13.4 A 50 k Ω /V meter is switched to the 3 V range. What current will flow in the meter when it is connected to a 2 V source?
- 13.5 A digital multi-range meter has a 3½-digit display. When switched to the 20 V range, determine:

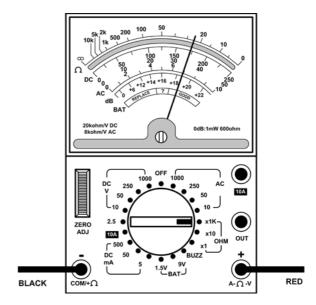


Figure 13.46 See Question 13.6

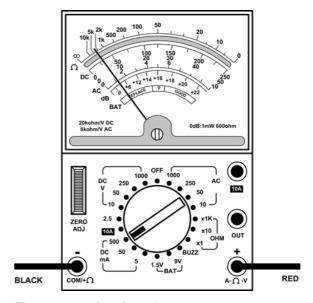


Figure 13.47 See Question 13.7

- (a) the maximum indication that will appear on the display
- (b) the resolution of the instrument.
- 13.6 Determine the reading on the multi-range meter shown in Fig. 13.46.
- 13.7 Determine the reading on the multi-range meter shown in Fig. 13.47.
- 13.8 Determine the reading on the multi-range meter shown in Fig. 13.48.

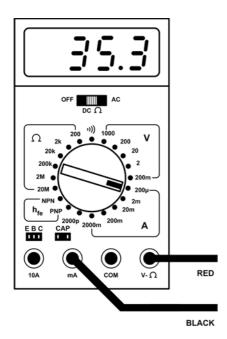
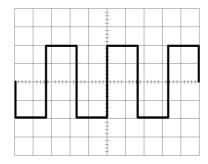
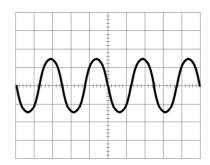
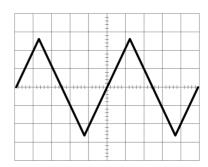
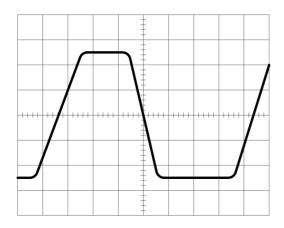




Figure 13.48 See Question 13.8


- 13.9 Fig. 13.49 shows the display of an oscilloscope in which the graticule is divided into squares of 1 cm. Determine the amplitude and period of each waveform.
- 13.10 Fig. 13.50 shows the display of an oscilloscope in which the graticule is divided into squares of 1 cm. For the square wave pulse shown, determine:
 - (a) the periodic time
 - (b) the high time
 - (c) the low time
 - (d) the rise time
 - (e) the fall time
 - (f) the pulse amplitude.
- 13.11 Fig. 13.51 shows the display provided by an RF power meter. Explain why the scale is non-linear and illustrate your answer with reference to a formula.
- 13.12 Fig. 13.52 shows a test set-up for radio servicing. Identify the test instruments and state a typical application for each.
- 13.13 Using a sine wave reference, sketch waveforms to show the typical appearance of:

(a) Timebase: 1 ms/cm Y-attenuator: 1 V/cm

(b) Timebase: 50 ns/cm Y-attenuator: 50 mV/cm



(c) Timebase: 100 ms/cm Y-attenuator: 50 V/cm

Figure 13.49 See Question 13.9

- (a) cross-over distortion
- (b) noise
- (c) positive edge clipping
- (d) negative-going non-linearity.
- 13.14 With the aid of sketches, show how a reference square wave input can be used to quickly assess the frequency response of an amplifier.

13 Test equipment and measurements

 $\label{eq:Timebase: 1} Timebase: 1 \mu s/cm \\ Y-attenuator: 1 V/cm$

Figure 13.50 See Question 13.10

Figure 13.51 See Question 13.11

Figure 13.52 See Question 13.12

- 13.15 Explain the purpose of each of the following facilities/adjustments provided on a bench oscilloscope:
 - (a) timebase selector
 - (b) trigger source
 - (c) trigger slope
 - (d) a.c.-d.c.-ground selector
 - (e) scale illumination
 - (f) astigmatism
 - (g) calibrator.
- 13.16 Explain, with the aid of a sketch, how you would use an oscilloscope to measure the rise time and period of a rectangular pulse.

Answers to these problems appear on page 452.

Fault finding

Chapter summary

Fault finding is a disciplined and logical process in which 'trial fixing' should never be contemplated. The generalized process of fault finding is illustrated in the flowchart of Fig. 14.1. First you need to verify that the equipment really is faulty and that you haven't overlooked something obvious (such as a defective battery or disconnected signal cable). This may sound rather obvious but in some cases a fault may simply be attributable to maladjustment or misconnection. Furthermore, where several items of equipment are connected together, it may not be easy to pinpoint the single item of faulty equipment.

14 Fault finding

Start fault finding by getting all of the relevant information. This process involves asking questions such as:

- ▶ In what circumstances did the circuit fail?
- ► Has the circuit operated correctly before and exactly what has changed?
- ► Has the deterioration in performance been sudden or progressive?
- ▶ What fault symptoms do you notice?

The answers to these questions are crucial and, once the information has been analysed, the next stage involves separating the 'effects' from the 'cause'. Here you should list each of the possible causes. Once this has been done, you should be able to identify and focus upon the most probable cause. Corrective action (such as component removal and replacement, adjustment or alignment) can then be applied before further functional checks are carried out. It should then be possible to determine whether or not the fault has been correctly identified. Note, however, that the failure of one component can often result in the malfunction or complete failure of another. As an example, a short-circuit capacitor will often cause a fuse to blow. When the fuse is replaced and the supply is reconnected the fuse will once again blow because the capacitor is still faulty. It is therefore important to consider what other problems may be present when a fault is located.

Safety considerations

Before we outline the basic steps for fault finding on some simple electronic circuits, it is vitally important that you are aware of the potential hazards associated with equipment which uses high voltages or is operated from the a.c. mains supply.

Whereas many electronic circuits operate from low-voltage supplies and can thus be handled quite safely, the high a.c. voltages present in mains operated equipment represent a potentially lethal shock hazard. The following general rules should *always* be followed when handling such equipment:

 Switch off the mains supply and remove the mains power connector whenever any of the following tasks are being performed:

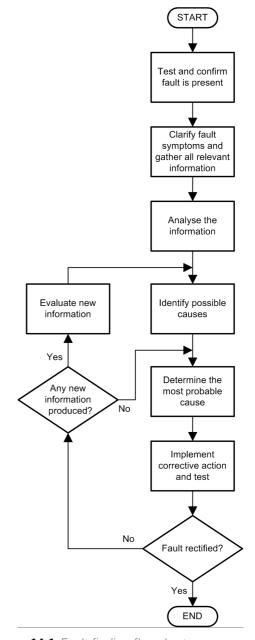


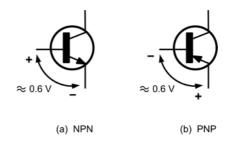
Figure 14.1 Fault finding flowchart

- (a) dismantling the equipment
- (b) inspecting fuses
- (c) disconnecting or connecting internal modules
- (d) de-soldering or soldering components
- carrying out continuity tests on switches, transformer windings, bridge rectifiers, etc.

- **2.** When measuring a.c. and d.c. voltages present within the power unit take the following precautions:
 - (a) avoid direct contact with incoming mains wiring
 - **(b)** check that the equipment is connected to an effective earth
 - (c) use insulated test prods
 - (d) select appropriate meter ranges *before* attempting to take any measurements
 - (e) if in any doubt about what you are doing, switch off at the mains, disconnect the mains connector and think.

Approach to fault finding

Fault finding on most circuits is a relatively straightforward process. Furthermore, and assuming that the circuit has been correctly assembled and wired, there is usually a limited number of 'stock faults' (such as transistor or integrated circuit failure) that can occur. To assist in this process, it is a good idea to identify a number of **test points** at which the voltages present (both a.c. and d.c.) can be used as indicators of the circuit's functioning. Such test points should be identified prior to circuit construction and marked with appropriate terminal pins.


Readers should note that the most rapid method of fault diagnosis is not necessarily that of following voltages or signals from one end to the other. Most textbooks on fault finding discuss the relative methods of the so-called **end-to-end** and **half split** methods. The former method involves tracing the signal and measuring voltages from the input to the output (or vice versa) while the latter method involves dividing the circuit into two halves and then eliminating the half that is operational before making a further sub-division of the half in which the fault resides.

Transistor faults

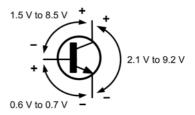
As long as a few basic rules can be remembered, recognizing the correct voltages present at the terminals of a transistor is a fairly simple process. The potentials applied to the transistor terminals

are instrumental in determining the correct bias conditions for operation as an amplifier, oscillator or switch. If the transistor is defective, the usual bias voltages will be substantially changed. The functional state of the transistor may thus be quickly determined by measuring the d.c. potentials present at the transistor's electrodes while it is still in circuit.

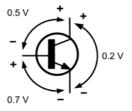
The potential developed across the forwardbiased base-emitter junction of a silicon transistor is approximately 0.6 V. In the case of an NPN transistor, the base will be positive with respect to the emitter while, for a PNP transistor, the base will be negative with respect to the emitter, as shown in Fig. 14.2. The base-emitter voltage drop tends to be larger when the transistor is operated as a saturated switch (and is in the 'on' state) or when it is a power type carrying an appreciable collector current. In these applications, baseemitter voltages of between 0.65 V and 0.7 V are not unusual. Small-signal amplifiers, on the other hand, operate with significantly lower values of collector current and values of base-emitter voltage in the range 0.55 V to 0.65 V are typical.

Figure 14.2 Base–emitter voltages for NPN and PNP silicon transistors

A measured base–emitter voltage greatly in excess of 0.6 V is an indication of a defective transistor with an open-circuit base–emitter junction. A measured base–emitter potential very much less than 0.6 V indicates that the transistor is not being supplied with a base bias and, while this may be normal for a switching transistor in the 'off' state, it is indicative of a circuit fault in the case of a linear small-signal amplifier stage. In the case of oscillators and medium-high-power r.f. amplifiers operating in Class C little or no bias will usually be present and, furthermore, the presence of r.f. drive during measurement can produce


14 Fault finding

some very misleading results. In such cases it is probably worth removing a transistor suspected of being defective and testing it out of circuit.


Unfortunately, it is not so easy to predict the voltage present at the collector-base junction of a transistor. The junction is invariably reverse biased and the potential present will vary considerably depending upon the magnitude of collector current, supply voltage and circuit conditions. As a rule-of-thumb, small-signal amplifiers using resistive collector loads usually operate with a collector-emitter voltage which is approximately half that of the collector supply. The collectorbase voltage will be slightly less than this. Hence, for a stage that is operated from a decoupled supply rail of, say, 8.5 V a reasonable collectorbase voltage would be somewhere in the range 3 V to 4 V. Tuned amplifiers having inductive collector loads generally operate with a somewhat higher value of collector-emitter voltage since there is no appreciable direct voltage drop across the load. As a result, the collector-base voltage drop is greater (a typical value being 6 V). Fig. 14.3 shows the electrode potentials normally associated with transistors operating as linear small-signal amplifiers.

Where a transistor is operated as a saturated switch, the junction potentials depend upon whether the transistor is in the 'on' or 'off' state. In the 'off' condition, the base-emitter voltage will be very low (typically 0 V) whereas the collectorbase voltage will be high and, in many cases, almost equal to the collector supply voltage. In the 'on' state, the base-emitter voltage will be relatively large (typically 0.7 V) and the collectorbase voltage will fall to a very low value (typically 0.5 V). It should be noted that, in normal saturated switching, the collector-emitter voltage may fall to as low as 0.2 V and thus the base-emitter voltage will become reversed in polarity (i.e. base positive with respect to collector in the case of an NPN transistor). The junction potentials associated with transistors operating as saturated switches are shown in Fig. 14.4.

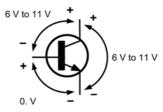

Transistors may fail in a number of ways. Individual junctions may become open-circuit or short-circuit. In some cases the entire device may become short-circuit or exhibit a very low value of

Figure 14.3 Typical voltages found in a small-signal transistor amplifier (polarities will be reversed in the case of a PNP transistor)

(a) 'On' (conducting)

(b) 'Off' (non-conducting)

Figure 14.4 Typical voltages found in a transistor switching circuit (polarities will be reversed in the case of a PNP transistor)

internal resistance. The precise nature of the fault will usually depend upon the electrical conditions prevalent at the time of failure. Excessive reverse voltage, for example, is likely to cause a collector—base or base—emitter junction to become open-circuit. Momentary excessive collector current is likely to rupture the base—emitter junction while long-term over-dissipation is likely to cause an internal short-circuit or very low-resistance condition which may, in some cases, affect all three terminals of the device.

In order to illustrate the effects of various transistor fault conditions consider the circuit of a typical tuned amplifier stage shown in Fig. 14.5. The transistor is operated in Class A

with conventional base bias potential divider and a tuned transformer collector load. Normal working voltages are shown in the circuit diagram. Note that the junction potentials (0.6 V and 4.7 V for the base–emitter and collector–base junctions, respectively) are in agreement with the voltages given in Fig. 14.4. The circuit voltages corresponding to six different transistor fault conditions are shown in Table 14.1.

Each fault will now be discussed individually.

Fault 1

The collector–base short-circuit gives rise to identical base and collector voltage. The base–emitter junction is still intact and thus the normal forward voltage drop of 0.6 V is present. In this condition a relatively high value of current is drawn by the stage and thus the supply voltage falls slightly.

Fault 2

The base–emitter short-circuit produces identical base and emitter voltages. No collector current flows and the collector voltage rises to almost the full supply voltage. The base and emitter voltages are relatively low since the emitter resistor effectively appears in parallel with the lower section of the base bias potential divider, thus pulling the base voltage down.

Fault 3

Identical voltages at the collector and emitter result from a collector–emitter short-circuit. The emitter voltage rises above the base voltage and the base–emitter junction is well and truly turned off. The short-circuit causes a higher value of

Table 14.1 Voltage for various fault conditions

Fault	Transistor voltages			Fault
number	е	b	С	condition
1	2.7	3.3	3.3	b-c short
2	0.2	0.2	8.3	b-e short
3	3.0	0.8	3.0	c-e short
4	2.9	2.9	2.9	c-b-e short
5	0.0	2.2	8.3	b-e open
6	0.2	0.8	8.2	c-b open

current to be drawn from the supply and hence the supply voltage falls slightly.

Fault 4

Perhaps the most obvious fault condition is when a short-circuit condition affects all three terminals. The voltages are, naturally, identical and, as with fault 3, more current than usual is taken from the supply and, as a consequence, the supply voltage falls slightly.

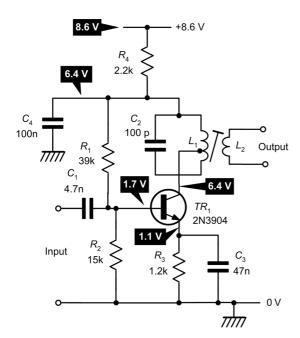
Fault 5

With the base–emitter junction open-circuit, the base–emitter voltage rises well above the 0.6 V which would normally be expected. No collector or emitter current is flowing and thus the collector voltage rises, while the emitter voltage falls.

Fault 6

No collector current flows when the collector—base junction is open-circuit and, as with fault 2, the collector voltage rises towards the supply. Note that, since the base—emitter junction is intact, the normal forward bias of 0.6 V is present and this condition distinguishes this fault from that described in fault 2.

Integrated circuit faults


Integrated circuits may fail in various ways. Occasionally, the manifestation of the fault is simply a chip which is chronically overheated – the judicious application of a finger tip to the centre of the plastic package will usually help you to identify such a failure. Any chip that is noticeably hotter than others of a similar type should be considered suspect. Where integrated circuits are fitted in sockets, it will be eminently possible to remove and replace them with known functional devices (but do remember to switch 'off' and disconnect the supply during the process).

In the case of digital circuitry, the task of identifying a logic gate which is failing to perform its logical function can be accomplished by various means but the simplest and most expedient is with the aid of a logic probe (see page 284).

This invaluable tool comprises a hand-held probe fitted with LEDs to indicate the logical state of its probe tip.

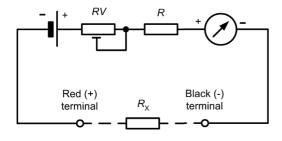
In use, the logic probe is moved from point to point within a logic circuit and the state of each node is noted and compared with the expected logic level. In order to carry out checks on more complex logic arrangements a logic pulser may be used in conjunction with the logic probe. The pulser provides a means of momentarily changing the state of a node (regardless of its actual state) and thus permits, for example, the clocking of a bistable element (see page 198).

Operational amplifiers can usually be checked using simple d.c. voltage measurements. The d.c. voltages appearing at the inverting and non-inverting inputs should be accurately measured and compared. Where the voltage at the inverting input is more positive with respect to that at the non-inverting input, the output voltage will be high (positive if the operational amplifier is operated from a dual supply rail).

Figure 14.5 Circuit to illustrate the effects of various transistor faults on the d.c. voltages present in a small-signal amplifier stage (normal d.c. working voltages are shown)

Conversely, if the voltage at the inverting input is negative with respect to that at the non-inverting input, the output voltage will be high (positive if the operational amplifier is operating from a dual supply).

Finally, if both inputs are at 0 V and there is virtually no difference in the input voltages, the output should also be close to 0 V. If it is high or low (or sitting at one or other of the supply voltages) the device should be considered suspect.


The detection of faults within other linear integrated circuits can be rather more difficult. However, a good starting point is that of disconnecting the supply and inserting a meter to determine the supply current under quiescent conditions. The value should be compared with that given by the manufacturer as 'typical'. Where there is a substantial deviation from this figure the device (or its immediate circuitry) should be considered suspect.

Diode testing

Go/no-go checks provide you with a very rapid method of assessing whether a junction semiconductor device, such as a diode or bipolar transistor, is functional. The basic principle is simply that of checking the forward and reverse resistance of each P–N junction that may be present. The source of current for the resistance checks is simply the internal battery in your analogue multimeter.

Fig. 14.6 shows the simplified internal circuit of an analogue multimeter on the resistance (ohms) range. This circuit consists of a battery (usually 1.5 V, 3 V, 4.5 V or 9 V) connected in series with a preset 'set-zero ohms' control and a fixed, current-limiting resistor, and a sensitive moving coil meter movement. There is one important thing to note from this arrangement and it relates to the polarity of the meter leads – the *red meter test lead will have a negative polarity* while the *black meter test lead will exhibit a positive polarity* when the instrument is switched to the 'ohms' range. (Note that the same does *not* apply to digital multimeters).

Unfortunately, simple go/no-go checks are unreliable when using a digital multimeter.

(a) Ohmmeter circuit

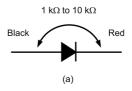
(b) Polarity appearing at the terminals

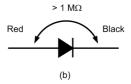
Figure 14.6 Polarity of a multimeter's terminals when used as an ohmmeter (note how the red terminal is negative and the black terminal is positive)

Indeed, some instruments sometimes fail to provide any meaningful indication when carrying out resistance checks on diodes and transistors! However, if you have a more sophisticated digital instrument, you may find that it already has a built-in diode or transistor checker – in which case you should use this facility to make measurements rather than attempt to use simple go/no-go checking based on resistance measurements.

Because the output of the analogue multimeter is polarity conscious, it can be used to check the ability of a component to conduct in both directions. Thus it can, for example, be used to distinguish between a resistor and a diode. The former will exhibit the same resistance whichever way it is connected to the multimeter. The diode, on the other hand, will have a resistance which will vary significantly depending upon which way round it is connected.

Diode 'go/no-go' checks


When the red (positive) side of the ohmmeter is connected to the anode and the black (negative)

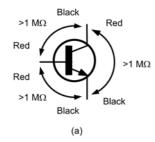

side is connected to the cathode, the diode under test is forward-biased, and the ohmmeter will indicate a low-resistance reading. When the leads are reversed, the diode will be reverse-biased, and the ohmmeter indicates a very high, or infinite, resistance. The ohmmeter should be switched to one of the middle resistance ranges ($\times 10$, $\times 100$ or $\times 1$ k) for testing diodes.

A zener diode may usually be tested in the same manner as is a general-purpose diode. If it tests the same as does a general-purpose diode, it is probably good. However, the most rapid method of checking a zener diode is to apply power to the circuit it is used in and measure the voltage across it. If this voltage reading is the correct zener voltage (as rated by the manufacturer), the zener is good. If the voltage across the zener is incorrect, either the supply to the zener is low, or not present, or the zener itself has failed.

Typical meter indications for silicon diodes are shown in Fig. 14.7 (forward bias is applied in Fig. 14.7(a) and reverse bias is applied in Fig. 14.7(b)). Corresponding indications for germanium diodes will be somewhat lower than those shown for silicon diodes.

Encapsulated bridge rectifiers are supplied with all four diode connections accessible. It is thus possible to check each individual diode for both forward and reverse resistance. It is also possible to check that the bridge as a whole is neither short-circuited nor open-circuited.

Figure 14.7 Diode 'go/no-go' checks with typical resistance values in the 'go' case

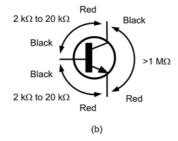
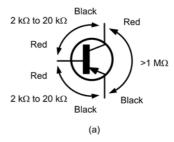
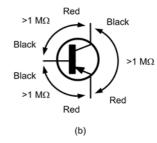

Bipolar transistor 'go/no-go' checks

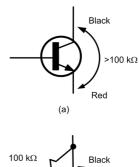
Typical meter indications for silicon NPN transistors are shown in Fig. 14.8 (reverse bias is applied in Fig. 14.8(a) and forward bias is applied in Fig. 14.8(b)). Corresponding indications for germanium NPN transistors will be somewhat lower. Note also that the ×100 resistance range should be used for measurements below 20 k Ω , and the ×1 k resistance range should be used for measurements above 20 k Ω .

Typical meter indications for silicon PNP transistors are shown in Fig. 14.9 (forward bias is applied in Fig. 14.9(a) and reverse bias is applied in Fig. 14.9(b)). As for NPN transistors, corresponding indications for germanium PNP will be somewhat lower. Once again, the ×100 resistance range should be used for measurements below 20 k Ω , and the ×1 k resistance range should be used for measurements above 20 k Ω .

Bipolar transistor current gain checks

Simple go/no-go checks can also be used to determine whether a transistor is providing current gain. The principle is illustrated in


Figure 14.8 NPN transistor 'go/no-go' checks with typical resistance values in the 'go' case

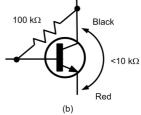

Fig. 14.10. For an NPN transistor this is achieved by measuring the resistance between collector and emitter, as shown in Fig. 14.10(a), before applying a small amount of base current via a 100 k Ω resistor, as shown in Fig. 14.10(b). The application of base current should have the effect of producing a significant increase in collector current and this, in turn, will result in a much

Figure 14.9 PNP transistor 'go/no-go' checks with typical resistance values in the 'go' case

Figure 14.10 Checking NPN transistor current gain using an ohmmeter and a 100 $k\Omega$ resistor

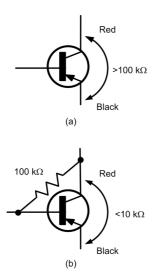
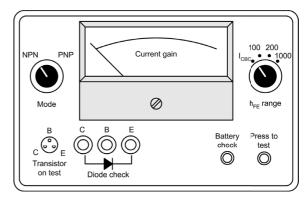
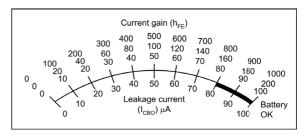



Figure 14.11 Checking PNP transistor current gain using an ohmmeter and a 100 kH resistor


reduced resistance measured between the collector and emitter. It is, of course, not possible to provide an accurate indication of current gain by this method; however, it will tell you whether or not a transistor is producing current gain. The method will also let you compare the current gain of one (known) transistor with another. The equivalent arrangement for testing a PNP transistor is shown in Fig. 14.11.

A transistor/diode checker

A simple transistor/diode checker can make an excellent project for the beginner to electronic circuit construction. The instrument shown in Fig. 14.14 measures current gain for NPN and PNP transistors up to 1.000 and leakage current up to 100 μA. It also has a diode check facility which can be useful for rapid testing of signal, rectifier and zener diodes. The values of R1, R2 and R3 can be made from series combinations of preferred value resistors (for example, R2 can be made from a 150 k Ω resistor connected in series with an 18 k Ω resistor) while the meter shunt resistor, R5, should be calculated in order to provide a full-scale deflection on the meter of 10 mA whenever any of the current gain ranges are selected (see page 284). Typical front panel layouts and meter scales are shown in Figs 14.12 and 14.13.

Figure 14.12 Typical front panel layout for the transistor and diode checker

Figure 14.13 A suitable meter scale for the transistor and diode checker

Logic circuit faults

While multimeters can be used for checking the voltages present on the supply rails within digital logic circuits they are generally unsuitable for measuring the logic states of the points or nodes within a circuit. There are several reasons for this, including the fact that logic states are represented by voltage levels that vary according to the integrated circuit technology employed. However, the principal reason for misleading indications is that the logic levels can be rapidly changing or may take the form of short-duration pulses that simply cannot be detected by a conventional voltage measuring instrument. That said, where logic levels do remain static for periods of several seconds, a multimeter may be used on the d.c. voltage ranges to detect the presence of either a logic 0 or logic 1 state. In the case of standard TTL devices (which operate from a +5 V supply) the following voltage levels apply:

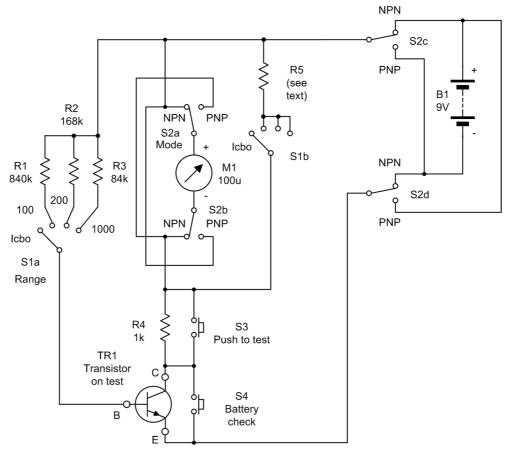
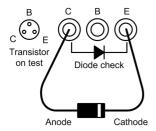
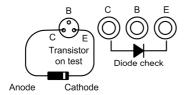


Figure 14.14 Complete circuit of the transistor and diode checker

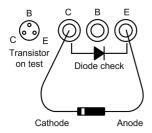
Voltage measured	Logic level indicated
< 0.8 V	0
0.8 V to 2.0 V	indeterminate
> 2.0 V	1

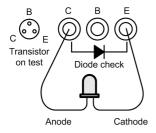

It should be noted that an 'indeterminate' logic level may result from a **tri-state** condition where several logic devices place their outputs on a shared signal (or bus) line. To prevent a conflict occuring between the devices, the outputs of any inactive devices are placed in a high-impedance state in which the voltage at the output can safely take any value within the logic range without causing damage to the inactive device. Modern high-impedance instruments will usually produce a misleading fluctuating indication in such circumstances and this can sometimes be confused with nodes that are actually pulsing.

Logic probes


The simplest, and by far the most convenient, method of tracing logic states involves the use of a logic probe. This invaluable tool comprises a compact hand-held probe fitted with LEDs that indicate the logical state of its probe tip.

Unlike multi-range meters, logic probes can distinguish between lines which are actively pulsing and those which are in a permanently tri-state condition. In the case of a line which is being pulsed, the logic 0 and logic 1 indicators will both be illuminated (though not necessarily with the same brightness) whereas, in the case of a tristate line neither indicator should be illuminated.


Logic probes usually also provide a means of displaying pulses having a very short duration which may otherwise go undetected. This is accomplished by the inclusion of a pulse


(a) Conventional signal, switching and rectifier diodes

(b) Miniature wire ended diodes

(c) Zener diodes

(d) Light emitting diodes

Figure 14.15 Transistor and diode checker connections for various different types of diode (note particularly that the connections to a zener diode must be reversed)

stretching circuit (i.e. a monostable). This elongates short-duration pulses so that a visible indication is produced on a separate 'pulse' LED.

Logic probes invariably derive their power supply from the circuit under test and are connected by means of a short length of twin flex fitted with insulated crocodile clips. While almost any convenient connecting point may be used, the positive supply and ground terminals make ideal connecting points which can be easily identified.

A typical logic probe circuit is shown in Fig. 14.16. This circuit uses a dual comparator to sense the logic 0 and logic 1 levels and a timer that acts as a **monostable pulse stretcher** to indicate the presence of a pulse input rather than a continuous logic 0 or logic 1 condition. Typical logic probe indications and waveforms are shown in Fig. 14.18.

Fig. 14.19 shows how a logic probe can be used to check a typical combinational logic arrangement. In use, the probe is simply moved from node to node and the logic level is displayed and compared with the expected level.

Logic pulsers

We sometimes need to simulate the logic levels generated by a peripheral device or a sensor. A permanent logic level can easily be generated by pulling a line up to +5 V via a 1 k Ω resistor or by temporarily tying a line to 0 V. However, on other occasions you may need to simulate a pulse rather than a permanent logic state and this can be achieved by means of a logic pulser.

A logic pulser provides a means of momentarily forcing a logic level transition into a circuit regardless of its current state and thus it overcomes the need to disconnect or de-solder any of the devices. The polarity of the pulse (produced at the touch of a button) is adjusted so that the node under investigation is momentarily forced into the opposite logical state. During the period before the button is depressed and for the period after the pulse has been completed, the probe tip adopts a tri-state (high impedance) condition. Hence the probe does not permanently affect the logical state of the point in question.

Logic pulsers derive their power supply from the circuit under test in the same manner as logic probes. Here again, the supply and ground

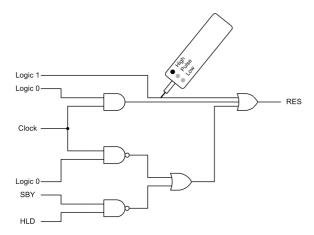

Figure 14.16 A simple logic probe for TTL and CMOS circuits with pulse stretching facilities

Figure 14.17 A versatile logic probe with logic level and pulse indicating facilities. Note the crocodile leads for connecting to the TTL or CMOS supply and ground connections

LED INDICATOR		TOR	STATE INDICATED	WAVEFORM	
LOW	PULSE	HIGH	STATE INDICATED	WAVELORW	
OFF	OFF	ON	Steady logic 1	0	
ON	OFF	OFF	Steady logic 0	1 0 ———	
OFF	OFF	OFF	Open circuit or undefined level	1	
OFF	BLINK	OFF	Pulse train of near 50% duty cycle at >1 MHz	0	
ON	BLINK	ON	Pulse train of near 50% duty cycle at <1 MHz	1 0	
OFF	BLINK	ON	Pulse train of high mark:space ratio	0	
ON	BLINK	OFF	Pulse train of low mark:space ratio	1 0	

Figure 14.18 Typical logic probe indications

Figure 14.19 Using a logic probe to trace logic levels in a simple logic circuit (note that the supply and ground connections are not shown)

connections usually make suitable connecting points.

A typical logic pulser circuit is shown in Fig. 14.20. The circuit comprises a 555 monostable pulse generator triggered from a push-button. The output of the pulse generator is fed to a complementary transistor arrangement in order to make it fully TTL-compatible. As with the logic pulser, this circuit derives its power from the circuit under test (usually +5 V).

Fig. 14.21 shows an example of the combined use of a logic probe and a logic pulser for testing a simple J–K bistable. The logic probe is used to check the initial state of the bistable outputs (see Fig. 14.21(a) and (b)). Note that the outputs should be complementary. Next, the logic pulser is applied to the clock (CK) input of the bistable (Fig. 14.21(c)) and the Q output is checked using the logic probe. The application of a pulse (using the trigger button) should cause the Q output of the bistable to change state (see Fig. 14.21(d)).

Practical investigation

Objective

To investigate faults in a typical linear regulated power supply.

Components and test equipment

Breadboard, mains transformer with 220 V (or 110 V where appropriate) primary and 15 V 2 A secondary winding, four 1N5401 diodes, TIP41C transistor mounted on a heatsink of less than 2.5 °C/W, TL081 operational amplifier, fixed resistors of 1 k Ω (two required) and 2.2 k Ω (two required), 500 mA quick-blow fuse, 2 A slow-blow

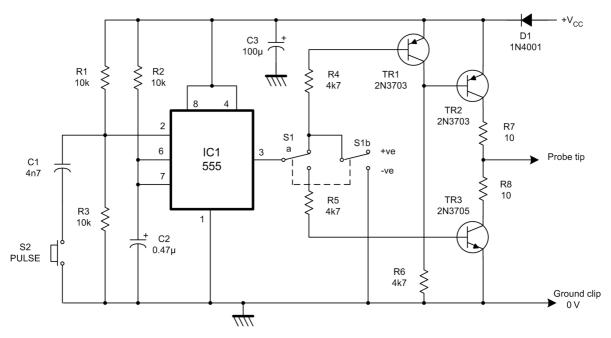


Figure 14.20 A logic pulser suitable for fault tracing on TTL and CMOS logic circuits

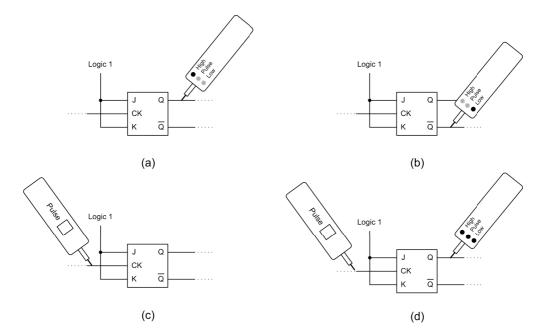


Figure 14.21 Using a logic probe and a logic pulser to check a bistable

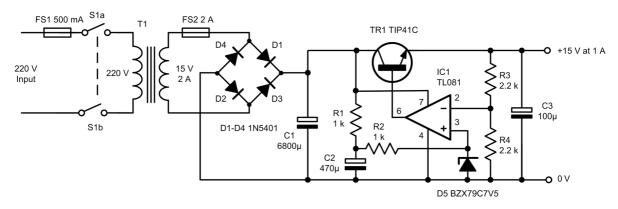


Figure 14.22 Regulated power supply used in the Practical investigation

fuse, BZX79 7.5 V zener diode, capacitors of 6,800 μ F, 470 μ F and 100 μ F (all rated at 50 V d.c. working), digital multimeter, test leads and probes.

Procedure

Connect the circuit and measure the voltages at the following test points with no fault present; TR1 collector, base and emitter; IC1 inverting input (pin 2) and non-inverting input (pin 3). Record your results in a suitable table.

Repeat the voltage measurements with the following fault conditions present:

- (a) R1 open-circuit
- (b) C2 short-circuit
- (c) D5 open-circuit
- (d) R3 open-circuit.

In each case use your knowledge of how the circuit operates to justify the readings obtained.

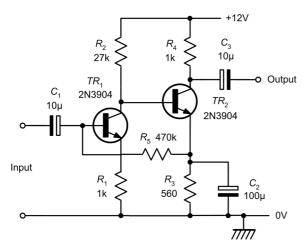


Figure 14.23 See Question 14.1

Table 14.2 See Question 14.1

Condition	TR1			TR2		
	С	b	е	С	b	е
Normal	3.3	0.9	0.3	7.4	3.3	2.6
Fault 1	0.4	0.0	0.0	12.0	0.4	0.0
Fault 2	4.2	1.3	0.7	4.2	4.2	4.2
Fault 3	3.2	1.0	0.3	12.0	3.2	2.7
Fault 4	4.2	4.2	0.3	5.9	4.2	3.5
Fault 5	0.8	0.0	0.0	0.1	0.8	0.0
Fault 6	5.1	0.3	0.0	4.5	5.1	4.4

Problems

- 14.1 Fig. 14.23 shows a two-stage high-gain amplifier. Identify the faulty component and the nature of the fault (e.g. open-circuit or short-circuit) for each of the faults shown in Table 14.2.
- 14.2 With the aid of a simple diagram, explain how each of the following instruments can be used to aid fault finding in digital circuits:
 - (a) logic probe
 - (b) logic pulser.
- 14.3 Explain how an ohmmeter can be used to perform simple 'go/no-go' checks on:
 - (a) a diode
 - (b) an NPN transistor.

Answers to these problems appear on page 452.

Sensors and interfacing

Chapter summary

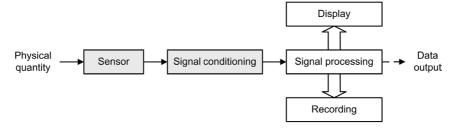
Sensors provide us with a means of generating signals that can be used as inputs to electronic circuits. The things that we might want to sense include physical parameters such as temperature, light level and pressure. Being able to generate an electrical signal that accurately represents these quantities allows us not only to measure and record these values but also to control them.

Sensors are, in fact, a subset of a larger family of devices known as **transducers** so we will consider these before we look at sensors and how we condition the signals that they produce in greater detail. We begin, however, with a brief introduction to the instrumentation and control systems in which sensors, transducers and signal conditioning circuits are used.

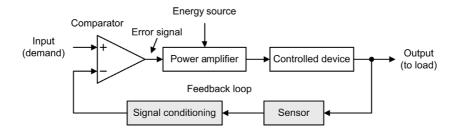
Instrumentation and control systems

Fig. 15.1 shows the arrangement of an instrumentation system. The physical quantity to be measured (e.g. temperature) acts upon a sensor that produces an electrical output signal. This signal is an electrical analogue of the physical input but note that there may not be a linear relationship between the physical quantity and its electrical equivalent. Because of this and since the output produced by the sensor may be small or may suffer from the presence of noise (i.e. unwanted signals) further signal conditioning will be required before the signal will be at an acceptable level and in an acceptable form for signal processing, display and recording. Furthermore, because the signal processing may use digital rather than analogue signals an additional stage of analogue-to-analogue conversion may be required.

Fig. 15.1(b) shows the arrangement of a control system. This uses **negative feedback** in order to regulate and stabilize the output. It thus becomes possible to set the input or **demand** (i.e. what we desire the output to be) and leave


the system to regulate itself by comparing it with a signal derived from the output (via a sensor and appropriate signal conditioning).

A **comparator** is used to sense the difference in these two signals and where any discrepancy is detected the input to the power amplifier is adjusted accordingly. This signal is referred to as an **error signal** (it should be zero when the output exactly matches the demand). The input (demand) is often derived from a simple potentiometer connected across a stable d.c. voltage source while the controlled device can take many forms (e.g. a d.c. motor, linear actuator, heater, etc.).


Transducers

Transducers are devices that convert energy in the form of sound, light, heat, etc., into an equivalent electrical signal, or vice versa.

Before we go further, let's consider a couple of examples that you will already be familiar with. A loudspeaker is a transducer that converts low-frequency electric current into audible sounds. A microphone, on the other hand, is a transducer that performs the reverse function, i.e. that of

(a) An instrumentation system

(b) A control system

Figure 15.1 Instrumentation and control systems

15 Sensors and interfacing

converting sound pressure variations into voltage or current. Loudspeakers and microphones can thus be considered as complementary transducers.

Transducers may be used both as inputs to electronic circuits and outputs from them. From the two previous examples, it should be obvious that a loudspeaker is an **output transducer** designed for use in conjunction with an audio system. A microphone is an **input transducer** designed for use with a recording or sound reinforcing system.

There are many different types of transducer and Tables 15.1 and 15.2 provide some examples of transducers that can be used to input and output three important physical quantities; sound, temperature and angular position.

Sensors

A *sensor* is a special kind of transducer that is used to generate an input signal to a

measurement, instrumentation or control system. The signal produced by a sensor is an **electrical analogy** of a physical quantity, such as distance, velocity, acceleration, temperature, pressure, light level, etc. The signals returned from a sensor, together with control inputs from the user or controller (as appropriate) will subsequently be used to determine the output from the system. The choice of sensor is governed by a number of factors including accuracy, resolution, cost and physical size.

Sensors can be categorized as either **active** or **passive**. An active sensor *generates* a current or voltage output. A passive transducer *requires a source of current or voltage* and it modifies this in some way (e.g. by virtue of a change in the sensor's resistance). The result may still be a voltage or current *but it is not generated by the sensor on its own*.

Sensors can also be classed as either **digital** or **analogue**. The output of a digital sensor can exist in only two discrete states, either 'on' or 'off',

Table 15.1 Some examples of input transducers

Physical quantity	Input transducer	Notes
Sound (pressure change)	Dynamic microphone (see Fig. 15.3)	Diaphragm attached to a coil is suspended in a magnetic field. Movement of the diaphragm causes current to be induced in the coil.
Temperature	Thermocouple (see Fig. 15.2)	Small e.m.f. generated at the junction between two dissimilar metals (e.g. copper and constantan). Requires reference junction and compensated cables for accurate measurement.
Angular position	Rotary potentiometer	Fine wire resistive element is wound around a circular former. Slider attached to the control shaft makes contact with the resistive element. A stable d.c. voltage source is connected across the ends of the potentiometer. Voltage appearing at the slider will then be proportional to angular position.

Table 15.2 Some examples of output transducers

Physical quantity	Output transducer	Notes
Sound (pressure change)	Loudspeaker (see Fig. 15.3)	Diaphragm attached to a coil is suspended in a magnetic field. Current in the coil causes movement of the diaphragm which alternately compresses and rarefies the air mass in front of it.
Temperature	Heating element (resistor)	Metallic conductor is wound onto a ceramic or mica former. Current flowing in the conductor produces heat.
Angular position	Rotary potentiometer	Multi-phase motor provides precise rotation in discrete steps of 15° (24 steps per revolution), 7.5° (48 steps per revolution) and 1.8° (200 steps per revolution).

Figure 15.2 A selection of thermocouple probes

'low' or 'high', 'logic 1' or 'logic 0', etc. The output of an analogue sensor can take any one of an infinite number of voltage or current levels. It is

Figure 15.3 A selection of audible transducers

thus said to be *continuously variable*. Table 15.3 provides details of some common types of sensor.

Table 15.3 Some examples of input transducers

Physical quantity	Input transducer	Notes
Angular position	Resistive rotary position sensor (see Fig. 15.5)	Rotary track potentiometer with linear law produces analogue voltage proportional to angular position.
	Optical shaft encoder	Encoded disk interposed between optical transmitter and receiver (infrared LED and photodiode or photo-transistor).
Angular velocity	Tachogenerator	Small d.c. generator with linear output characteristic. Analogue output voltage proportional to shaft speed.
	Toothed rotor tachometer	Magnetic pick-up responds to the movement of a toothed ferrous disk. The pulse repetition frequency of the output is proportional to the angular velocity.
Flow	Rotating vane flow sensor (see Fig. 15.9)	Turbine rotor driven by fluid. Turbine interrupts infra-red beam. Pulse repetition frequency of output is proportional to flow rate.
Linear position	Resistive linear position sensor	Linear track potentiometer with linear law produces analogue voltage proportional to linear position. Limited linear range.
	Linear variable differential transformer (LVDT)	Miniature transformer with split secondary windings and moving core attached to a plunger. Requires a.c. excitation and phase-sensitive detector.
	Magnetic linear position sensor	Magnetic pick-up responds to movement of a toothed ferrous track. Pulses are counted as the sensor moves along the track.
Light level	Photocell	Voltage-generating device. The analogue output voltage produced is proportional to light level.
	Light-dependent resistor (LDR) (see Fig. 15.8)	An analogue output voltage results from a change of resistance within a cadmium sulphide (CdS) sensing element. Usually connected as part of a potential divider or bridge.
	Photodiode (see Fig. 15.8)	Two-terminal device connected as a current source. An analogue output voltage is developed across a series resistor of appropriate value.
	Phototransistor (see Fig. 15.8)	Three-terminal device connected as a current source. An analogue output voltage is developed across a series resistor of appropriate value.

Table 15.3 (Continued)

Physical quantity	Input transducer	Notes
Liquid level	Float switch (see Fig. 15.7)	Simple switch element which operates when a particular level is detected.
	Capacitive proximity switch	Switching device which operates when a particular level is detected. Ineffective with some liquids.
	Diffuse scan proximity switch	Switching device which operates when a particular level is detected. Ineffective with some liquids.
Pressure	Microswitch pressure sensor (see Fig. 15.4)	Microswitch fitted with actuator mechanism and range-setting springs. Suitable for high-pressure applications.
	Differential pressure vacuum switch	Microswitch with actuator driven by a diaphragm. May be used to sense differential pressure. Alternatively, one chamber may be evacuated and the sensed pressure applied to a second input.
	Piezo-resistive pressure sensor	Pressure exerted on diaphragm causes changes of resistance in attached piezo-resistive transducers. Transducers are usually arranged in the form of a four active element bridge which produces an analogue output voltage.
Proximity	Reed switch (see Fig. 15.4)	Reed switch and permanent magnet actuator. Only effective over short distances.
	Inductive proximity switch	Target object modifies magnetic field generated by the sensor. Only suitable for metals (non-ferrous metals with reduced sensitivity).
	Capacitive proximity switch	Target object modifies electric field generated by the sensor. Suitable for metals, plastics, wood and some liquids and powders.
	Optical proximity switch (see Fig. 15.4)	Available in diffuse and through scan types. Diffuse scan types require reflective targets. Both types employ optical transmitters and receivers (usually infra-red emitting LEDs and photo-diodes or photo-transistors). Digital input port required.
Strain	Resistive strain gauge	Foil type resistive element with polyester backing for attachment to body under stress. Normally connected in full bridge configuration with temperature-compensating gauges to provide an analogue output voltage.
	Semiconductor strain gauge	Piezo-resistive elements provide greater outputs than comparable resistive foil types. More prone to temperature changes and also inherently non-linear.
Temperature	Thermocouple (see Fig. 15.2)	Small e.m.f. generated by a junction between two dissimilar metals. For accurate measurement, requires compensated connecting cables and specialized interface.
	Thermistor (see Fig. 15.6)	Usually connected as part of a potential divider or bridge. An analogue output voltage results from resistance changes within the sensing element.
	Semiconductor temperature sensor (see Fig. 15.6)	Two-terminal device connected as a current source. An analogue output voltage is developed across a series resistor of appropriate value.
Weight	Load cell	Usually comprises four strain gauges attached to a metal frame. This assembly is then loaded and the analogue output voltage produced is proportional to the weight of the load.
Vibration	Electromagnetic vibration sensor	Permanent magnet seismic mass suspended by springs within a cylindrical coil. The frequency and amplitude of the analogue output voltage are respectively proportional to the frequency and amplitude of vibration.

Figure 15.4 Various switch sensors

Figure 15.7 Liquid level float switch

Figure 15.5 Resistive linear position sensor

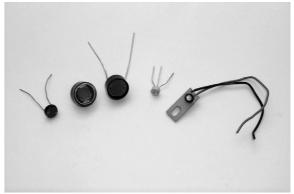


Figure 15.8 Various optical and light sensors



Figure 15.6 Various temperature and gas sensors

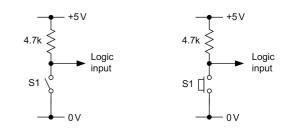
Figure 15.9 Liquid flow sensor (digital output)

Figure 15.10 Contactless joystick

Switches

Switches can be readily interfaced to electronic circuits in order to provide manual inputs to the system. Simple toggle and push-button switches are generally available with **normally open** (NO), **normally closed** (NC) or **changeover** contacts. In the latter case, the switch may be configured as either an NO or an NC type, depending upon the connections used.

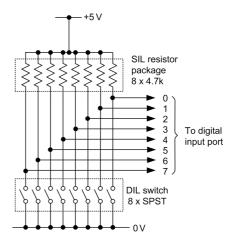
Toggle, lever, rocker, rotary, slide and push-button types are all commonly available in a variety of styles. Illuminated switches and key switches are also available for special applications. The choice of switch type will obviously depend upon the application and operational environment.


An NO switch or push-button may be interfaced to a logic circuit using nothing more than a single **pull-up resistor** as shown in Fig. 15.11.

The relevant bit of the input will then return 0 when the switch contacts are closed (i.e. when the switch is operated or where the push-button is depressed). When the switch is inactive, the logic input will return 1.

Unfortunately, this simple method of interfacing has a limitation when the state of a switch is being sensed regularly (e.g. during program execution). However, a typical application which is unaffected by this problem is that of using one or more PCB-mounted switches (e.g. a DIL switch package) to configure a logic system in one of a number of preset modes. In such cases, the switches would be set once only and the software would read the state of the

switches and use the values returned to initially configure the system. Thereafter, the state of the switches would then only be changed in order to modify the operational parameters of the system (e.g. when changing input sensors or output transducers). A typical DIL switch input interface to a digital input port is shown in Fig. 15.12.

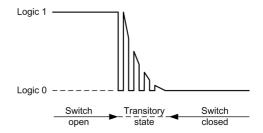

As mentioned earlier, the simple circuit of Fig. 15.11 is unsuitable for use when the state of the switch is regularly changing. The reason for this is that the switching action of most switches is far from 'clean' (i.e. the switch contacts make and break several times whenever the switch is operated). This may not be a problem when the state of a switch remains static during program execution but it can give rise to serious problems when dealing with, for example, an operator switch bank or keypad.

(a) Normally open switch

(b) Normally open push-button

Figure 15.11 Interfacing a normally open switch or push-button to a digital input port

Figure 15.12 Interfacing a DIL switch input to a digital input port


The contact 'bounce' that occurs when a switch is operated results in rapid making and breaking of the switch until it settles into its new state. Fig. 15.13 shows the waveform generated by the simple switch input circuit of Fig. 15.11 as the contacts close. The spurious states can cause problems if the switch is sensed during the period in which the switch contacts are in motion, and hence steps must be taken to minimize the effects of bounce. This may be achieved by using some extra circuitry in the form of a **debounce circuit** or by including appropriate software delays (of typically 4 to 20 ms) so that spurious switching states are ignored. We shall discuss these two techniques separately.

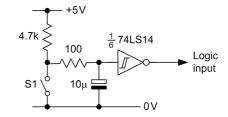
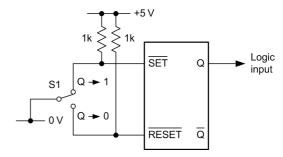
Immunity to transient switching states is generally enhanced by the use of active-low inputs (i.e. a logic 0 state at the input is used to assert the condition required). The debounce circuit shown in Fig. 15.14 is adequate for most toggle, slide and push-button type switches. The value of the 100 Ω resistor takes into account the low-state sink current required by IC1 (normally 1.6 mA for standard TTL and 400 µA for LS-TTL). This resistor should not be allowed to exceed approximately 470 Ω in order to maintain a valid logic 0 input state. The values quoted generate an approximate 1 ms delay (during which the switch contacts will have settled into their final state). It should be noted that, on power-up, this circuit generates a logic 1 level for approximately 1 ms before the output reverts to a logic 0 in the inactive state. The circuit obeys the following state table:

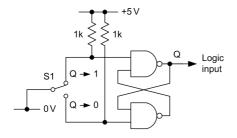
Switch condition	Logic output
Closed	1
Open	0

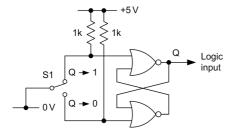
An alternative, but somewhat more complex, switch debouncing arrangement is shown in Fig. 15.15. Here a single-pole double-throw (SPDT) changeover switch is employed. This arrangement has the advantage of providing complementary outputs and it obeys the following state table:

Switch condition	Q
Q → 1	1
Q → 0	0

Figure 15.13 Typical waveform produced by a switch closure


Figure 15.14 Simple debounce circuit


Figure 15.15 Debounce circuit based on an R–S bistable

Rather than use an integrated circuit R–S bistable in the configuration of Fig. 15.15 it is often expedient to make use of 'spare' two-input NAND or NOR gates arranged to form bistables using the circuits shown in Figs 15.16(a) and 15.16(b), respectively. Fig. 15.17 shows a rather neat extension of this theme in the form of a touch-operated switch. This arrangement is based on a 4011 CMOS quad two-input NAND gate (though only two gates of the package are actually used in this particular configuration).

Finally, it is sometimes necessary to generate a latching action from a NO push-button switch. Fig. 15.18 shows an arrangement in which a 74LS73 JK bistable is clocked from the output of a debounced switch.

(a) Based on NAND gates

(b) Based on NOR gates

Figure 15.16 Alternative switch debounce circuits: (a) based on NAND gates; (b) based on NOR gates

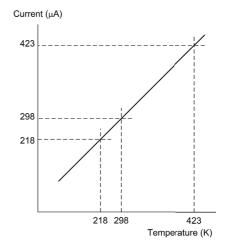


Figure 15.17 Touch-operated switch

Pressing the switch causes the bistable to change state. The bistable then remains in that state until the switch is depressed a second time. If desired, the complementary outputs provided by the bistable may be used to good effect by allowing the unused output to drive an LED. This will become illuminated whenever the Q output is high.

Semiconductor temperature sensors

Semiconductor temperature sensors are ideal for a wide range of temperature-sensing applications. The popular AD590 semiconductor temperature sensor, for example, produces an output current which is proportional to absolute temperature and which increases at the rate of 1 μ A/K. The characteristic of the device is illustrated

Figure 15.19 AD590 semiconductor temperature sensor characteristic

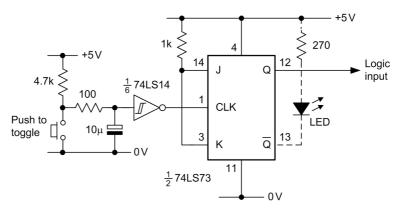
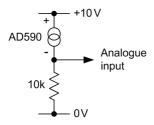



Figure 15.18 Latching action switch

Figure 15.20 Typical input interface for the AD590 temperature sensor (the output voltage will increase at the rate of 10 mV per °C)

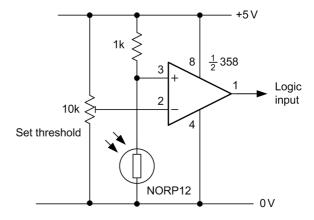
in Fig. 15.19. The AD590 is laser trimmed to produce a current of 298.2 μA (±2.5 $\mu\text{A})$ at a temperature of 298.2 K (i.e. 25 °C). A typical interface between the AD590 and an analogue input is shown in Fig. 15.20. The Practical Investigation (page 304) makes further use of this device.

Thermocouples

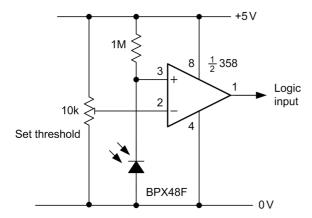
Thermocouples comprise a junction of dissimilar metals which generate an e.m.f. proportional to the temperature differential which exists between the measuring junction and a reference junction. Since the measuring junction is usually at a greater temperature than that of the reference junction, it is sometimes referred to as the **hot junction**. Furthermore, the reference junction (i.e. the **cold junction**) is often omitted, in which case the sensing junction is simply terminated at the signal conditioning board. This board is usually maintained at, or near, normal room temperatures.

Thermocouples are suitable for use over a very wide range of temperatures (from –100 °C to +1,100 °C). Industry standard 'type K' thermocouples comprise a positive arm (conventionally coloured brown) manufactured from nickel/chromium alloy while the negative arm (conventionally coloured blue) is manufactured from nickel/aluminium.

The characteristic of a **type K thermocouple** is defined in BS 4937 Part 4 of 1973 (International Thermocouple Reference Tables) and this standard gives tables of e.m.f. versus temperature over the range 0 °C to +1,100 °C. In


order to minimize errors, it is usually necessary to connect thermocouples to appropriate signal conditioning using compensated cables and matching connectors. Such cables and connectors are available from a variety of suppliers and are usually specified for use with type K thermocouples. A selection of typical thermocouple probes for high temperature measurement was shown earlier in Fig. 15.2.

Threshold detection


Analogue sensors are sometimes used in situations where it is only necessary to respond to a pre-determined threshold value. In effect, a two-state digital output is required. In such cases a simple one-bit analogue-to-digital converter based on a comparator can be used. Such an arrangement is, of course, very much simpler and more cost-effective than making use of a conventional analogue input port!

Simple threshold detectors for light level and temperature are shown in Figs 15.21, 15.22 and 15.24. These circuits produce TTL-compatible outputs suitable for direct connection to a logic circuit or digital input port.

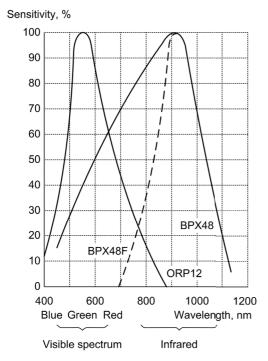

Fig. 15.21 shows a light-level threshold detector based on a comparator and light-dependent resistor (LDR). This arrangement generates a logic 0 input whenever the light level exceeds the threshold setting, and vice versa. Fig. 15.22 shows how light level can be sensed using a

Figure 15.21 Light-level threshold detector based on a light-dependent resistor (LDR)

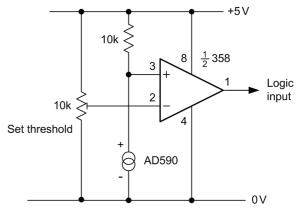


Figure 15.22 Light-level threshold detector based on a photodiode

Figure 15.23 Comparison of the spectral response of an LDR and some common photodiodes

photodiode. This circuit behaves in the same manner as the LDR equivalent but it is important to be aware that circuit achieves peak sensitivity in the near infra-red region. Fig. 15.23 shows how the spectral response of a typical light-dependent resistor (NORP12) compares with that of a conventional photodiode (BPX48). Note that

Figure 15.24 Temperature threshold detector based on an AD590 semiconductor temperature sensor

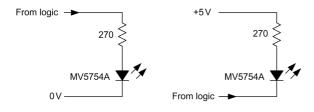
the BPX48 can also be supplied with an integral daylight filter (BPX48F).

Fig. 15.24 shows how temperature thresholds can be sensed using the AD590 sensor described earlier. This arrangement generates a logic 0 input whenever the temperature level exceeds the threshold setting, and vice versa.

Outputs

Having dealt at some length with input sensors, we shall now focus our attention on output devices (such as relays, loudspeakers and LED indicators) and the methods used for interfacing them. Integrated circuit output drivers are available for more complex devices, such as LCD displays and stepper motors. Many simple applications will, however, only require a handful of components in order to provide an effective interface.

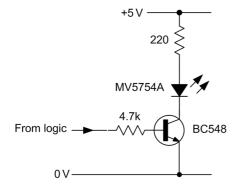
LED indicators


Indicators based on light-emitting diodes (LEDs) are inherently more reliable than small-filament lamps and also consume considerably less power. They are thus ideal for providing visual status and warning displays. LEDs are available in a variety of styles and colours and 'high brightness' types can be employed where high-intensity displays are required.

A typical red LED requires a current of around 10 mA to provide a reasonably bright display and such a device may be directly driven from a buffered digital output port. Different connections are used depending upon whether the LED is to be illuminated for a logic 0 or logic 1 state. Several possibilities are shown in Fig. 15.25.

Where drive current is insufficient to operate an LED, an auxiliary transistor can be used as shown in Fig. 15.26. The LED will operate when the output from a logic circuit card is taken to logic 1 and the operating current should be approximately 15 mA (thereby providing a brighter display than the arrangements previously described). The value of LED series resistance will be dependent upon the supply voltage and can be determined from the equation shown on page 97 or it can be selected from the data shown in Table 15.4.

Driving high-current loads


Due to the limited output current and voltage capability of most standard logic devices and

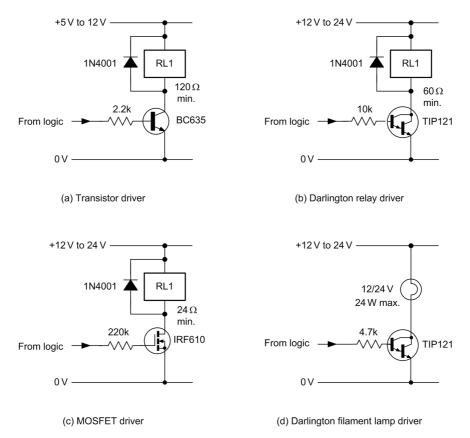
(a) Logic 1 to illuminate the LED

(b) Logic 0 to illuminate the LED

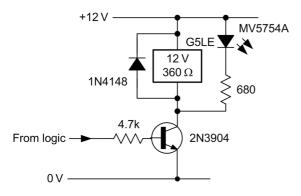
Figure 15.25 Driving an LED from a buffered logic gate or digital I/O port

Figure 15.26 Using an auxiliary transistor to drive an LED where current drive is limited

Table 15.4 Typical values for LED series resistors


Voltage	Series resistance (all 0.25 W)
3V to 4V	100 Ω
4V to 5V	150 Ω
5V to 8V	220 Ω
8V to 12V	470 Ω
12 V to 15 V	820 Ω
15V to 20V	1.2 kΩ
20 V to 28 V	1.5 kΩ

I/O ports, external circuitry will normally be required to drive anything other than the most modest of loads. Fig. 15.27 shows some typical arrangements for operating various types of medium- and high-current load. Fig. 15.27(a) shows how an NPN transistor can be used to operate a low-power relay. Where the relay requires an appreciable operating current (say, 150 mA or more), a plastic encapsulated Darlington power transistor should be used as shown in Fig. 15.27(b). Alternatively, a power MOSFET may be preferred, as shown in Fig. 15.27(c). Such devices offer very low values of 'on' resistance coupled with a very high 'off' resistance. Furthermore, unlike conventional bipolar transistors, a power FET will impose a negligible load on an I/O port. Fig. 15.27(d) shows a filament lamp driver based on a plastic Darlington power transistor. This circuit will drive lamps rated at up to 24 V, 500 mA. Finally, where visual indication of the state of a relay is desirable it is a simple matter to add an LED indicator to the driver stage, as shown in Fig. 15.28.


Audible outputs

Where simple audible warnings are required, miniature piezoelectric transducers may be used. Such devices operate at low voltages (typically in the range 3V to 15V) and can be interfaced with the aid of a buffer, open-collector logic gate or transistor. Figs 15.29(a)–(c) show typical interface circuits which produce an audible output when the port output line is at logic 1.

Where a pulsed rather than continuous audible alarm is required, a circuit of the type shown in

Figure 15.27 Typical medium- and high-current driver circuits: (a) transistor low-current relay driver; (b) Darlington medium/high-current relay driver; (c) MOSFET relay driver; (d) Darlington low-voltage filament lamp driver

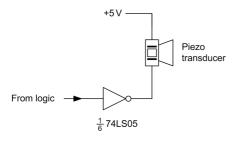
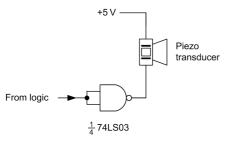
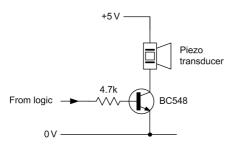

Figure 15.28 Showing how an LED indicator can easily be added to a relay driver

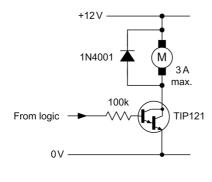
Fig. 15.31 can be employed. This circuit is based on a standard 555 timer operating in astable mode and operates at approximately 1 Hz. A logic 1 from the port output enables the 555 and activates the pulsed audio output.


Finally, the circuit shown in Fig. 15.32 can be used where a conventional moving-coil loudspeaker is to be used in preference to a piezoelectric transducer. This circuit is again based on the 555 timer and provides a continuous output at approximately 1 kHz whenever the port output is at logic 1.

Motors


Circuit arrangements used for driving d.c. motors generally follow the same lines as those described earlier for use with relays. As an example, the circuits shown in Fig. 15.30 show how a Darlington driver and a power MOSFET can be used to drive a low-voltage d.c. motor. These circuits are suitable for use with d.c. motors rated at up to 12 V with stalled currents of up to 3 A. In both cases, a logic 1 from the output port will operate the motor.

(a) Using an open-collector buffer



(b) Using an open-collector logic gate

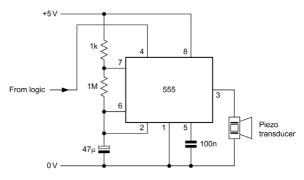
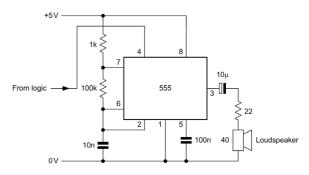
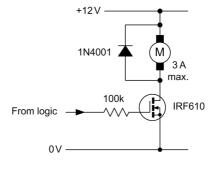

(c) Using a transistor

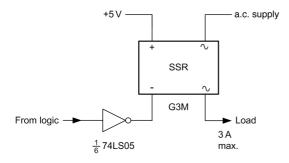
Figure 15.29 Audible output driver circuits

(a) Darlington motor driver

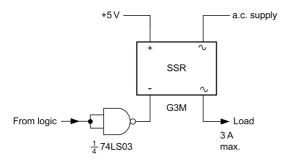
Figure 15.30 Motor driver circuits

Figure 15.31 Audible alarm circuit based on a 555 astable oscillator and a piezoelectric transducer


Figure 15.32 Audible alarm circuit based on a 555 astable oscillator and a 40 Ω loudspeaker

Driving mains-connected loads


Control systems are often used in conjunction with mains-connected loads. Modern **solid-state relays** (SSRs) offer superior performance and reliability when compared with conventional relays in such applications. SSRs are available in a variety of encapsulations (including DIL, SIL, flat-pack and

(b) MOSFET motor driver

(a) Using an open-collector buffer

(b) Using an open-collector logic gate

Figure 15.33 Interface circuits for driving solid state relays

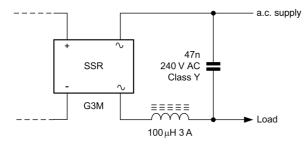


Figure 15.34 Using a snubber circuit with an inductive load

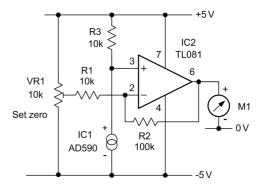
plug-in octal) and may be rated for r.m.s. currents between 1 A and 40 A.

In order to provide a high degree of isolation between input and output, SSRs are optically coupled. Such devices require minimal input currents (typically 5 mA or so when driven from 5 V) and they can thus be readily interfaced with an I/O port that offers sufficient drive current. In other cases, it may be necessary to drive the SSR from an unbuffered I/O port using an

open-collector logic gate. Typical arrangements are shown in Fig. 15.33. Finally, it is important to note that, when an inductive load is to be controlled, a **snubber network** should be fitted, as shown in Fig. 15.34.

Practical investigation

Objective


To investigate the operation of an AD590 semiconductor temperature sensor and its interface/signal conditioning circuit.

Components and test equipment

Breadboard, d.c. power supply with ± 5 V output at 100 mA (or more), 10 k Ω linear variable resistor (preferably multi-turn type), fixed resistors of 10 k Ω (two required) and 100 k Ω 0.25 W 5%, AD590 temperature sensor, TL081 operational amplifier, digital multimeter, thermometer, test leads and probes, small hand-held hair drier.

Procedure

Connect the circuit, set VR1 to mid-position, and measure the output voltage produced by the circuit. Adjust VR1 for an output voltage reading of exactly zero at a temperature of 20 °C. Place the temperature sensor in close proximity to the thermometer in the air flow from the hair drier. Slowly increase the temperature and record the output voltage for each increase of 10 °C indicated on the thermometer using the example shown in Table 15.5.

Figure 15.35 Temperature sensor and interface circuit used in the Practical investigation

Table 15.5 Table of results

Temperature (°C)	Output voltage (V)
20	
30	
40	
50	
60	
70	

Graph and calculations

Plot a graph showing output voltage against temperature (see Fig. 15.36) and measure the slope of the graph.

Conclusions

Comment on the shape of the graph. Is this what you would expect? Suggest an application for the circuit.

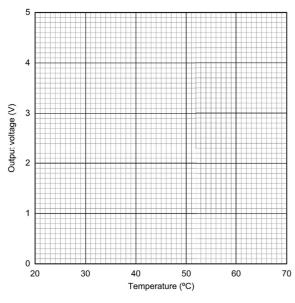


Figure 15.36 Graph layout

Problems

- 15.1 For each of the automotive applications listed below, state:
 - (a) the quantity sensed or measured
 - (b) the name of the transducer used for sensing or measurement
 - (c) the output quantity produced by the transducer.

Applications:

- 1. Sensing the amount of fuel in a tank.
- 2. Sensing the flow rate of fuel in a fuel feed pipe.
- 3. Warning a driver that a road surface is liable to be icy.
- 4. Warning a driver that a door is open.
- 15.2 Sketch circuit diagrams to show how the following devices can be interfaced to a logic circuit based on conventional LS-TTL logic:
 - (a) an LED
 - (b) a normally open push-button
 - (c) a relay
 - (d) a piezoelectric audible transducer.
- 15.3 With the aid of a circuit diagram, explain the operation of a threshold light-level sensor. Specify the type of sensor used and explain how the response might vary with light of different wavelengths.

Answers to these problems appear on page 452.

Circuit simulation

Chapter summary

Computer simulation provides you with a powerful and cost-effective tool for designing, simulating and analysing a wide variety of electronic circuits. In recent years, the computer software packages designed for this task have not only become increasingly sophisticated but also have become increasingly easy to use. Furthermore, several of the most powerful and popular packages are now available at low cost either in evaluation, 'lite' or student versions. In addition, there are several excellent freeware and shareware packages (see Appendix 9).

Whereas early electronic simulation software required that circuits were entered using a complex **netlist** that described all of the components and connections present in a circuit, most modern packages use an on-screen graphical representation of the circuit on test. This, in turn, generates a netlist (or its equivalent) for submission to the computational engine that actually performs the circuit analysis using mathematical models and **algorithms**. In order to describe the characteristics and behaviour of components such as diodes and transistors, manufacturers often provide models in the form of a standard list of parameters.

Most programs that simulate electronic circuits use a set of algorithms that describe the behaviour of electronic components. The most commonly used algorithm was developed at the Berkeley Institute in the United States and it is known as **SPICE** (Simulation Program with Integrated Circuit Emphasis).

Results of circuit analysis can be displayed in various ways, including displays that simulate

those of real test instruments (these are sometimes referred to as **virtual instruments**).

A further benefit of using electronic circuit simulation software is that, when a circuit design has been finalized, it is usually possible to export a file from the design/simulation software to a PCB layout package. It may also be possible to export files for use in screen printing or CNC drilling. This greatly reduces the time that it takes to produce a finished electronic circuit.

Types of analysis

Various types of analysis are available within modern SPICE-based circuit simulation packages (see Appendix 9). These usually include:

D.C. analysis

D.C. analysis determines the d.c. operating point of the circuit under investigation. In this mode any wound components (e.g. inductors and transformers) are short-circuited and any capacitors that may be present are left

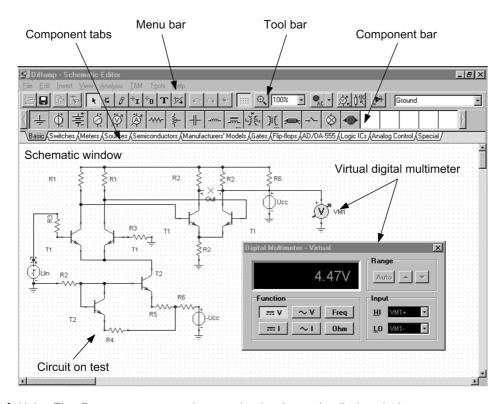
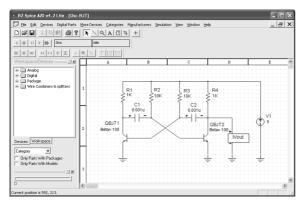
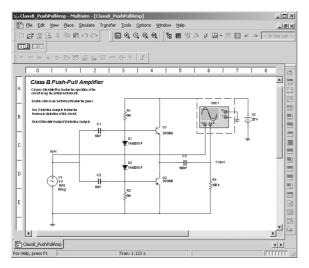




Figure 16.1 Using Tina Pro to construct and test a circuit prior to detailed analysis

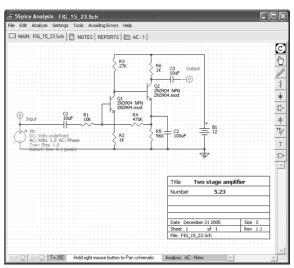


Figure 16.2 An astable multivibrator circuit being simulated using B2 Spice

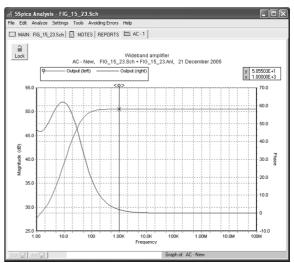
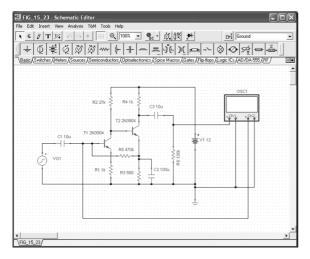
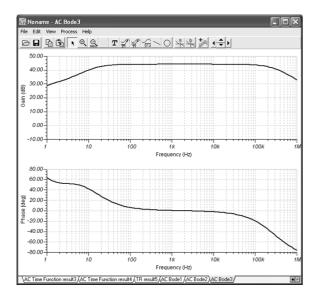


Figure 16.3 A Class B push–pull amplifier circuit being simulated by Multisim

open-circuit. In order to determine the initial conditions, a d.c. analysis is usually automatically performed prior to a transient analysis. It is also usually performed prior to an a.c. small-signal analysis in order to obtain the linearized, small-signal models for non-linear devices. Furthermore, if specified, the d.c. small-signal value of a transfer function (ratio of output variable to input source), input resistance, and output resistance is also computed as a part of the d.c. solution. The d.c. analysis can also be used to generate d.c. transfer curves in which a specified independent voltage or current source is stepped over a user-specified range and the d.c. output variables are stored for each sequential source value.


Figure 16.4 High-gain amplifier (Fig. 14.23) being analysed using the 5Spice Analysis package


Figure 16.5 Gain and phase plotted as a result of small-signal a.c. analysis of the circuit in Fig. 16.4

A.C. small-signal analysis

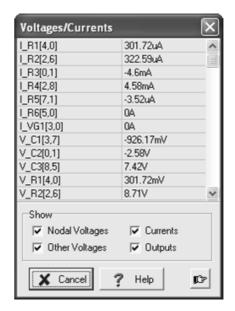
The a.c. small-signal analysis feature of SPICE software computes the a.c. output variables as a function of frequency. The program first computes the d.c. operating point of the circuit and determines linearized, small-signal models for all of the non-linear devices in the circuit (e.g. diodes and transistors). The resultant linear circuit is then analysed over a user-specified range of frequencies. The desired output of

Figure 16.6 High-gain amplifier (Fig. 14.23) being analysed using the Tina Pro package

Figure 16.7 Gain and phase plotted as a result of small-signal a.c. analysis of the circuit in Fig. 16.6

an a.c. small-signal analysis is usually a transfer function (voltage gain, transimpedance, etc.). If the circuit has only one a.c. input, it is convenient to set that input to unity and zero phase, so that output variables have the same value as the transfer function of the output variable with respect to the input.

Transient analysis


The transient analysis feature of a SPICE package computes the transient output variables as

a function of time over a user-specified time interval. The initial conditions are automatically determined by a d.c. analysis. All sources that are not time dependent (for example, power supplies) are set to their d.c. value.

Pole-zero analysis

The pole-zero analysis facility computes the poles and/or zeros in the small-signal a.c. transfer function. The program first computes the d.c. operating point and then determines the linearized, small-signal models for all the non-linear devices in the circuit. This circuit is then used to find the poles and zeros of the transfer function.

Two types of transfer functions are usually supported. One of these determines the voltage transfer function (i.e. output voltage divided by input voltage) and the other usually computes the output **transimpedance** (i.e. output voltage divided by input current) or **transconductance** (i.e. output current divided by input voltage). These two transfer functions cover all the cases and one can make it possible to determine the poles/zeros of functions like impedance ratio (i.e. input impedance divided by output impedance) and voltage gain. The input and output ports are specified as two pairs of nodes. Note that, for

Figure 16.8 Results of d.c. analysis of the circuit shown in Fig. 16.6

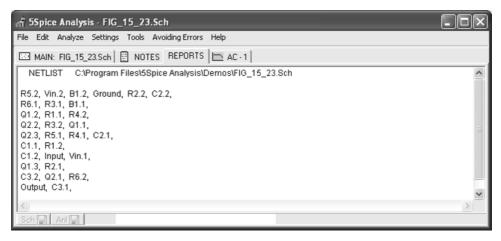
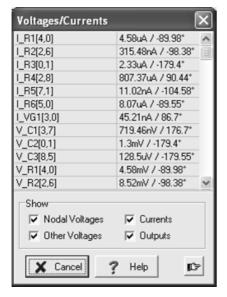



Figure 16.9 Computer-generated netlist for the circuit shown in Fig. 16.4.

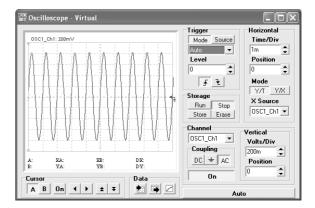


Figure 16.10 Results of a.c. analysis of the circuit shown in Fig. 16.6

complex circuits it can take some time to carry out this analysis and the analysis may fail if there is an excessive number of poles or zeros.

Small-signal distortion analysis

The distortion analysis facility provided by SPICE-driven software packages computes steady state harmonic and inter-modulation products for small input signal magnitudes. If signals of a single frequency are specified as the input to the circuit, the complex values of the second and

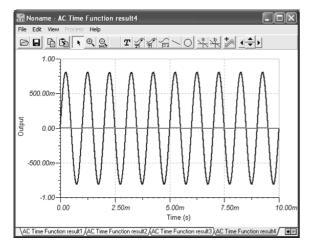


Figure 16.11 Using the virtual oscilloscope in Tina Pro to display the output voltage waveform for the circuit shown in Fig. 16.6

third harmonics are determined at every point in the circuit. If there are signals of two frequencies input to the circuit, the analysis finds out the complex values of the circuit variables at the sum and difference of the input frequencies, and at the difference of the smaller frequency from the second harmonic of the larger frequency.

Sensitivity analysis

Sensitivity analysis allows you to determine either the d.c. operating-point sensitivity or the a.c. small-signal sensitivity of an output variable with respect to all circuit variables, including model parameters. The software calculates the difference in an output variable (either a node voltage or a branch current) by perturbing each

Figure 16.12 Alternative waveform plotting facility provided in Tina Pro

parameter of each device independently. Since the method is a numerical approximation, the results may demonstrate second-order effects in highly sensitive parameters, or may fail to show very low but non-zero sensitivity. Further, since each variable is perturbed by a small fraction of its value, zero-valued parameters are not analysed (this has the benefit of reducing what is usually a very large amount of data).

Noise analysis

The noise analysis feature determines the amount of noise generated by the components and devices (e.g. transistors) present in the circuit that is being analysed. When provided with an input source and an output port, the analysis calculates the noise contributions of each device (and each noise generator within the device) to the output port voltage. It also calculates the input noise to the circuit, equivalent to the output noise referred to the specified input source. This is done for every frequency point in a specified range. After calculating the spectral densities, noise analysis integrates these values over the specified frequency range to arrive at the total noise voltage/current (over this frequency range).

Thermal analysis

Many SPICE packages will allow you to determine the effects of temperature on the performance of a circuit. Most analyses are performed at normal ambient temperatures (e.g. 27 °C) but it can be advantageous to look at the effects of reduced

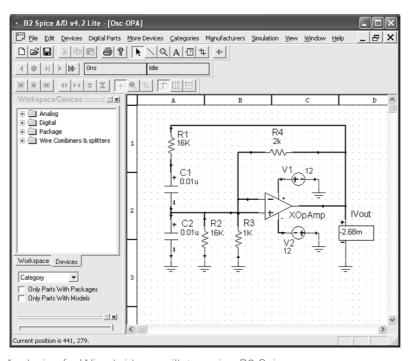


Figure 16.13 Analysis of a Wien bridge oscillator using B2 Spice

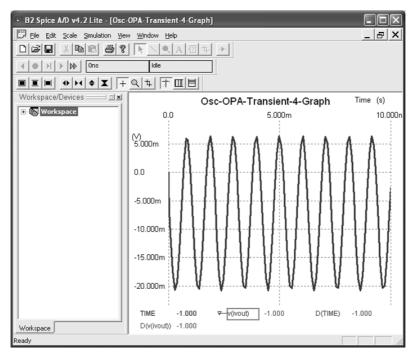
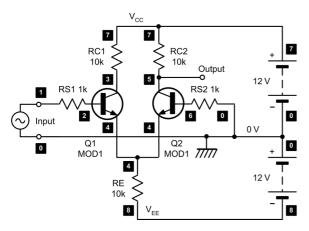


Figure 16.14 Transient analysis of the circuit in Fig. 16.13 produced the output waveform plot

or increased temperatures, particularly where the circuit is to be used in an environment in which there is a considerable variation in temperature.

Netlists and component models

The following is an example of how a netlist for a simple **differential amplifier** is constructed (note that the line numbers have been included solely for explanatory purposes):


- 1. SIMPLE DIFFERENTIAL PAIR
- **2.** VCC 7 0 12
- **3.** VEE 8 0 -12
- 4. VIN 1 0 A.C. 1
- **5.** RS1 1 2 1K
- 6. RS2 6 0 1K
- **7.** Q1 3 2 4 MOD1
- 8. Q2 5 6 4 MOD1
- **9.** RC1 7 3 10K
- **10.** RC2 7 5 10K
- **11.** RE 4 8 10K
- **12.** MODEL MOD1 NPN BF=50 VAF=50 IS=1.E-12 RB = 100 CJC=.5PF TF=.6NS
- **13.** .TF V(5) VIN

- 14. .AC DEC 10 1 100MEG
- **15.** .END

Lines 2 and 3 define the supply voltages. V_{cc} is +12 V and is connected between node 7 and node 0 (signal ground). V_{EE} is -12 V and is connected between node 8 and node 0 (signal ground). Line 4 defines the input voltage which is connected between node 1 and node 0 (ground) while lines 5 and 6 define 1 k Ω resistors (RS1 and RS2) connected between 1 and 2, and 6 and 0.

Lines 7 and 8 are used to define the connections of two transistors (Q1 and Q2). The characteristics of these transistors (both identical) are defined by MOD1 (see line 12). Lines 9, 10 and 11 define the connections of three further resistors (RC1, RC2 and RE, respectively). Line 12 defines the transistor model. The device is NPN and has a current gain of 50. The corresponding circuit is shown in Fig. 16.15.

Most semiconductor manufacturers provide detailed SPICE models for the devices that they produce. The following is a manufacturer's SPICE model for a 2N3904 transistor (see Appendix 9):

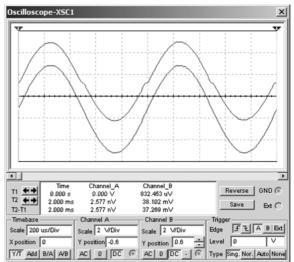


Figure 16.15 Differential amplifier with the nodes marked for generating a netlist

NPN (Is = 6.734f Xti = 3 Eg = 1.11 Vaf = 74.03 Bf = 416.4 Ne = 1.259 Ise = 6.734 Ikf = 66.78m Xtb = 1.5 Br = .7371 Nc = 2Isc = 0 Ikr = 0 Rc = 1 Cjc = 3.638p Mjc = .3085 Vjc = .75 Fc = .5 Cje = 4.493p Mje = .2593 Vje = .75 Tr = 239.5n Tf = 301.2pltf = .4 Vtf = 4 Xtf = 2 Rb = 10)

Logic simulation

As well as an ability to carry out small-signal a.c. and transient analysis of linear circuits (see Figs 16.3 and 16.16), modern SPICE software

Figure 16.16 Cross-over distortion evident in the output waveform from the Class B amplifier shown in Fig. 16.3

packages usually incorporate facilities that can be used to analyse logic and also 'mixed-mode' (i.e. analogue and digital) circuits. Several examples of digital logic analysis are shown in Figs 16.17, 16.18 and 16.19.

Fig. 16.17 shows a four-stage shift register based on J–K bistables. The result of carrying out an analysis of this circuit is shown in Fig. 16.18.

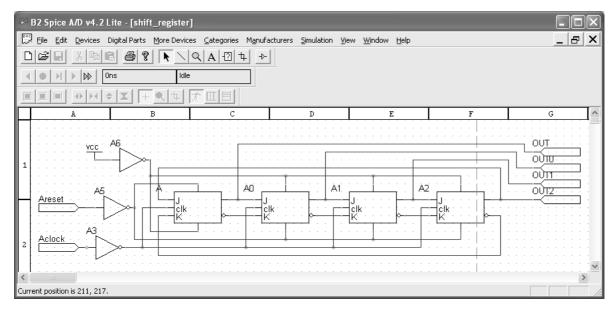


Figure 16.17 Four-stage circulating shift register simulated using B2 Spice

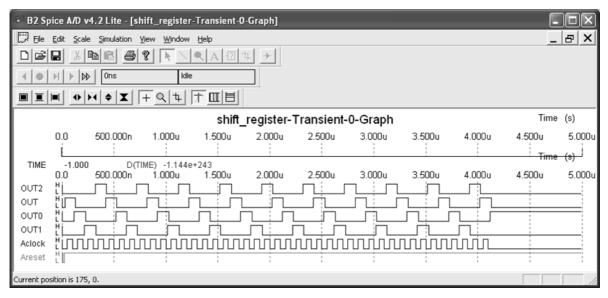


Figure 16.18 Waveforms for the four-stage circulating shift register in Fig. 16.17

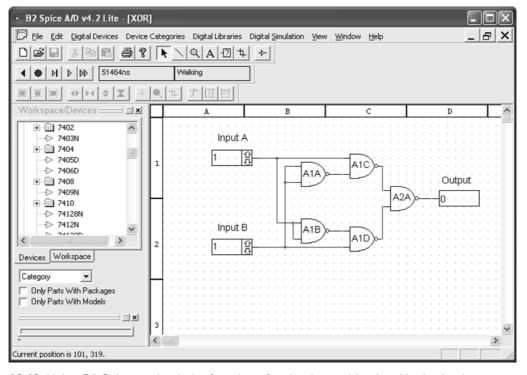


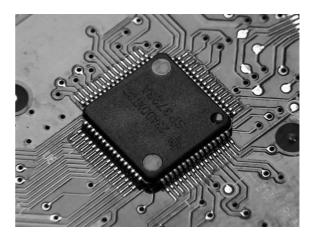
Figure 16.19 Using B2 Spice to check the function of a simple combinational logic circuit

Finally, Fig. 16.19 shows how a simple combinational logic circuit can be rapidly 'assembled' and tested and its logical function checked. This circuit arrangement provides a solution to Question 10.20 on page 207 and it shows how the exclusive-OR function can be realized using only two-input NAND gates.

Modelling large-scale logic systems

Modern LSI and VLSI-based systems can be extremely complex. Being able to describe the logical function of such systems can be a very demanding task as conventional techniques (such as truth tables, logic diagrams and Boolean algebra) quickly become cumbersome and errorprone. In the design process there's also a need to take into account internal propagation delays and other limitations of real-world logic devices. This is just not possible using the conventional logic visualization techniques (such as Boolean algebra and truth tables) that we met earlier in this book.

Hardware description language (HDL) seeks to remedy this problem by providing a formal and rigorous description of a digital logic circuit. HDL provides a means of describing the operation and logical function of a circuit as well as its architecture and behaviour. By forming an HDL description of a circuit we are able to exhaustively test and verify the circuit without having to manufacture any physical hardware.


Not only does HDL use standard text-based constructs to describe the operation of logic elements, but it can also take into account the timing (and more particularly the time delays) associated with real logic devices. This becomes invaluable when logic circuits are required to operate at high speed or when the appearance of unwanted transient logic states may have an undesirable or unpredictable effect on the behaviour of a logic system, the hardware to which it is connected or the systems in which it is used.

Large-scale logic systems are now used in a wide variety of modern electronic equipment and they are usually fabricated on a single silicon

chip comprising many hundreds of thousands of individual logic elements which need to be connected in a particular way in order to fulfil the requirements of the system. However, as logic systems become increasingly more complex, a number of problems arise, including the need:

- ▶ to be able to simulate, thoroughly test and verify the logic prior to manufacturing the device in which the logic will eventually be embedded;
- ▶ to be able to describe the logic in a manner that is both understandable and unambiguous;
- ▶ to take into account the limitations (particularly those related to speed and propagation delay) of the logic elements that will be employed in the target system; and
- ▶ to be able to create logical components suitable for reuse in other complex logic systems.

HDL enables the logic designer to model a device, simulate it and then refine its performance before committing the design to physical hardware. The first major implementation of HDL was in 1985 with the advent of Verilog. Two years later, with the increasing use of very high-speed integrated circuits (VHSICs), a request from the US Department of Defense led to the development of VHDL (VHSIC HDL). Since then, VHDL and Verilog have dominated among the array of software-based design tools available to the advanced digital designer.

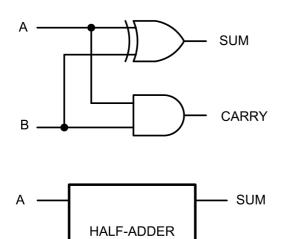
Figure 16.20 MSI and LSI devices can contain a very large number of individual logic elements connected to perform complex logic operations

Entities and entity declarations

In a complex logic system where many components and logical sub-systems can be present it is essential for each individual component to be seen (and can thus be interacted with) by all of the other components present. Thus a primary requirement of any logic system description language is a construct that provides us with a rigorous definition of the component's interface. In VHDL this is referred to as an **entity**.

A VHDL entity must be declared before it can be used. This declaration must begin with a unique name for the entity and then must specify the entity's input and output ports. For example, the following code fragment is an entity declaration of a basic half-adder (see Fig. 16.21):

ENTITY half_adder IS


PORT(x, y: IN bit;

sum, carry: OUT bit);

END half-adder;

The code fragment provides us with the following information:

- 1. The name of the entity is half_adder.
- **2.** The entity has two inputs named **x** and **y**.
- **3.** The entity has two outputs named sum and carry.
- **4.** The inputs and outputs are all **bit** (binary digit) **type** (see later).

CARRY

Figure 16.21 A half-adder

Α	В	SUM	CARRY
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Figure 16.22 Truth table for the half-adder shown in Figure 16.21

The PORT statement specifies the interface to the entity in terms of both the direction of data flow and the type of signal. Notice also that, at this stage, we have not provided any clues as to the behaviour or the entity. We need to do this separately with some further code statements. Note that VHDL allows for both concurrent and sequential signal assignment.

Behavioural declarations

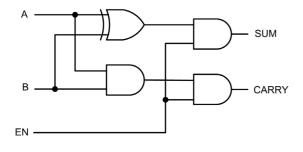
Other than the names that we chose for our entities, the declaration that we met in the previous section provides no clues as to the underlying logic function. In order to do this we need some additional code to specify the **behaviour** of our entity. Here is how this could be done for the half-adder entity:

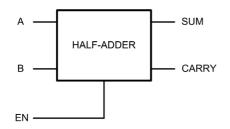
ARCHITECTURE half_adder_behaviour OF half_adder IS BEGIN

PROCESS (x; y)

BEGIN

sum <= x XOR y;


carry <= x AND y;


END PROCESS;

END half adder behaviour;

Notice how we have used standard logical expressions XOR and AND in the code (see Chapter 10). Now let's consider a slightly more complicated arrangement like the one shown in Fig. 16.23. This half-adder has an additional enable (EN) input which is taken 'high' to enable the logic, but when taken low both of the outputs (SUM and CARRY) remain in the 'low' state. Here is the new entity declaration and its associated behavioural code:

В

Figure 16.23 A half-adder with an enable (EN) input

```
ENTITY half adder IS
        PORT(x, y, en: IN bit;
               sum, carry: OUT bit);
END half-adder:
ARCHITECTURE half_adder_behaviour OF half_adder IS
        BEGIN
                 PROCESS (x; y)
                          BEGIN
                              IF en = '1' THEN
                                   sum \le x XOR y;
                                    carry <= x AND y;
                               FLSE
                                   sum <= '0':
                                   carry <= '0';
                          END IF:
                 END PROCESS;
        END half_adder_behaviour;
```

Note how the IF ... THEN ... ELSE ... END IF construct is used to make a logical decision based on the state of the enable (EN) input.

VHDL design flow

When designing with VHDL as an aid it is essential to adopt a structured approach. This usually involves a series of stages starting with a detailed specification and ending with verification

EN	Α	В	SUM	CARRY
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

Figure 16.24 Truth table for the half-adder shown in Figure 16.23

and implementation. Typical stages in the design flow are:

- 1. Conception. Based on an objective needs analysis, the initial stage involves developing a comprehensive understanding of the required function of the logic system. It will help you to arrive at a detailed specification as well as a definitive list of signals with which the system will be able to interact with external hardware. Because complex logic designs are invariably hierarchical in nature, VHDL provides an excellent framework for defining modules and their interfaces.
- 2. Coding. The next stage is that of actually developing the VHDL code. This involves describing each of the VHDL components in terms of how they will interact with other components. The stage also involves specifying the required library modules as well as any existing code that can be re-used and incorporated into the new design.
- 3. Compilation. Having completed the coding, the next stage is that of analysing the code for syntax errors and compatibility with other modules. If no errors are identified, the compilation process will continue to produce to the point at which the VHDL component

can be simulated using a test-bench procedure.

- 4. Simulation. Simulation will allow you to check that a VHDL design works as originally planned without actually committing the design to hardware. The VHDL simulator allows you to define and apply inputs to the design and to check that the required outputs are produced. It will also allow you to experiment with the timing delays that are inherent in real-world logic devices and ensure that the component's logical operation is independent of timing considerations and internal gate delays.
- 5. Synthesis. Synthesis involves converting the intermediate VHDL code into components that can be assembled using the target technology. With ASIC devices, for example, the VHDL programming environment will export a net list that specifies how the individual gates should be interconnected in order to realize the desired logic function.
- **6. Fitting, placement and routing**. This penultimate step in the process involves the physical realization of the component in hardware rather than software. The process differs according to the semiconductor technology and may lead to a production-scale run of devices.
- 7. Verification. Finally, the design needs to be tested within the system into which it will be connected. This involves assembly onto the target avionics platform as well as carrying out further tests in order to assess the performance of the component when subjected to real-world circuit delays caused by stray reactances, electrical loading and other factors (including being able to continue to perform to specification at the extreme limits of temperature and supply voltage).

VHDL programs

VHDL programs must conform to a well-defined structure. This structure describes the architecture of a device at several different levels, notably its internal structure or behaviour as well as how it appears to the outside world. The notion of an entity that we met earlier is important. You might like to think of it as a 'wrapper' for the architecture, hiding the internal details but yet still

providing all of the necessary 'hooks' for other logic modules to connect to it and make use of it. The following points are worth noting in relation to the structure of a VHDL program:

- ► In the source text of a VHDL program, the entity declaration and architecture definition must be separated.
- ► VHDL uses a number of reserved keywords such as ENTITY, PORT, IS, IN, OUT, END, ARCHITECTURE, BEGIN, WHEN, ELSE and NOT. Note that, for clarity, we have shown these capitalized in the code examples but they could be equally used in lower case.
- ► Comments in VHDL must begin with two hyphens (--) and end at the end of a line.
- ▶ Identifiers begin with a letter and may contain letters, digits and underscores (but note that two underscores may not be used together or be the last character in an identifier).
- Keywords and identifiers in VHDL code are not case sensitive.

Finally, because VHDL is not usually case sensitive and white space is neglected, you may encounter some minor variations in style, layout and presentation when examining samples of VHDL code from different sources.

VHDL signal modes and types

As explained in the previous section, a VHDL entity is simply a declaration of a component's inputs and outputs so that it can be 'seen' from the outside world and thus be interacted with. At the same time, the inner workings of the entity (i.e. its behaviour and architecture) are completely hidden from the external view. This is a powerful concept: once an entity has been designed and tested it can be easily incorporated into many other logic systems. Because we have no need to concern ourselves with what goes on inside an entity, we are only interested in what the entity does and how to connect to it!

There are a few more signal modes than the simple IN (input) and OUT (output) that we met in the earlier VHDL examples. Here is a list of allowed modes:

- ► IN the signal is an input to the entity.
- ▶ OUT the signal is an output of the entity (note that this signal is only available to external

entities and it has no meaning inside the entity's architecture).

- ► BUFFER the signal is an output of the entity and its value can also be read and used inside the entity's architecture (unlike OUT).
- ► INOUT the signal can be used as an input or an output of the entity. This mode is typically used for tri-state signal lines which can be used both for input and output (but not at the same time!).

In VHDL, all signals, variables and constants must have an associated type which specifies the permissible range of values for the object. VHDL provides several predefined types, including the following:

- ▶ bit a binary digit having the value 0 or 1.
- ▶ bit_vector the signal is a vector of bit values (e.g. bits 0 to 7 of a byte). Bit vectors help to simplify the VHDL code when dealing with groups of bits.
- ▶ std_logic and std_ulogic these are logic signals that can have one of nine different properties, including unknown, uninitialized, forcing and weak logic states (see below).
- ► std logic vector and std ulogic vector as above but for **vectors** of bit values.
- ▶ boolean a logic signal that can exist in two states, true and false.
- ▶ integer a number that can take one of a range of integer values.
- ► real a number that can take one of a range of real values.
- character a printable character, such as '@'.
- ▶ time a value that indicates the time.

In a real-world logic system the logic levels are rarely perfect representations of the ideal logic 0 and logic 1 levels. VHDL takes this into account with its std_logic and std_ulogic data types that are defined in the relevant IEEE library. Thus std_logic and std_ulogic (and their bit vector counterparts) are preferred over the more basic bit types. The range of real-world logic conditions that are catered for include:

- 'U' an un-initialized value;
- ► 'X' a forcing unknown;
- ► '0' a forcing logic 0;
- '1' − a forcing logic 1;
- → 'Z' high impedance (tri-state);

- 'W' − a weak unknown;
- 'L' a low state (or weak logic 0);
- ► 'H' a high state (or weak logic 1);
- '-' don't care.

VHDL operators

Like most conventional programming languages, VHDL supports a variety of operators divided into different classes in order of precedence. These operators include those that are associated with many of the logic functions that we have introduced in this book, such as AND, OR and NOT. Others allow us to perform conventional arithmetic operations, such as +, - and /. The list below shows how these (and other) operators are arranged in order of precedence (the highest order of precedence is for the miscellaneous operators in Class 7 while the lowest is for the logical operators in Class 1):

Class 1 (logical operators)

AND OR NAND NOR XOR XNOR

Class 2 (relational operators)

= /= < <= > >=

Class 3 (shift operators)

SLL SRL SLA SRA ROL ROR

Class 4 (addition operators)

+ = &

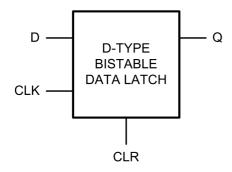
Class 5 (unary operators)

Class 6 (multiplying operators)

* / MOD REM

Class 7 (miscellaneous operators)

** ABS NOT


As examples of the use (and importance) of precedence, consider the following expressions, when p and q are both std_ulogic_vector data types with values 1010 and 0110, respectively:

p AND q	evaluates to 0010
NOT p AND q	evaluates to 0100
p AND NOT q	evaluates to 1000
p AND SLA q	evaluates to 1000 (SLA
	means 'shift left arithmetic')
NOT n AND ROR a	evaluates to 0001 (ROR

means 'rotate right logical')

VHDL logic decisions and program flow

VHDL incorporates structures that support logical decisions and aid program flow. Since many

Figure 16.25 D-type bistable data latch

readers will already be familiar with constructs such as IF ... THEN and BEGIN ... END and since their action should be reasonably self-explanatory, we will not explain these further other than to illustrate their use with the aid of some examples. The first example shows the VHDL code for the positive-edge triggered D-type bistable data latch shown in Fig. 16.25. This code fragment uses the std_logic data type:

In the foregoing example the D-type bistable has inputs, clk, clr and d. There is only one output, q. This information can be gleaned from the ENTITY declaration (and the PORT statement in particular).

END d_bistable_behaviour;

END IF:

END d_bistable_process;

The architecture statement tells us about the behaviour of the D-type bistable. The first part of the compound IF ... THEN statement examines the state of the clr input and resets the q output (to logic 0) if the clr input is as logic 1. The second,

ELSEIF, part of the statement examines the state of the clock. On a rising edge of the clock (this is when the clock is changing and goes to logic 1) the state of the $\bf d$ input is transferred to the $\bf q$ output. If $\bf d$ is at logic 1 the $\bf q$ output will go to logic 1. If $\bf d$ is at logic 0 the $\bf q$ output will go to logic 0. If this isn't clear I suggest you look again at the example, on a line-by-line basis.

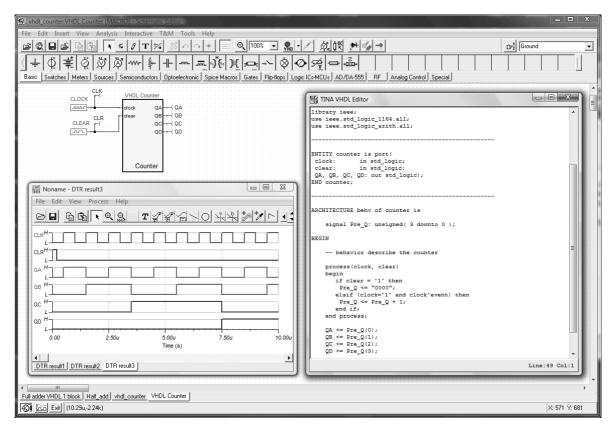
The VHDL std_logic uses arrays to cater for multiple data lines. For example, here is the code for the four-bit D-type bistable data latch shown in Fig. 16.26 (note that the device has four data bit inputs and four data bit outputs together with common clock and clear inputs):

```
LIBRARY ieee:
USE ieee.std_logic_1164.all;
ENTITY d_bistable IS
         port(clk, clr, : IN std_logic;
                  d: IN bit vector(3 down to 0);
                  q: OUT bit_vector(3 down to 0);
END d_bistable;
ARCHITECTURE d_bistable_behaviour OF d_bistable IS
         BEGIN
                  d_bistable_process (clk, clr)
                     BEGIN
                                    IF (clr = '1') THEN
                                      q <= '0';
                                    ELSEIF (clk'event
AND clk = '1') THEN
                                      q \ll d;
                                    END IF;
                           END d_bistable_process;
         END d bistable behaviour;
       D0 -
                                         Q0
       D1 -
                                        - Q1
                    FOUR BIT
       D2 -
                                        Q2
                     D-TYPE
                    BISTABLE
       D3 -
                                         Q3
                  DATA LATCH
```

Figure 16.26 Four bit D-type bistable data latch

CLR

CLK ·


Notice how the IN bit_vector() keyword defines four data-input lines (corresponding to bits 3, 2, 1 and 0) while the corresponding four data lines are defined by the OUT bit_vector() keyword. This greatly simplifies the VHDL code when dealing with groups of bits, bytes and complete data words.

VHDL simulation and the test bench
Simulation (see Fig. 16.27) is critical in
establishing the performance of an HDL model
under a range of different conditions. To simulate
an HDL component, the designer makes use of
a top-level simulation environment known as a
test bench. The test-bench code must be written
separately from the component's declaration and
it should include precise definitions of all signal
and clock waveforms that will be applied to the
component during the simulation process. The
test-bench code is event-driven, with events

occurring precisely as and when dictated by the test-bench code.

An **HDL simulator** will usually provide you with a comprehensive display which shows how signals change with time and from which the time dependency of output and intermediate signals can be observed. You will normally be able to start or stop the display at any desired time or by adding **break points** that will allow you to halt the simulation so that you can examine the logic states.

It is a mistake to think of HDL as simply another programming language. Despite some obvious similarities (e.g. the use of a **compiler**) there are some very significant differences. The most important of these differences is that most programming languages are inherently procedural (single-threaded) and incapable of handling a

Figure 16.27 A VHDL simulation environment. In this example a four-bit counter has been declared as a VHDL entity and the resulting waveform analysis obtained

16 Circuit simulation

number of events at the same time. HDLs, on the other hand, need to be able to model a large number of parallel processes, all of which could potentially occur at the same instant in time. An HDL therefore needs to have the characteristics of a concurrent, multi-threaded language.

Timing

An important aspect of VHDL is its ability to accurately model the timing delays that are inherent in real-world logic devices. To illustrate this important point Fig. 16.28 shows the digital timing analysis of a simple half-adder arrangement

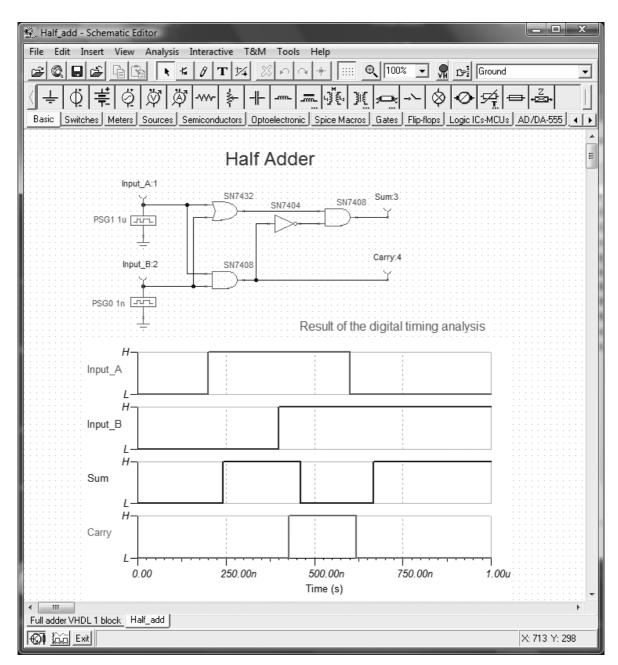


Figure 16.28 Digital timing analysis of a half-adder using conventional TTL logic

based on standard logic devices. In less-critical low-speed applications the delay in a signal passing through the half-adder arrangement can be tolerated, but for high-speed applications the delay, due to the finite time taken for a change in logic level to reach the output of the half-adder, can produce spurious logical states that could in some circumstances prove problematic. Notice how, in Fig. 16.30, the **Sum** output is delayed by 45 ns following the change to **Input_A**.

This delay results from the propagation delay associated with the standard 7404 and 7408 gates (approximately 15 ns each).

Propagation delay can be easily modelled in VHDL by defining a constant gate delay within an architecture declaration. The following code fragment (see also Fig. 16.29) shows how this can be done using:

ARCHITECTURE dataflow OF xor_gate IS CONSTANT gate_delay : time := 15ns;

Figure 16.29 VHDL and test-bench code for simulating an exclusive-OR (XOR) gate with a propagation delay of 15ns

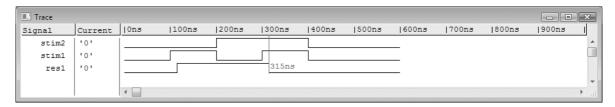


Figure 16.30 Corresponding logic waveforms generated by the test-bench code shown in Figure 16.29

BFGIN

c <= (a xor b) after gate_delay; END ARCHITECTURE;

Practical investigation Objective

To investigate the use of SPICE software to analyse a d.c. coupled power amplifier circuit.

Components and test equipment

PC with SPICE software (e.g. Tina Pro, Multisim, or B2 Spice, see Appendix 9).

Procedure

Construct the circuit shown in Fig. 16.31 using the screen drawing facilities provided by the SPICE program. Carry out a d.c. analysis of the circuit and record the voltages in Table 16.1. Check that these are what you would expect.

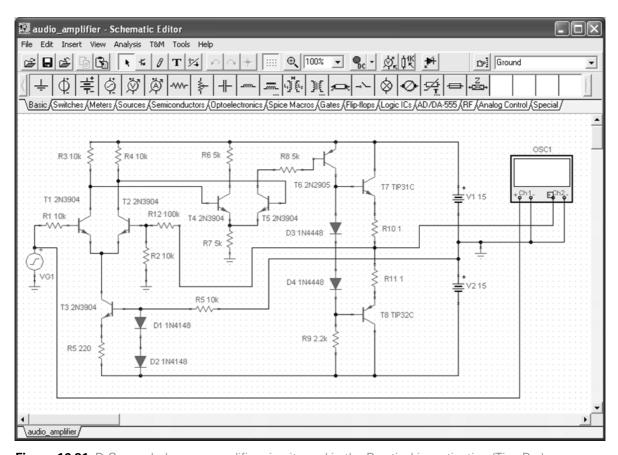


Figure 16.31 D.C. coupled power amplifier circuit used in the Practical investigation (Tina Pro)

Table 16.1 Table of results

Transistor	Collector	Base	Emitter
T1			
T2			
T3			
T4			
T5			
T6			
T7			
T8			

Use the data from the d.c. analysis to determine:

- (a) the quiescent (no-signal) collector current in T7 and T8
- **(b)** the output offset voltage (i.e. the output voltage when the input voltage is zero).

Carry out an a.c. analysis of the amplifier and determine the voltage gain of the circuit (this should be the same as the ratio of R12 to R2). Check that the voltage gain is what you would have expected. Also determine the maximum input voltage before the output voltage becomes clipped.

Problems

- 16.1 In relation to SPICE software explain the meaning of the following terms:
 - (a) node
 - (b) netlist
 - (c) algorithm
 - (d) model
 - (e) mixed-mode.
- 16.2 Explain why it is usually necessary to carry out a d.c. analysis *before* an a.c. analysis is performed.
- 16.3 Explain the purpose of transient analysis using SPICE software. How are the results of this analysis usually displayed?
- 16.4 Define the terms transimpedance and transconductance in relation to SPICE software.
- 16.5 The netlist used in a SPICE analysis program is as follows:
 CE AMPLIFIER

VCC 5 0 -5

VIN 1 0 AC 1

R1 1 2 10K

R2 3 5 1K

R3 2 3 1M

Q1 3 2 0 MOD1

MODEL MOD1 PNP BF=75 VAF=50 IS=1.E-12 RB=100 CJC=.5PF TF=.6NS

.TF V(5) VIN

.AC DEC 10 1 10MEG

.END

Sketch the corresponding circuit diagram and label the nodes.

16.6 The code fragment for a VHDL OR gate entity is shown below:

ENTITY three_input_OR IS

PORT(a, b, c: IN bit; y: OUT bit);

END three_input_OR;

Use the code fragment for the OR gate entity to answer the following questions:

- (a) What is the name of the VHDL entity?
- (b) How many inputs and outputs does the entity have?
- (c) What data type do the inputs and outputs have?
- (d) Sketch the logic symbol for the entity.
- 16.7 Write a VHDL entity declaration for (a) an inverter and (b) a two-input AND gate.
- 16.8 What changes would have to be made to the VHDL code for the half-adder shown

16 Circuit simulation

- in Fig. 16.23 if its enable (EN) input was active low rather than active high?
- 16.9 List the stages in developing a complex logic device using VHDL. Explain, briefly, the function and need for each of the stages in your list.
- 16.10 What do each of the expressions evaluate to when **p** and **q** are both **std_ulogic_vector**

- data types with values 0011 and 0100, respectively?
- (a) p AND q
- (b) NOT p OR NOT q
- (c) SLA p AND NOT q

Answer to these problems appear on page 452.

The PIC microcontroller

Chapter summary

Earlier, in Chapter 11, we introduced the PIC microcontroller as a device that is normally used in stand-alone (or **embedded**) applications to perform simple logic, timing and input/output control. In recent years such devices have become increasingly sophisticated in terms of both the variety of I/O peripheral facilities provided and the ability to connect to other devices in bus and networked configurations. This latter feature makes it possible to have several microcontrollers working together, exchanging data and control information, in **distributed systems** that can be of virtually any size.

PIC architecture

PIC microcontrollers first became popular in the mid-1990s. Since then the range of devices available has increased dramatically. Nowadays a PIC device exists for almost any embedded application, from small six-pin devices ideal for simple control applications, through to powerful high-speed devices packed with I/O features and large amounts of memory.

PICs are based on **RISC** (Reduced Instruction Set Computer) architecture and, as a consequence, they use a relatively small number of instructions. In fact, some PIC chips have as few as 33 instructions, compared with some generalpurpose microprocessors (such as the Z80) that may have several hundred. Because it is only necessary to remember a relatively small number of commands, it is relatively easy to learn to program a PIC using its own assembly language (note, however, that it may take several instructions to achieve on a PIC what can be done in a single instruction using a fully-fledged microprocessor). And, if you don't like the idea of having to learn assembly code programming you can can make use of C, BASIC or Flowcode (a language based almost entirely on flowcharts).

Another feature of PIC devices is that they use **Harvard architecture**. This means that they contain completely separate memory and buses for program instructions and data memory. Program memory can be ROM, EPROM or Flash, whereas data memory must be read/write memory (commonly known as RAM).

Mainstream microprocessors (like the Z80 that we met in Chapter 11) are categorized in terms of the number of data bits that they can manipulate (i.e. the 'width' of the data bus). They can be 8-bit, 16-bit, 32-bit, 64-bit and 128-bit devices. PIC microcontrollers, by contrast, are all based on an 8-bit data bus and, because of this, they can *only* operate on 8 bits of data at a time (despite this, you will sometimes encounter instructions that reference more data bits, i.e. 12 bits, 14 bits and 16 bits). Furthermore, although the data memory is 8 bits wide for all PIC microcontrollers, the program memory varies from 12 bits to 16 bits.

PIC families

In the early 1990s, PIC microcontrollers were grouped in three families, often referred to as 'Base-Line', 'Mid-Range' and 'High-End'. Many of these devices are incompatible with the latest development platforms and software tools. Despite this, it is usually possible to locate a modern device that is compatible with (and will generally out-perform) one of these early devices.

The base-line family comprised just four devices, which all featured 12-bit instructions. The PIC16C54 and PIC16C56 were both 18-pin devices having 12 digital I/O lines. The PIC16C54 had 512 x 12-bit words of EPROM program memory, while the PIC16C56 had 1 K x 12-bit words. Both of these devices had just 32 bytes of RAM data memory (ample for most simple control applications). The larger PIC16C55 and PIC16C57 28-pin devices had 20 digital I/O lines. The PIC16C55 had 512 × 12-bit words of EPROM program memory and 32 bytes of RAM data memory, while the PIC16C57 had 2 K x 12-bit words of EPROM program memory and 80 bytes of RAM data memory. All of these devices also featured an 8-bit real-time clock/counter and a watchdog timer.

The mid-range family of PIC devices contained a number of devices that expanded on the capabilities of the base-line devices. Of particular note are the PIC16C71, which added A/D inputs capable of reading analogue signals, and the popular PIC16C84, which featured EEPROM program and data memory. Because of the fact that the PIC16C84 could be erased electronically (without the need for the ultraviolet eraser required for EPROM erasure), it soon became a favourite with hobbyists and must have been the most popular PIC for many years.

The high-end device was the PIC17C42. This device came in a 40-pin package and featured 16-bit wide instructions. It also allowed for external memory to be interfaced and supported up to 64 K × 6-bit addressable program memory space. The device provided 33 digital I/O pins, EEPROM data memory, a serial port (USART), three 16-bit timers/counters and two high-speed pulse width modulation (PWM) outputs.

There are now more than 200 different PIC chips available and the 'Base-Line'. 'Mid-Range' and 'High-End' classification has now been replaced by several different ranges of PIC families such as the PIC-10, PIC-12, PIC-16 and PIC-18. Generally speaking, the higher the family number, the more powerful the device in terms of processing capabilities, memory sizes and I/O features. Another feature of many of the devices is **Flash program memory**. These devices can be erased and reprogrammed electrically, as with the previously popular PIC16C84. These Flash memory devices are signified by a letter 'F' in their part number (e.g. PIC16F877A). Note that Flash devices are much easier to work with for one-off prototyping because erasure and reprogramming is greatly simplified.

Choosing a PIC device

When choosing a PIC device for a particular project it is important to select a device that is well supported, both in terms of being a member of one of the current PIC families but also in terms of the programming and environment that you intend to use for software development. It is also important to ensure that the device incorporates all of the peripheral I/O facilities that you will need. Such facilities might include:

- Bus and communication interfaces (such as RS232/RS485, I²C, CAN, LIN, USB, TCP/IP)
- Display peripheral interfaces (such as LED or LCD drivers)
- Capture/compare facilities
- ► Pulse Width Modulators (PWMs)
- Counters/timers
- Watchdog facilities
- ► Analogue-to-digital (A/D) converters
- Analogue comparators and operational amplifiers
- Brown-out detectors
- ▶ Low-voltage detectors
- ▶ Temperature sensors
- Oscillators
- ▶ Voltage references
- ▶ Digital-to-analogue (D/A) converters.

Table 17.1 Some popular PIC families

PIC family	Characteristics
PIC10F	The PIC10F range features just a few 6-8-pin microcontrollers. These chips are supplied in DIP packages.
PIC12F	The PIC12F devices include the PIC12F629, PIC12F675 and PIC12F683. They are all 8-pin devices featuring six digital I/O lines and differ in the amount of program and data memory that they provide. The PIC12F683 also provides analogue inputs.
PIC16F	The PIC16F family is very large and includes devices in 14-, 18-, 28- and 40-pin packages. The chips vary in terms of the amount of memory they provide and also in their I/O features. Some devices worth noting include the PIC16F630, PIC16F676, PIC16F684 and PIC16F688, which are 14-pin equivalents to the PIC12F devices mentioned above, the PIC16F84A, which is the most current equivalent to the popular PIC16C84, and the PIC16F877A, which is a powerful 40-pin device that has become extremely popular. The PIC16F877A features 8192 × 14-bit Flash program memory, 368 bytes of RAM data memory, 256 bytes of EEPROM data memory, 33 digital I/O lines, eight 10-bit A/D channels, three counters/timers and a serial port (USART).
PIC18F	The PIC18F devices form the new high-end range. One feature that they all share is that their instruction set is optimized for C compilers. Many feature large amounts of memory and special I/O features including Universal Serial Bus (USB) and Controller Area Network (CAN) interfaces. One interesting device is the 40-pin PIC18F452, which is similar in many respects and pincompatible with the PIC16F877A. It is also worth noting that some PIC18F devices are supplied in 80-pin packages and provide more than 70 digital I/O lines. However, these are in surface-mount packages and so are difficult to experiment with!

Features of the PIC16F84

The PIC16F84 is an excellent choice for most simple microcontroller projects. This device is used in many current PIC designs and it has the following features:

- ▶ 35 single-word instructions (see Table 17.3)
- ► 1 k x 14-bit EEPROM (Flash) program memory
- ► 68 × 8-bit general purpose SRAM registers

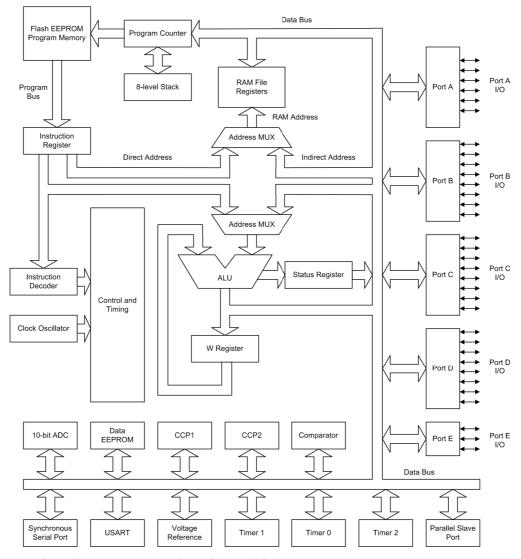


Figure 17.1 Simplified architecture of a 16F877A PIC microcontroller

- ► 15 × 8-bit special function hardware registers
- ► 64 × 8-bit EEPROM data memory
- ► 1,000,000 data memory erase/write cycles (typical)
- ▶ Data retention > 40 years
- ▶ 5 data input/output pins, Port A
- ▶ 8 data input/output pins, Port B
- ▶ 25 mA current sink max. per pin
- ▶ 20 mA current source per pin
- ▶ 8-bit timer/counter with prescaler
- ► Power-on reset (POR)
- ► Power-up timer (PWRT)
- Oscillator start-up timer (OST)

- Watchdog timer (WDT) with own on-chip RC oscillator
- ► Power saving 'sleep' function
- ► Serial in-system programming
- ► Selectable oscillator options:

RC: low cost RC oscillator

XT: standard crystal resonator (100 kHz to 4 MHz)

HS: high-speed crystal/resonator (4 MHz


to 10 MHz - PIC16F84-10 only)

LP: power-saving low-frequency crystal

(32 kHz to 200 kHz)

Figure 17.2 Pin connections for the PIC16C84 and PIC16F84 devices

Figure 17.3 Pin connections for the PIC16F877 device

► Interrupts:

External, RB0/INT pin
TMR0 timer overflow
Port B RB4 to RB7 interrupt on change
Data EEPROM write complete

- ► Operating voltage range: 2.0 V to 6.0 V
- Power consumption: < 2 mA at 5 V, 4 MHz</p>

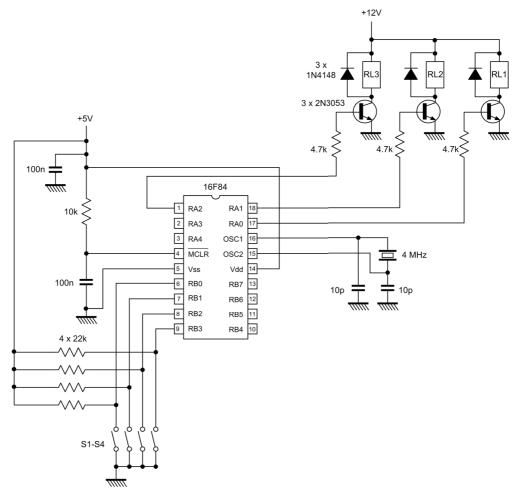
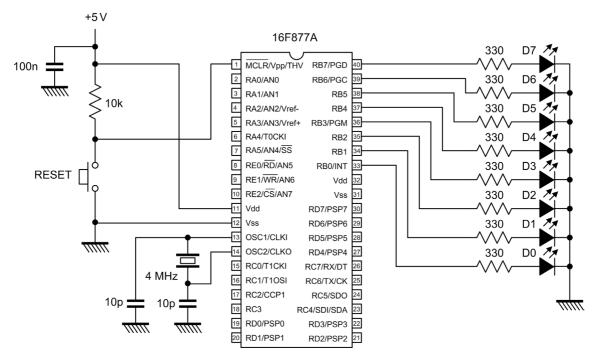

- 60 μA typical at 2 V, 32 kHz
- > <1 μA typical standby at 2 V (PIC16F84).

Fig. 17.2 shows the pin connections for the PIC16F84 while Fig. 17.4 shows how the device can be used in a simple control application that uses four switched inputs (S1 to S4) and three relay outputs (RL1 to RL3).

Features of the PIC16F877

The PIC16F877 is used for many current PIC designs. This chip has the following features:

- ▶ 35 single-word instructions (see Table 17.3)
- ► 8k × 14-bit EEPROM (Flash)
- ▶ 368 bytes of general purpose SRAM registers
- ➤ 256 × 8-bit EEPROM data memory
- ► 1,000,000 data memory erase/write cycles (typical)
- ► Data retention >40 years
- ▶ 6 data input/output pins, Port A
- ▶ 8 data input/output pins, Port B
- ▶ 8 data input/output pins, Port C
- ▶ 8 data input/output pins, Port D
- ▶ 3 data input/output pins, Port E
- ► Two 8-bit and one 16-bit timers
- ► Two capture and compare PWM modules
- Universal synchronous/asynchronous receiver transmitter (USART)
- Synchronous serial port (SSP)
- ► Parallel slave port (PSP)
- Brown-out detection and reset facility
- ▶ 10-bit, 8-channel ADC
- Two analogue comparators with programmable on-chip voltage reference, programmable input multiplexing and externally accessible comparator output
- 25 mA current sink max. per pin
- ▶ 20 mA current source per pin
- ▶ 8-bit timer/counter with prescaler
- ▶ Power-on reset (POR)
- ▶ Power-up timer (PWRT)
- Oscillator start-up timer (OST)
- Watchdog timer (WDT) with own on-chip RC oscillator
- ▶ Power saving 'sleep' function
- ► In-circuit serial programming (via two pins)
- ► Single supply 5 V in-circuit serial programming
- Selectable oscillator options


Figure 17.4 A simple microcontroller application based on the PIC16F84 device with four switch inputs (S1–S4) to control three relays (RL1–RL3). The program is automatically reset at power-up

- ► Self-programmable under software control
- ▶ 15 interrupts
- ▶ Operating frequency: d.c. to 20 MHz
- ► Supply voltage range: 2.0 V to 5.5 V
- ► Low power consumption.

PIC programming

PIC programming can be carried out using assembly language, C (see Table 17.2), BASIC and Flowcode (see page 333) or a mixture of these languages. Software and a programmer (see Figs 17.6 and 17.7) will be required to do this. The two most commonly used methods of programming a PIC chip are shown in Fig. 17.8.

In Fig. 17.8(a) a dedicated PIC programmer is used while in Fig. 17.8(b) the PIC is programmed while resident in the target system. In either case, the programming software and source code is resident on a PC and downloaded as **hex code** into the PIC. The process of generating the source code, compiling and/or assembling it into hex code (see Fig. 17.10) is invariably performed by software known as an **Integrated Development Environment** (IDE), as shown in Fig. 17.9. Software is also available that can be used to simulate a PIC (see Figs 17.11 to 17.13) and full development systems are also available (see Figs 17.14 and 17.15).

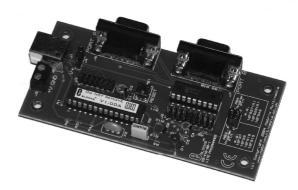
Figure 17.5 A simple microcontroller application based on the 16F877A device. This application uses eight LED outputs (D0 to D7). Note that the circuit must be manually reset at power-up

Flowcode

Flowcode is a novel programming system that is designed to allow those new to PIC programming to develop complete applications with little or no knowledge of any higher-level languages. However, it is possible to embed code written in other languages into Flowcode programs.

Programs written in C and Assembly code can be easily embedded in Flowcode. This will allow you to incorporate more complex and sophisticated code in applications where this might become necessary. Note, however, that the embedded code cannot be checked or simulated by Flowcode but instead it will be passed on to the C compiler when the flowchart is compiled. It is therefore important to verify that the C code entered is correct, as syntax errors will cause the compilation of the whole flowchart to fail.

To access Flowcode variables, macro functions and connection points, it is necessary to colour


the variable in your C code with the prefixes FCV_, FCM_ and FCC_MacroName_, respectively. For example, to use a Flowcode variable called DELAY in your C code, you must refer to it using FCV_DELAY. Note that all Flowcode defined variables must be entered in upper case.

To call a Flowcode macro called TEST in your C code, you must call FCM_TEST();. To jump to a connection point called A, defined in a Flowcode macro called TEST, your C code must be goto FCC_TEST_A;. Connection points defined in the main flowchart of a Flowcode file are prefixed FCC_Main_.

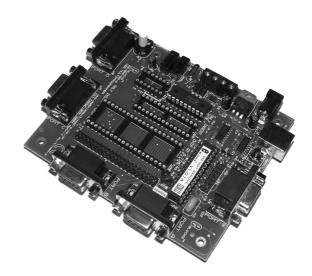
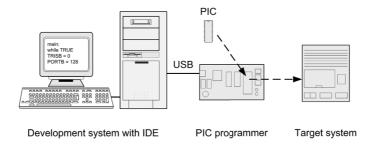

Assembly code (see Table 17.3) can be added into the code field in a C assembly code wrapper. For a single line of code you can use the asm operator in front of each instruction (e.g. asm movlw 5) or you can enclose several statements within an asm block. This makes adding assembly language routines very simple.

Table 17.2 Switch and LED PIC test routine in C


```
//Defines for the PIC microcontroller
char PORTC@0×07;
char TRISC@0×87;
char PORTD@0x08;
char TRISD@0x88:
char PORTE@0x09;
char TRISE@0x89;
//PIC Functions
#pragma CLOCK_FREQ 4000000
#define P16F877A
#include <system.h>
#define MX_EE
#define MX_EE_TYPE2
const char MX_EE_SIZE = 256;
#define MX_SPI
#define MX_SPI_C
#define MX_SPI_SDI 4
#define MX_SPI_SDO 5
#define MX_SPI_SCK 3
#define MX_UART
#define MX_UART_C
#define MX_UART_TX 6
#define MX_UART_RX 7
//Macro function declarations
//Variable declarations
char FCV_SWITCHSTATE;
//Macro implementations
void main()
//PIC Initialisation
adcon1 = 0 \times 07;
//Interrupt initialisation code
option_reg = 0 \times C0;
while (1)
      TRISA = TRISA | 0xff;
       FCV_SWITCHSTATE = PORTA;
      TRISB = 0x00;
       PORTB = FCV_SWITCHSTATE;
   if (( FCV_SWITCHSTATE ) == 0)
       break:
mainendloop: goto mainendloop;
```

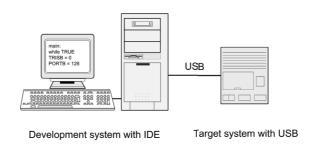
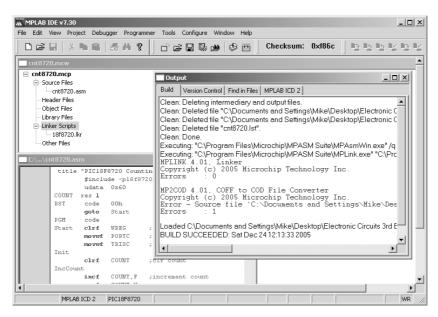
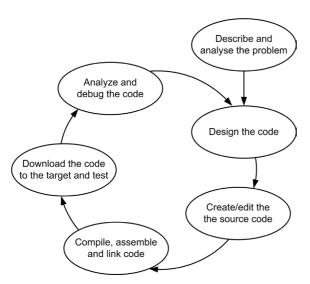
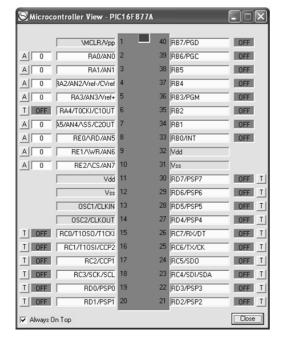


Figure 17.6 The E-blocks low-cost PIC microcontroller 'lite' programmer. This device is suitable for programming 18-pin PIC chips and it connects to a PC via a USB port. The board has two I/O ports for connecting to a wide variety of external peripheral modules

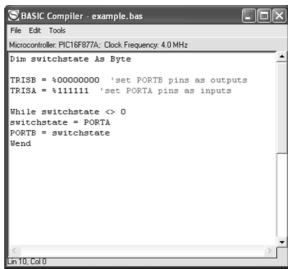
Figure 17.7 E-blocks PIC microcontroller/ microprogrammer. This versatile device connects to a PC via USB and can be used to program most 8-, 14-, 28- and 40-pin PIC chips. The board has five I/O ports for connection to a wide variety of external peripheral modules

(a) Using a conventional PIC programmer

(b) Using a flash device in the target system

Figure 17.8 Two methods of programming a PIC device


Figure 17.9 The MPLAB Integrated Development Environment (IDE)

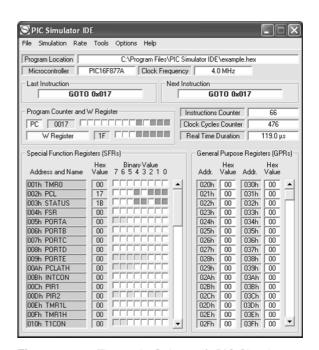

Figure 17.10 The PIC software development cycle

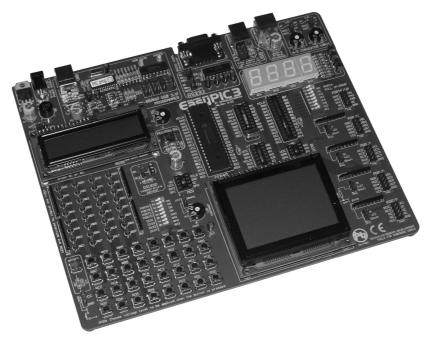
Figure 17.11 The Oshonsoft PIC Simulator showing the Microcontroller View window in which the current state of each pin is displayed

Figure 17.12 The switch and LED test program using the Oshonsoft PIC Simulator

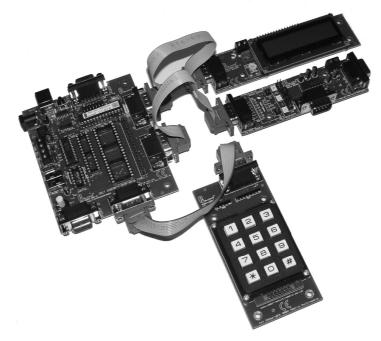
Figure 17.13 The main Oshonsoft PIC Simulator screen showing the state of the Special Function Registers (SFRs) and General Purpose Registers (GPRs). Note also the contents of the Program Counter and W Register

Table 17.3 PIC16C/F84 instruction set

Command	Operation	Syntax	Status register bit(s) affected
ADDLW	ADD Literal to W	ADDLW K	C, DC, Z
ADDWF	ADD W to F	ADDWF F,D	C, DC, Z
ANDLW	AND Literal and W	ANDLW K	Z
ANDWF	AND W with F	ANDWF F,D	Z
BCF	Bit Clear F	BCF F,B	None
BSF	Bit Set F	BSF F,B	None
BTFSC	Bit Test, Skip if Clear	BTFSC F,B	None
BTFSS	Bit Test, Skip if Set	BTFSC F,B	None
CALL	Subroutine Call	CALL K	None
CLRF	Clear F	CLRF F	Z
CLRW	Clear W register	CLRW	Z
CLRWDT	Clear Watchdog Timer	CLRWDT	TO, PD
COMF	Complement F	COMF F,D	Z
DECF	Decrement F	DECF F,D	Z
DECFSZ	Decrement F, Skip if 0	DECFSZ F,D	None
GOTO	Unconditional branch	GОТО К	None
INCF	Increment F	INCF F,D	Z
INCFSZ	Increment F, Skip if 0	INCFSZ F,D	None
IORLW	Inclusive OR Literal with W	IORLW K	Z
IORWF	Inclusive OR W with F	IORWF F,D	Z
MOVF	Move F	MOVF F,D	Z
MOVLW	Move Literal to W	MOVLW K	None
MOVWF	Move W to F	MOVWF F	None
NOP	No Operation	NOP	None
RETFIE	Return from Interrupt	RETFIE	None
RETLW	Return with Literal in W	RETLW K	None
RETURN	Return from Subroutine	RETURN	None
RLF	Rotate Left through Carry	RLF F,D	С
RRF	Rotate Right through Carry	RRF F,D	С
SLEEP	Power-down	SLEEP	TO, PD
SUBLW	Subtract W from Literal	SUBLW K	C, DC, Z
SUBLW	Subtract W from F	SUBWF F,D	C, DC, Z
SWAPF	Swap F	SWAPF F,D	None
XORLW	Exclusive OR Literal with W	XORLW K	Z
XORWF	Exclusive OR W with F	XORWF F,D	Z


Abbreviations

С Carry k Literal or label b Bit address PD Power-down С Carry TO Time-out d


Working Register Destination

DC Digit Carry Ζ Zero

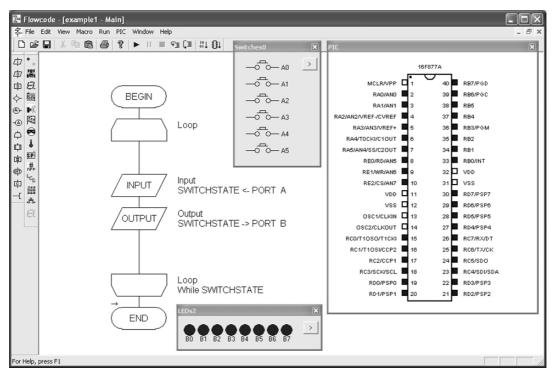

Register File Address

Figure 17.14 The MicroElektronika EasyPIC3 PIC development system (see Appendix 9). This system supports the PIC10F, 12F, 16F and 18F families and is connected to a PC via a USB port

Figure 17.15 The E-blocks system (see Appendix 9). The microcontroller system shown here uses a PIC programmer (left), keypad (bottom), LCD display (top) and serial communications interface (right)

Figure 17.16 The switch and LED test program using Flowcode. Note how the flowchart symbols are simply dragged and dropped into the main program window from the toolbar on the left

Practical investigation

Objective

To investigate the operation of a PIC16F877A microcontroller using a simulator to run a simple program.

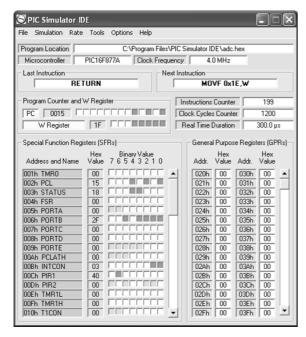
Components and test equipment

Oshonsoft PIC Simulator or similar virtual Integrated Development Environment (IDE). The Oshonsoft IDE can be downloaded from www.Oshonsoft.com.

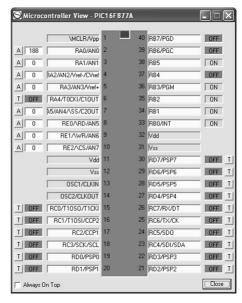
System configuration and required operation

The program is to simulate the operation of a PIC16F877A microcontroller and is to read an analogue voltage present on the ANO analogue input and display the 8-bit binary conversion result on PORTB.

The analogue-to-digital converter (ADC) BASIC source code used in the Practical investigation


(shown in Table 17.4) is available for downloading from the companion website (see page 495).

Procedure


Start the PIC Simulator (see Fig. 17.17), click on Options and then Select Microcontroller. Select the 'PIC16F877' from the list and click on the Select button. Next click on File and Load Program. Select the file named adc.hex (generated as a result of compiling the BASIC source code shown in Table 17.4) and click on Open. This will load the program into the PIC's program memory.

Click on Tools and Microcontroller View in order to open the window shown in Fig. 17.18). If necessary, reposition the windows on the screen so that you can see both of them, then Select the Rate and Extremely Fast before clicking on Simulation and Start. The simulation will start immediately.

To set an analogue input voltage, click on the analogue (A) button associated with the RAO/ANO

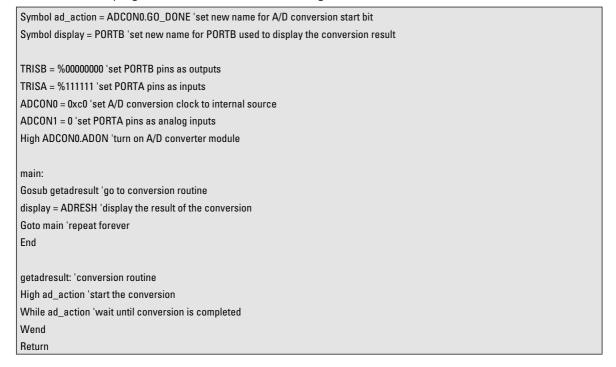


Figure 17.17 PIC Simulator IDE used in the Practical investigation. This screen shows the state of the PIC with the Program Counter at 0015.

Figure 17.18 Microcontroller View showing the state of each of the PIC's pins during program execution

Table 17.4 ADC program used in the Practical investigation

pin then use the slider to change the analogue value on this pin and click on Accept button to accept the value. The state of the PORTB pins should immediately reflect this value. Repeat with several different analogue input values and at reduced simulation speeds in order to examine the effect of each program instruction.

A further program

If you have been able to run the simple ADC program successfully you might like to try your hand at entering, compiling and running a program that will loop continuously reading the state of the switches on Port A and output the result to Port B (see Fig. 17.12).

Problems

- 17.1 In relation to a PIC microcontroller, briefly explain the meaning of the following terms:
 - (a) Flash memory
 - (b) Harvard architecture
 - (c) RISC
 - (d) Sleep function
 - (e) IDE.
- 17.2 Explain, with the aid of a diagram, how a PIC can be programmed without having to remove it from the target system
- Sketch a diagram to show the five stages in PIC software development cycle.
 Explain why it is usually necessary to follow this process several times before a fully functional program is obtained.

- 17.4 Explain how the PIC application circuit shown in Fig. 17.4 is automatically reset on power-up (Hint: the MCLR input needs to be taken low in order to reset the PIC).
- 17.5 Show how the PIC application shown in Fig. 17.5 can be modified to support:
 - (a) automatic power-on reset
 - (b) four switch inputs connected to Port D
 - (c) an analogue input connected to Port A.
- 17.6 List FOUR different types of peripheral I/O device that can be incorporated in a PIC microcontroller chip. Suggest a typical application for each device.
- 17.7 The following fragment of source code appears in a PIC BASIC program:

Dim inputstate As Byte

TRISA = %111111

TRISB = %00000000

While inputstate <> %111000

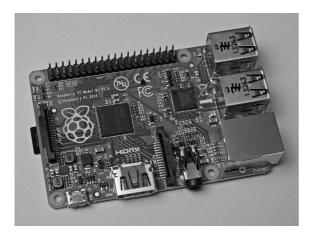
Wend

PORTB = %00000000

While inputstate <> %000111

Wend

PORTB = %11111111


Explain the function of the code by adding appropriate comments to each line.

Answers to these problems appear on page 452.

Electronic applications and the Raspberry Pi

Chapter summary

The inexpensive and immensely popular Raspberry Pi microcomputer (Fig. 18.1) can be a very cost-effective platform for developing a huge variety of electronic projects that need programmed control. With its impressively small form factor of just 86 × 56 mm, the Raspberry Pi utilizes a Broadcom ARM-based SoC (system on chip) processor running at a default speed of 700 MHz. An integral Videocore 4 video-processing unit caters for hardware decoding of high-definition video at high bit rates and this makes the unit ideal for a wide variety of multimedia applications as well as embedded projects. Although both models have the same processor hardware, Model B does benefit from an increased 512 Mb of RAM compared with the 256 Mb fitted to the Model A. The newly introduced Model B+ (shown in Fig. 18.1) offers an enhanced specification with four USB ports (compared with two on the Model B), lower power consumption, improved audio quality and a 40-pin I/O connector which retains pin-out compatibility with the first 26 pins on the Model B.

Figure 18.1 Despite its diminutive appearance, the Raspberry Pi is a powerful and versatile microcomputer system that's ideal for a wide variety of control applications

Figure 18.2 shows the main components present on the Pi's circuit board as well as the non-volatile secure digital (SD) memory card which connects to the rear of the circuit board (see Fig. 18.3).

One of the features that makes the Raspberry Pi ideal for use by enthusiasts and hobbyists is the computer's **General Purpose Input Output**

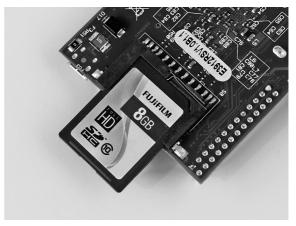


Figure 18.3 The Raspberry Pi's SD memory card

(GPIO) port. This allows the connection of all manner of additional inputs and outputs that can be accessed from a program running on the Pi. Couple this with the connectivity, networking and processing capabilities (see Fig. 18.4) and you have an excellent microcomputer-based development system capable of supporting some highly sophisticated electronic projects!

Fig. 18.5 shows how the Raspberry Pi's Linux-based operating system manages the

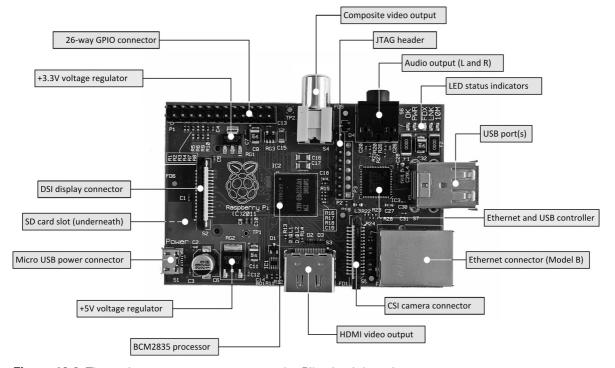


Figure 18.2 The main components present on the Pi's circuit board

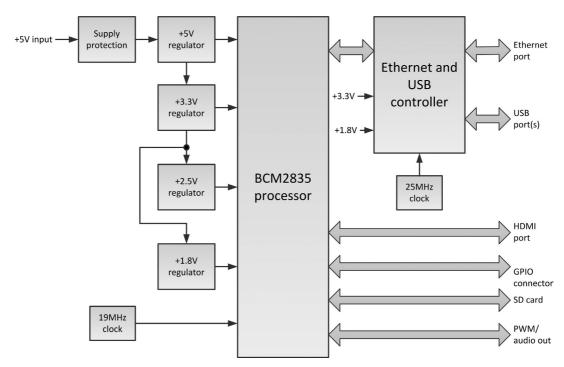
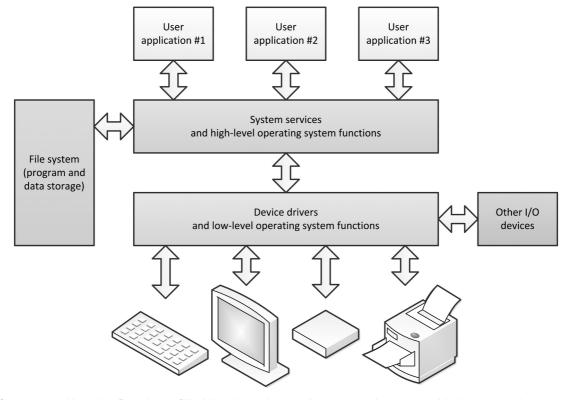



Figure 18.4 Simplified block schematic of a Raspberry Pi showing the two principal chips, voltage regulators and I/O

Figure 18.5 How the Raspberry Pi's Linux-based operating system interacts with the system's resources

interface between one or more user application programs and the hardware components of the microprocessor system together with any peripheral devices (such as keyboards, displays and printers) that are connected to it. The operating system operates at both high level, providing a variety of **system services** such as those needed to operate a file system, and at low level, using a number of **drivers** that allow the microcomputer system to interact with specific items of hardware such as displays and printers.

Using the Raspberry Pi's GPIO

In Chapter 11 we mentioned that, in order to fulfil any useful function, a microprocessor system needs to have links with the outside world and that these connections are provided by means of one or more programmable VLSI devices. These input/output (I/O) devices fall into two general categories; **parallel** (where one byte is transferred at a time along eight wires), or **serial** (where one bit is transferred after another along a single wire). Thanks to the versatility of the Raspberry Pi's GPIO the system is able to cater for both serial and parallel data transfer.

At this point, and before attempting to make use of the Raspberry Pi's GPIO port, it is essential to be aware that the chip that drives the GPIO port can be very easily damaged by misconnection or the application of voltages outside the manufacturer's specified range. In particular, the voltage applied to the signal pins must never exceed +3.3 V or fall below 0 V. An inadvertent connection to the +5 V rail must be avoided at all cost!

Logic levels

The logic levels used to represent the digital signals on the GPIO connector are normally quoted as **low** (or logic 0) represented by voltages 'near 0 V' and **high** (or logic 1) represented by voltages 'near +3.3 V'. This definition can be a little problematic as both low and high states are actually represented by a range of voltages. However, what is more important is that any voltage outside the acceptable range (for example, a voltage level of +1.5 V) is not misconstrued as

representing either a low or high state. In practice, this means that the range of voltage between about +0.8 V and +2.0 V is indeterminate in terms of the logic state that it represents and thus needs to be avoided!

The acceptable range of signal voltage for the Raspberry Pi's GPIO port is shown in Table 18.1. Thus, for example, an input voltage of +0.4 V would be interpreted as a low (or logic 0) state, while an output voltage of +3.0 V would be equivalent to a high (or logic 1) state.

Table 18.1 GPIO logical signal levels

Characteristic	Typical
Input low voltage, V _{IL}	0V to +0.8V
Input high voltage, V _{IH}	+2.2 V to +3.3 V
Output low voltage, V _{OL}	0V to +0.6V
Output high voltage, V _{OH}	+2.4 V to +3.3 V

Output source current

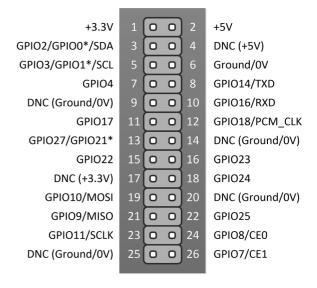
The current sourced by the GPIO is derived from the Pi's +3.3 V regulator (see Fig. 18.3). The 3.3 V regulator is rated for a maximum continuous current drain of 50 mA and therefore the total current supplied by the GPIO signal pins must not be allowed to exceed this value. So, for example, it would be possible to source 8 mA to each of five light emitting diodes (total 40 mA), but if eight devices were to be driven the current to be supplied to each individual LED would need to be reduced to no more than 6 mA. Thus the limitation of the 3.3 V supply needs to be kept in mind when designing an interface board! Alternatively, it can often be advisable to use an external +3.3 V power supply and use the Raspberry Pi's increased sink current capability (see next section).

Output sink current

The current that can be sunk by the GPIO is appreciably greater than that which can be sourced. Each of the Raspberry Pi's GPIO lines are capable of sinking a current of up to 16 mA. Furthermore, provided that the 16 mA maximum is observed, the total current limitation no longer applies.

Capacitive loads

So far we have assumed that the GPIO lines operate with purely resistive loads (e.g. a series combination of a resistor and an LED). However, when driving a capacitive load there is a need to ensure that the transient current supplied to the capacitor does not exceed the source or sink current limitations mentioned earlier. This can be achieved by means of some additional series resistance to limit the capacitor's charging current. For example, a series resistance of 220 Ω will limit the transient current to +3.3 V/220 Ω or about 15 mA, regardless of the amount of capacitance present. Note that the additional resistance will tend to act as a low-pass filter and so this will impose a limit on the speed of operation, depending on the value of shunt (parallel) capacitance present in the load.


GPIO configuration

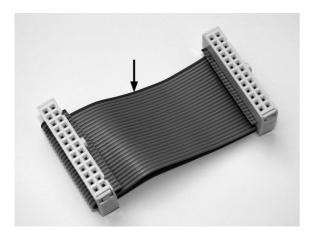
Many of the GPIO pins can be reconfigured to provide alternate functions such as a simple serial interface for external devices compatible with the **SPI** or **I**²**C** interface standards. Following initialization the GPIO pins are placed in their default state and the GPIO channels become immediately available on the GPIO header (P1) for use as general purpose input or output lines.

Depending on the particular application that you are dealing with, the GPIO pins are extremely versatile and can be configured in a variety of different ways. We will be explaining how this is achieved later, but for now we will simply be dealing with the default configuration that loads when the Raspberry Pi is initialized at boot time.

The GPIO port lines on the Raspberry Pi are brought out to a 26-way header. This comprises two rows of 13 pins spaced 0.1" apart, as shown in Fig. 18.6. The header is designed to be used with an insulation displacement connector (IDC) which uses a 26-way flat ribbon cable. This greatly simplifies circuit construction and helps keep the wiring between the Raspberry Pi and any external boards neat and tidy.

The contact between the female cable socket and the conductors within the ribbon cable is made by 'displacing' (i.e. piercing and pushing

* For Version 1 boards


Figure 18.6 GPIO signals and their pin connections on the GPIO header (P1)

aside) the insulation so that an effective electrical connection is made between a tiny pair of jaws and the respective stranded copper wires inside the insulation provided by the ribbon cable.

Note that the pin numbering used by the Raspberry Pi foundation for the Pi's GPIO connector is a little unconventional as the even-numbered pins are located along the board edge and this suggests that the ribbon cable should exit the header towards the centre of the printed circuit board rather than more neatly away from the board edge. Also note that on a conventional IDC connector pin-1 is usually marked with a triangular symbol and the corresponding conductor on the ribbon cable is marked with a red stripe (Fig. 18.7).

Which version?

Some of the GPIO connector's pin functions have changed between different versions, so it is important to know which version of the Raspberry Pi board you are dealing with! Of particular interest when dealing with the default chip configuration is that the signal carried on pin 13 of the GPIO connector was changed from GPIO21 in Version 1 of the board to GPIO27 in Version 2.

Figure 18.7 A 26-way ribbon cable fitted with IDC connectors – note the arrow that indicates pin-1

Some other pin functions also changed between these two versions. Fortunately, it seems unlikely that the GPIO connector will change in any subsequent versions of the Raspberry Pi, but it could be *well worth checking* if you have a newer board version. Note that the Model B+ has 40 pins on the GPIO connector, with the first 26 pins having identical functions as those on the Models A and B, described here.

You can check your board version by examining the CPU data stored in the system. To do this you can make use of the cat command entered directly from the command prompt:

cat /proc/cpuinfo

Version 1

Version 2

Figure 18.8 Differences between Version 1 and Version 2 boards can be easily detected by examining the status LEDs. Note also that the Version 2 (and later) boards are fitted with two mounting holes, missing from Version 1

This will display the board's revision number. A revision number of 0002 or 0003 will be displayed for a Version 1 board. Higher numbers correspond to a Version 2, or later, board. As well as information on the processor, a typical response to the command might include the following lines:

Hardware : BCM2708 Revision : 0003

This indicates that you are dealing with a Version 1 board. Note that if the revision number is preceded by '1000' this will indicate that the processor has been overclocked by raising its core voltage so, for example, the following indicates a Version 2 board that has been overclocked (the overclocked status is preserved in an internal write-once memory):

Hardware : BCM2708 Revision : 10000004

The Python GPIO library

The Python GPIO library module provides easy access to the features of the GPIO port from within your Python code. Before the library module can be used it needs to be imported using a statement of the form:

import RPi.GPIO as GPIO

The name of the file that we are going to import is RPi.GPIO and the 'as GPIO' means that we can simply refer to the port as 'GPIO' from that point onwards.

Note that if you don't have sufficient privileges the library import will fail and a runtime error will be generated. To overcome this problem you need to execute your Python script as a 'superuser', but you can set this privilege level by simply using <code>sudo</code> before the script name. For example, if your script has the name 'control.py' you would execute it using the command:

sudo control.py

Next, we need to deal with another potential cause of potential confusion! When programming the GPIO port it is possible to refer to the signals in *two different ways*. We can either use the GPIO signal name or the name given by the

manufacturers of the Broadcom chip. Fortunately, there is a solution to this problem since the GPIO library can be configured to use either of these two conventions.

The Python statement GPI0.setmode(GPI0.BOARD) sets the use of the Pi's board numbers, while GPI0.setmode(GPI0.BCM) sets the use of the Broadcom signal numbering.

To configure the individual GPIO signals as inputs or outputs you can use the GPIO.setup command. For example, GPIO.setup(11, GPIO.IN) sets GPIO channel 11 as an input based on the numbering system that you previously specified using the GPIO.setmode command. If this is beginning to sound a little complicated, here's a fragment of Python code that sets GPIO channel 17 as an input and GPIO channel 18 as an output using the Broadcom pin numbering convention:

import RPi.GPIO as GPIO
use the BCM pin numbering convention
GPIO.setmode(GPIO.BCM)
setup channel 17 as an input and 18 as an output
GPIO.setup(17, GPIO.IN)
GPIO.setup(18, GPIO.OUT)

Now here's some code that would have *exactly* the same effect but using the Raspberry Pi board numbering. This code uses pin 11 of the GPIO header as an input and pin 12 as an output:

import RPi.GPIO as GPIO
use the BCM pin numbering convention
GPIO.setmode(GPIO.BOARD)
set up the pin-11 as an input and pin-12 as an output
GPIO.setup(11, GPIO.IN)
GPIO.setup(12, GPIO.OUT)

The relationship between the header pin numbers for Rev.0 and Rev.1 boards and their corresponding general-purpose Broadcom GPIO channels is shown in Table 18.2. Which method of configuring the GPIO via the setmode command you use is largely a matter of personal choice. There are advantages and disadvantages either way, but the Broadcom channel numbering is likely to be more future-proof in the possible situation that the header pin numbers might change in a future revision (note that there has been a change in some of the pin functions between the Rev.0 and Rev.1 Raspberry Pi boards).

Table 18.2 Relationship between header pin numbers and the general purpose sub-set of BCM GPIO channels

GPIO header (P1) pin number	BCM channel number (Rev.0 boards)	BCM channel number (Rev.1 boards)
7	GPIO04	GPIO04
11	GPIO17	GPIO17
12	GPIO18	GPIO18
13	GPIO21	GPIO27
15	GPIO22	GPIO22
16	GPIO23	GPIO23
18	GPIO24	GPIO24
22	GPIO25	GPIO25

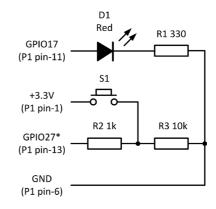
Reading and writing to the GPIO

Having configured the GPIO and having defined the pins/channels to be used for input and output it is very easy to read from and write to the port lines. As an example, after having configured the port for header pin numbering (rather than Broadcom channels) the following fragment of code reads the state of pin 11 (with the result appearing as the input_value variable) before setting the output from pin 12 in the high state:

input from pin 11
input_value = GPIO.input(11)
output to pin 12
GPIO.output(12, GPIO.HIGH)

Now here's the equivalent code based on the Broadcom channels:

input from channel 17
input_value = GPIO.input(17)
output to channel 18
GPIO.output(18, GPIO.HIGH)


Note that the state of a GPIO line can be described in different ways. GPIO.LOW can also be described as 0 or False, while GPIO.HIGH can also be described as 1 or True. For example, all three of the following lines of code have exactly the same effect:

GPIO.output(18, GPIO.HIGH) GPIO.output(18, GPIO.1) GPIO.output(18, GPIO.True)

Finally, at the end of any program, and before the program makes an exit back to the operating system, it is good practice to clean up by setting the mode of all the I/O channels you've used to their default input state. This could help prevent damage in the event that any of the I/O lines should become inadvertently short-circuited, and can be very easily achieved by adding GPIO. cleanup() to the end of your Python code.

Controlling an LED with a switch

As a very simple example of using the Pi's GPIO let's assume that we need to operate a single LED output from a momentary action push-button input. The circuit and breadboard wiring is shown

* GPIO21 on Version 1 boards

Figure 18.9 Switched LED circuit

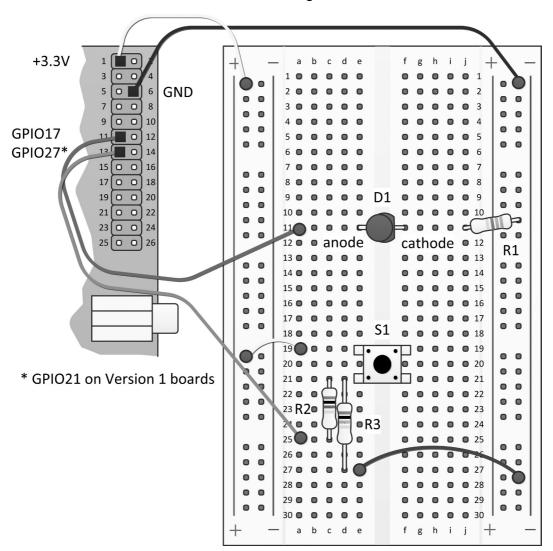


Figure 18.10 Using a breadboard to connect a switch and LED to the Raspberry Pi's GPIO port

in Figs 18.9 and 18.10, respectively, but do make sure that you power down the Raspberry Pi before building and connecting the circuit!

In the LED control circuit we will be using GPIO17 (pin 11 of the GPIO connector) as an output and GPIO27 (pin 13 of the GPIO connector) as an input (note that if you are using a Version 1 board the signal at pin 13 will actually be GPIO21 – as discussed earlier!). Also note the use of a 10 k Ω pull-down resistor, R2, and a 1 k Ω input current limiting resistor, R3. This latter component ensures that the input current can never exceed 3.3 mA under any circumstances.

In order to test the circuit you will need some simple Python code. Start your Raspberry Pi in the normal way and the use **startx** to begin a session with the GUI and then start the Python shell program by clicking on the IDLE icon. When the shell program has been initialized you will be presented with the usual >>> prompt. Now enter the following Python code as one long string of text:

import RPi.GPIO as GPIO import time

Configure GPIO GPIO.setmode(GPIO.BOARD) GPIO.setup(11, GPIO.OUT) # LED as output GPIO.setup(13, GPIO.IN) # Switch as input

while True:

Read switch status switch_state = GPIO.input(13) if switch_state: # Switch contacts closed GPIO.output(11, True) else: # Switch contacts closed GPIO.output(11, False)

To exit from the program you will need to briefly press the **Ctrl** and C keys at the same time to exit.

Analogue-to-digital conversion and the SPI bus

Having demonstrated the ease by which digital inputs and outputs can be controlled by the Pi, it's time to quickly move on and take a look at the additional external circuitry needed in order to implement one or more channels of

analogue input. The simplified block schematic of an eight-channel analogue input board is shown in Fig. 18.11. The circuit is based on a single MCP3008 eight-channel analogue-to-digital converter (ADC). This handy chip from Microchip Technology uses a serial (rather than parallel) interface for connection to a host computer or microprocessor-based system. The pin connections for an MCP3008 are shown in Fig. 18.12. Note that there are two ground connections; one for analogue ground and one for digital ground.

The MCP3008 is a 10-bit ADC with on-board sample and hold circuitry. The chip is programmable to provide either four pseudo-differential input pairs or eight single-ended inputs. The chip is capable of conversion rates of up to 200,000 samples per second and it requires a supply of between 2.7 V and 5.5 V. Low-current design permits operation with typical standby currents of only 5 nA and typical active currents of 320 μA .

The range of analogue voltages that can be converted by the MCP3008 is determined by the voltage that appears at the reference voltage present at pin 15 of the device. Note that, as the reference input is reduced, the least significant bit (LSB) size is reduced. The size of the LSB can be calculated from:

LSB size =
$$\frac{V_{\text{REF}}}{1024}$$

The theoretical digital output code produced by the ADC is a function of the analogue input signal and the reference input, as shown below.

Digital output code =
$$\frac{1024 \times V_{IN}}{V_{RFF}}$$

where $V_{\rm IN}$ is the analogue input voltage and $V_{\rm REF}$ is the reference voltage.

As an example, let's suppose that the analogue input voltage is 660 mV and the reference voltage is 3.3 V. In this case, the digital output code will be given by:

Digital output code =
$$\frac{1024 \times 0.22}{33}$$
 = 205

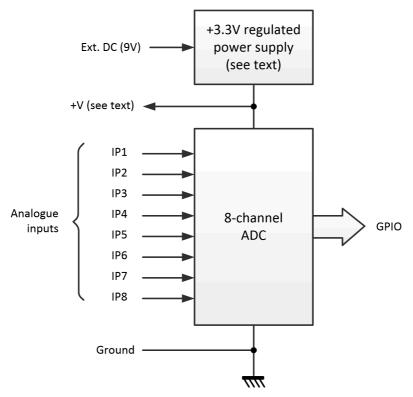
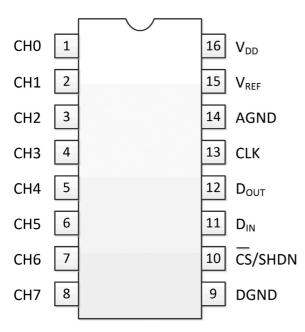



Figure 18.11 Simplified block schematic of an 8-channel analogue input board

Figure 18.12 Pin connections for an MCP3008 (viewed from the top)

This code will be sent via the SPI interface to the Raspberry Pi when the MCP3008's chip select line is taken low. The simplified internal block schematic of the MCP3008 is shown in Fig. 18.13.

The SPI bus

Communication with the ADC is accomplished using a simple serial interface compatible with the Serial Peripheral Interface (SPI) protocol. SPI is a communication bus that is used to interface one or more peripheral devices (known as **slaves**) to the computer, microprocessor or microcontroller (referred to as the **master**). A large number of SPI devices are available, including ADCs, digital-to-analogue converters (DACs), GPIO expansion chips, temperature sensors and accelerometers. The bus is capable of operating at high speed (faster than the I²C bus) but it normally requires a

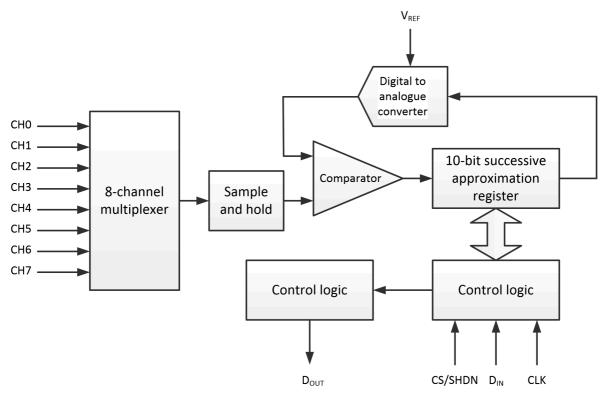


Figure 18.13 Simplified internal block schematic of the MCP3008

four-wire connection with one additional wire for each peripheral chip.

The SPI bus (sometimes also known as Synchronous Serial Interface or SSI) is a synchronous serial clocked bus capable of supporting data transfer in both directions (master to slave and slave to master) at the same time (this is referred to as 'full duplex' operation). The Raspberry Pi's SPI implementation uses four signal wires (plus ground). The signals are referred to as:

- ► SCLK (serial clock output from the master)
- ► MOSI (master output/slave input)
- ► MISO (master input/slave output)
- ► CSn (chip select output from the master).

The Raspberry Pi's two active-low chip select signals (CS0 and CS1) allow it to control up to two slave devices (the SPI bus is capable of supporting more than two devices but it requires a chip select line for each device). This should be contrasted with the Raspberry Pi's I²C interface

that permits up to 127 devices to be connected using a two-wire (plus ground) interface. Finally, it is important to note that there is some variation in the naming of the SPI bus signals. In particular, the Humble Pi prototyping board (see Fig. 18.14) shows the two chip select lines, CSO and CS1, as SPIO and SPI1, respectively.

Eight-channel analogue input board

The complete circuit of the eight-channel analogue board is shown in Fig. 18.14. The reference voltage is derived from the 3.3 V supply rail (pins 14 and 15 on IC1 are linked together) while the analogue and digital ground connections (AGND and DGND) are connected to the common 0 V/ground rail. The 3.3 V supply is derived from a low-dropout voltage regulator, IC2. Note that when ordering a power supply kit for this particular application it is essential to use a 3.3 V regulator (such as an LD33V or equivalent) not a TTL-standard 5 V device. The four additional power supply components can be quickly and

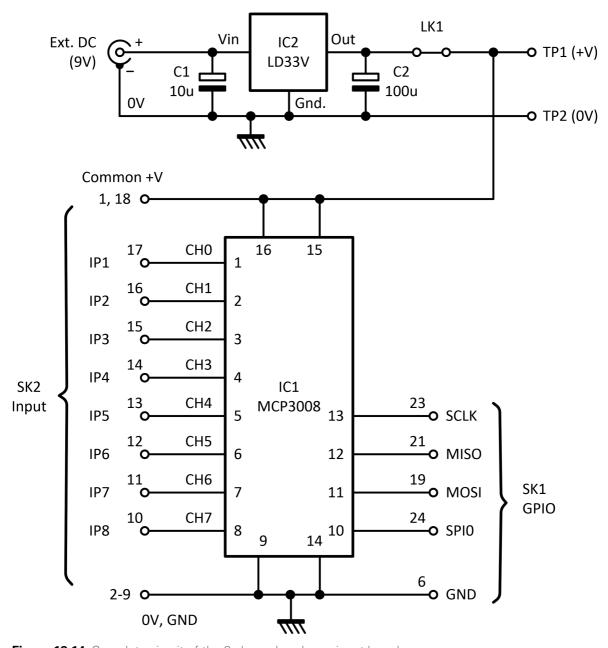


Figure 18.14 Complete circuit of the 8-channel analogue input board

easily fitted to a Humble Pi prototyping board (see Fig. 18.16).

The eight analogue inputs to IC1 are taken to an 18-way connector (P2). Two of the pins on this connector are connected to the 3.3 V positive

supply and eight pins are taken to the 0 V/ground rail. The pin connections for P2 are shown in Fig. 18.15 and the individual pin assignments are given in Table 18.3.

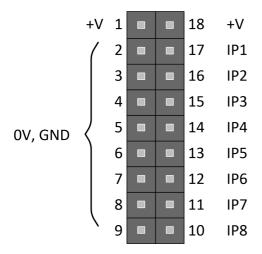


Figure 18.15 Pin connections for P2

Analogue input board construction

The eight-channel input board can be built using a low-cost prototyping board such as that available from Ciseco PLC and marketed as the Humble Pi. This board can be fitted with the 26-way connector (supplied with the board) so that the finished eight-channel analogue board sits piggyback style immediately above the Raspberry Pi. The result is an extremely neat and compact

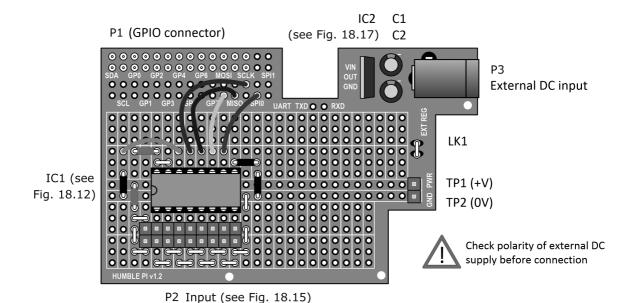
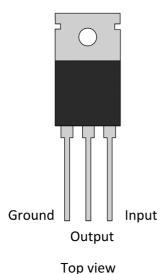
Table 18.3 Pin assignments for the input connector, P2

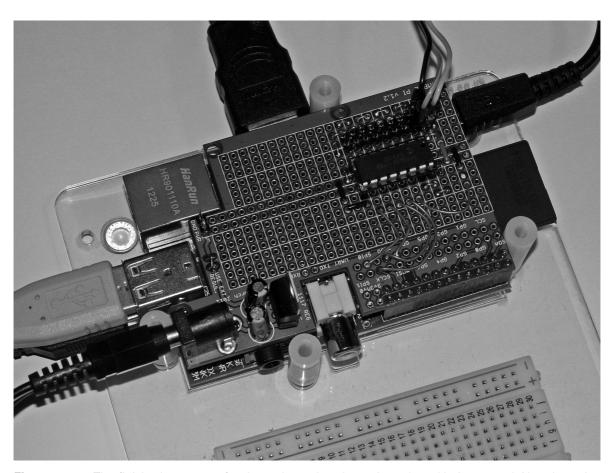
P2 pin number	MCP3008 signal	Input pin identifier
17	СН0	IP1
16	CH1	IP2
15	CH2	IP3
14	СНЗ	IP4
13	CH4	IP5
12	CH5	IP6
11	CH6	IP7
10	CH7	IP8
1, 18	V _{DD}	+V
2 to 9	AGND	0V

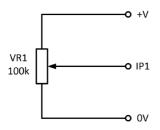
layout. The wiring diagram for the eight-channel analogue input board is shown in Fig. 18.16.

Testing

The eight-channel analogue input board should be tested before use. The prototype can be tested using a potentiometer to provide a variable input voltage, as shown in Fig. 18.19. Depending on the setting of the slider of VR1 this arrangement will produce an input voltage in the range 0 V to 3.3 V (which should correspond to digital codes in the range 0 to 1023). Note that the allowable range of


Figure 18.16 Wiring diagram for the 8-channel analogue input board


Figure 18.17 Pin connections for the LD33V voltage regulator, IC2

input voltage for the circuit shown in Fig. 18.14 is 0 V (minimum) to 3.3 V (maximum). To avoid the risk of damage to the MCP3008 it is essential that the input voltages present on IP1 to IP7 do not stray outside this range. The circuit of a simple input protection circuit (based on zener diodes) is shown in Fig. 18.21.

You will need to enter your code editor (or an IDE such as IDLE) before saving it to the folder in which you are currently storing your Python files. You might find it convenient to create a folder called Work_files on the desktop for storing your files, but you can save them in any other convenient location. To test the code you can start LXTerminal (or an equivalent terminal utility) and enter the appropriate command (using sudo to gain root privileges, as explained earlier).

Figure 18.18 The finished prototype for the 8-channel analogue input board being tested. Note how the Humble Pi prototyping board fits neatly over the Raspberry Pi)

Figure 18.19 Using a potentiometer to test the 8-channel analogue input board

Programming the MCP3008 ADC

The GPIO SPI ADC library module provides access to the features of the MCP3008 ADC chip when connected through the GPIO port. The Python code is (not surprisingly) a little more complicated than when using the GPIO as a basic parallel port. As usual, we need to begin by importing the necessary library modules before we can configure the GPIO port lines and set up the SPI port. The following Python code (or something equivalent) will be required:

import time import os import RPi.GPIO as GPIO from gpiospiadc import *

GPIO.setmode(GPIO.BOARD) DEBUG = 1

Define pins on the GPIO connector SPICLK = 23 SPIMISO = 21 SPIMOSI = 19 SPICS = 24

Set up the SPI GPIO.setup(SPIMOSI, GPIO.OUT) GPIO.setup(SPIMISO, GPIO.IN) GPIO.setup(SPICLK, GPIO.OUT) GPIO.setup(SPICS, GPIO.OUT)

Note that the tricky job of handling the MCP3008's SPI interface to the Pi is covered by the **gpiospiadc** library module. Next, we need to specify the required input channel before entering a loop that will read the digital code from the selected ADC, convert this to a corresponding voltage string, and then print the results on the screen. The code that will do this can be written along the following lines:

sensor_adc = 0
while True:
 sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI,
SPIMISO, SPICS)
 sensor_voltage = (sensor_value * 3.3)/1024
 print("Analogue input voltage = %5.3f V" % (sensor_voltage))
 time.sleep(0.5)

There are a few important things to note here. First, it is important to indent the code that forms the body of the loop which, in this case, will repeat indefinitely (you can easily break out of a loop by pressing the Ctrl and C keys at the same time). Second, the readadc() function is part of the gpiospiadc library module that we imported at the start of the code. If you forget to import modules (such as this one) the program will not run and you will be presented with a message warning you that the module cannot be found. Third, notice how we have to perform a little mathematics in order to convert the code returned from the ADC into a voltage. Fourth, because the sensor_voltage string can be rather long we have used some of Python's powerful string formatting features in order to produce a reading with just three decimal places (this is the function of the %5.3f in the penultimate line of code). Last, we need to update the display on a regular basis just in case the input voltage has changed. To do this we have used one of the time module's functions, i.e. time.sleep(0.5). The complete code for testing IP1 (the other channels can be tested by changing the value of sensor_ adc) of the eight-channel analogue interface is as follows:

#!/usr/bin/env python import time import os import RPi.GPIO as GPIO from gpiospiadc import *

GPIO.setmode(GPIO.BOARD) DEBUG = 1

Define pins on the GPIO connector SPICLK = 23 SPIMISO = 21 SPIMOSI = 19 SPICS = 24

```
# Set up the SPI
GPIO.setup(SPIMOSI, GPIO.OUT)
GPIO.setup(SPIMISO, GPIO.IN)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)
```

sensor_adc = 0

while True:
 sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI,
 SPIMISO, SPICS)
 sensor_voltage = (sensor_value * 3.3)/1024
 print("Analogue input voltage = %5.3f V" % (sensor_voltage))
 time.sleep(0.5)

Finally, don't forget that you will need to run this code as a superuser (SUDO will give you access to the root privileges that are needed in order to make use of the GPIO library module).

Raspberry Pi application: a simple voltmeter

Now, to put this into practice let's look at a simple (but nevertheless useful) real-world application in the form of a simple digital voltmeter based on the eight-channel analogue input board. In addition to the Humble Pi board, all we need is a few lines of Python code using TkInter as a means of providing a friendly graphical user interface.

At the start of the code we need to import the required library modules (in this case we need access to five of them, including TkInter). Next we've defined a root window (every GUI program must have one of these) and given it a title (VOLTS). This makes it look a bit more impressive than just the default (tk). Within the root window, and so that our voltmeter display is easily readable, we've increased the font size to 36 and used Arial font (in black) against a green background (as shown in Fig. 18.20).

In the main loop of the program we've used a **user-defined function** (UDF) called **measure()**.

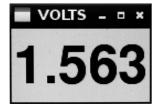


Figure 18.20 Digital voltmeter display

This reads the value returned from Channel 0 (IP1) of the ADC and then converts it to a corresponding voltage (sensor_voltage). It then converts the sensor voltage into a format that will produce a sensible display using the meter.config() function. The entire loop is repeated every 200 ms until the user closes the display window (at which point the program terminates). The code is shown below:

```
import RPi.GPI0 as GPI0
from gpiospiadc import *

root = Tk()
root.title("VOLTS")
voltage1 = ''
meter = Label(root, font=('arial', 36, 'bold'), bg='green')
```

GPIO.setmode(GPIO.BOARD) DEBUG = 1

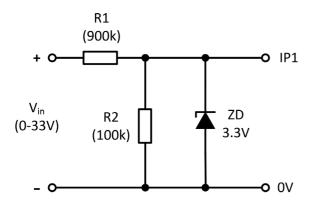
meter.pack(fill=BOTH, expand=1)

#!/usr/bin/env python

from tkinter import *
import time

import os

Define pins on the GPIO connector SPICLK = 23 SPIMISO = 21 SPIMOSI = 19 SPICS = 24

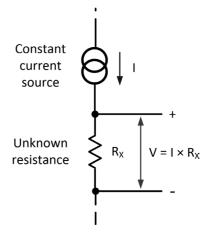

Set up the SPI GPIO.setup(SPIMOSI, GPIO.OUT) GPIO.setup(SPIMISO, GPIO.IN) GPIO.setup(SPICLK, GPIO.OUT) GPIO.setup(SPICS, GPIO.OUT)

 $sensor_adc = 0$

def measure():
 global voltage1
get the current voltage from the SPI device
 sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI,
SPIMISO, SPICS)
 sensor_voltage = (sensor_value * 3.3)/1024
 voltage2 = sensor_voltage
 sv = '%.3f' % sensor_voltage
if the voltage has changed, update it
if voltage2!= voltage1:
 voltage1 = voltage2
 meter.config(text=sv)

update the display every 200ms meter.after(200, measure)

measure()
root.mainloop()


Figure 18.21 Potential divider and input protection for the simple digital voltmeter

The simple digital voltmeter caters for input voltages ranging from a few tens of millivolts up to about 3.3 V but, where necessary, a simple potential divider can be used at the input in order to extend the range. It might also be sensible to provide some protection at the input of the ADC by connecting a 3.3 V zener diode across the input, as shown in Fig. 18.21.

Raspberry Pi application: resistance measurement

Now let's move on to look at a slightly more complex application in the form of a digital ohmmeter. In this application we need to be able to produce a reasonably accurate indication of the resistance of an unknown component. In order to do this we need to apply a known value of current (and keep this constant) to the unknown component. If we can do this we can use the voltage drop that appears across the unknown component in order to determine its resistance value. This principle is illustrated in Fig. 18.22.

A simple but effective constant current source can be built using just two transistors, as shown in Fig. 18.23. The circuit delivers a nominal current of 1 mA (adjustable by means of RV1). To calibrate the digital ohmmeter a resistor with an accurately known resistance (e.g. 1 k Ω ± 1%) should be connected to the input terminals and RV1 should be adjusted for a resistance indication of exactly 1,000 Ω . The pin connections for

Figure 18.22 Using a constant current source for resistance measurement

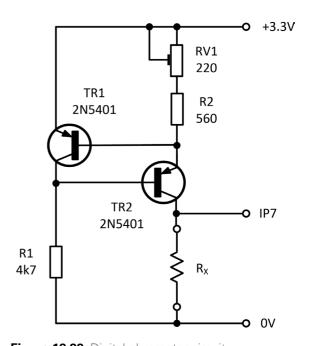
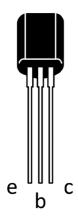



Figure 18.23 Digital ohmmeter circuit

the two 2N5401 PNP transistors are shown in Fig. 18.24.

The range of resistance that can be measured reasonably accurately with this arrangement extends from less than 100 Ω to around 2.5 k Ω . Outside this range there will be a need to make a corresponding change to the value of the

Figure 18.24 Pin connections for the 2N5401 PNP transistors

constant current. For example, a current source of 10 mA would be required in order to extend the measuring range from around 10 Ω to 250 Ω .

The Python code for a simple ohmmeter is shown below. This follows along the same lines as the digital voltmeter application that we described earlier and once again it uses the TkInter library module as a means of providing a friendly GUI.

At the start of the code we need to import the required library modules (in this case we need access to five of them, including TkInter). Next, we define a root window (every GUI program must have one of these) and give it a title (kOHM). This makes it look a bit more impressive than just the default, tk. Within the root window, and so that our voltmeter display is easily readable, we've increased the font size to 36 and used Arial font (in black) against a green background (as shown in Fig. 18.25).

As for the voltmeter code described earlier, we've used a UDF called measure() in the main body of the loop. This UDF reads the value returned from Channel 0 (IP1) of the ADC and then converts it to a corresponding resistance (sensor_resistance). It then converts the sensor voltage into a format that will produce a sensible display using the meter.config() function. The entire loop is repeated every 200 ms until the user closes the display window (at which point the program terminates). The code is shown below:

Figure 18.25 Digital ohmmeter display

```
#!/usr/bin/env python
from tkinter import *
import time
import os
import RPi.GPIO as GPIO
from gpiospiadc import *
```

```
root = Tk()
root.title("kOHM")
resistance1 = ''
meter = Label(root, font=('arial', 36, 'bold'), bg='yellow')
meter.pack(fill=BOTH, expand=1)
```

```
GPIO.setmode(GPIO.BOARD)
DEBUG = 1
```

```
# Define pins on the GPIO connector
SPICLK = 23
SPIMISO = 21
SPIMOSI = 19
SPICS = 24
```

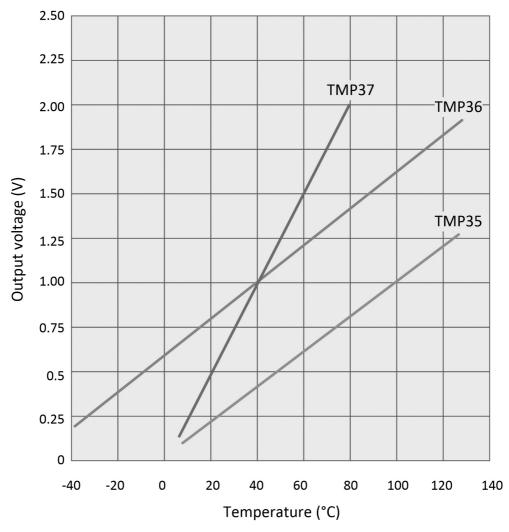
Set up the SPI GPIO.setup(SPIMOSI, GPIO.OUT) GPIO.setup(SPIMISO, GPIO.IN) GPIO.setup(SPICLK, GPIO.OUT) GPIO.setup(SPICS, GPIO.OUT)

sensor_adc = 7

```
def measure():
    global resistance1
# get the current resistance from the SPI device
    sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI,
SPIMISO, SPICS)
    sensor_resistance = (sensor_value * 3.3)/1024
    resistance2 = sensor_resistance
    sv = '%.3f' % sensor_resistance
# if the resistance has changed, update it
if resistance2 != resistance1:
    resistance1 = resistance2
    meter.config(text=sv)
# update the display every 200ms
```

measure()
root.mainloop()

meter.after(200, measure)


Raspberry Pi application: temperature measurement and data logging

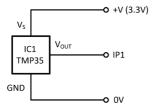
Now let's look at how we can very easily interface a temperature sensor to the eight-channel analogue input port. This will allow you to sense temperatures with a reasonable degree of accuracy and then either display the current temperature or save it to a file for later analysis.

The TMP35 chip that we will be using for temperature sensing is one of a family of devices that together are capable of covering a temperature range from -40 °C to +125 °C

with an accuracy better than ±2 °C and typically ±1 °C at +25 °C. Usefully, each of the sensors in the range produces an output voltage that is linearly proportional to the Celsius (centigrade) temperature, as illustrated by Fig. 18.26. All three devices are available in low-cost three-lead TO-92, eight-lead SOIC_N and five-lead SOT-23 surfacemount packages and they are thus ideal for building into miniature probes.

The TMP35 is intended for single-supply operation from 2.7 V to 5.5 V maximum and it is thus eminently suitable for operation from the Pi's +3.3 V supply. To avoid the risks associated with

Figure 18.26 Characteristic graphs for the TMP35, TMP36 and TMP37 temperature sensing semiconductor devices


self-heating, the chip requires only a very small supply current (well below 50 μ A). In addition, a shut-down function is provided that limits the residual supply current to less than 0.5 μ A.

The TMP35 provides an output of 250 mV at 25 °C and is suitable for sensing temperatures in the range +10 °C to +125 °C. Other devices in the series are specified from -40 °C to +125 °C (TMP36) and +5 °C to +100 °C (TMP37). The TMP36 provides an output voltage of 750 mV output at +25 °C while the TMP37 produces 500 mV at the same temperature (see Fig. 18.26). Just in case you need to use a different sensor we've summarized the characteristics of all three of these useful temperature sensors in Table 18.4.

Table 18.4 Temperature sensor summary

Device	TMP35	TMP36	TMP37
Useful temperature range	+10 °C to +125 °C	-40 °C to +125 °C	+5 °C to +100 °C
Output voltage at 25 °C	250 mV	750 mV	500 mV
Temperature characteristic	10 mV/°C	10 mV/°C	20 mV/°C

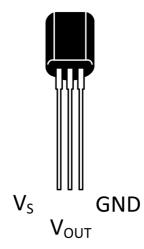

The interface to the eight-channel analogue port (see Fig. 18.27) is extremely simple and no other components are required apart from the temperature sensor. The pin connections for TMP35, TMP36 and TMP37 temperature sensors are shown in Fig. 18.28.

Figure 18.27 Temperature measurement interface

Some typical Python code for temperature indication is shown below:

#!/usr/bin/env python import time import os import RPi.GPIO as GPIO from gpiospiadc import *

Figure 18.28 Pin connections for the TMP35, TMP36 and TMP37 temperature sensors

GPIO.setmode(GPIO.BOARD) DEBUG = 1

Define pins on the GPIO connector SPICLK = 23 SPIMISO = 21 SPIMOSI = 19 SPICS = 24

Set up the SPI GPIO.setup(SPIMOSI, GPIO.OUT) GPIO.setup(SPIMISO, GPIO.IN) GPIO.setup(SPICLK, GPIO.OUT) GPIO.setup(SPICS, GPIO.OUT)

sensor_adc = 0

while True: sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI, SPIMISO, SPICS)

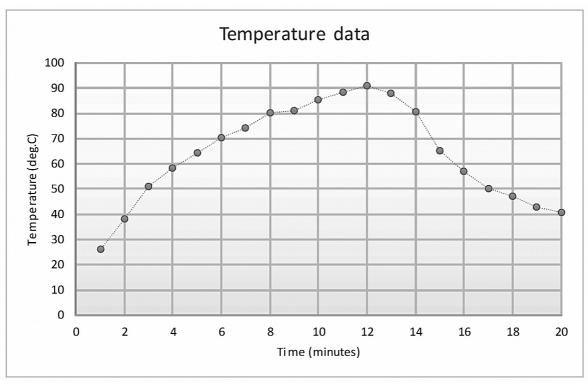
sensor_voltage = (sensor_value * 3.3)/1024
sensor_temperature = (sensor_voltage - 0.5) * 100
print("%4d/1023 => %5.3f V => %4.1f deg.C" % (sensor_value,
sensor_voltage, sensor_temperature))
time.sleep(0.5)

Data logging

Finally, here's a complete data-logging application in which we capture and store temperature data and save it in a comma-separate values (CSV) file for later analysis. We've provided prompts to request a filename from the user (and then added a .CSV extension) as well as the number of samples to take and the interval between the

18 Electronic applications and the Raspberry Pi

samples (entered in seconds). So, for example, to monitor the temperature every minute for one hour would require 60 samples with an interval of 60 seconds between samples. Note that in order to eliminate false and/or rapidly changing readings the program waits for two identical sensor values to be returned before appending them to the data in the CSV file. Fig. 18.29 shows some typical captured data displayed in graphical form using a popular spreadsheet program.


```
#!/usr/bin/env python
import time
import os
import csv
import RPi.GPIO as GPIO
from gpiospiadc import *

GPIO.setmode(GPIO.BOARD)
DEBUG = 1

# Define pins on the GPIO connector
SPICLK = 23
SPIMISO = 21
```

```
# Set up the SPI
GPIO.setup(SPIMOSI, GPIO.OUT)
GPIO.setup(SPIMISO, GPIO.IN)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)
sensor adc = 0
filename = input('Filename to save to: ')
filename = '/home/pi/Desktop/' + filename + '.csv'
samples = input('Number of samples: ')
interval = input('Interval between samples (seconds): ')
void = input('Press enter to start collecting data ...')
print('Thanks - now collecting data ....')
count = 1
while (count < (int(samples) + 1)):
  print('Sample No. ' + str(count))
  sensor_value = 0
  sensor_value1 = 1
  while sensor value1 != sensor value:
     sensor_value = readadc(sensor_adc, SPICLK, SPIMOSI,
SPIMISO, SPICS)
     sensor value1 = readadc(sensor adc, SPICLK, SPIMOSI,
SPIMISO, SPICS)
```

SPIMOSI = 19 SPICS = 24

Figure 18.29 Temperature data captured by the data logging application and presented in graphical form using a spreadsheet application

```
sensor_voltage = (sensor_value * 3.3)/1024
sensor_temperature = (sensor_voltage - 0.5) * 100
sensor_data = round(sensor_temperature, 1)
with open(filename, 'a', newline='') as f:
    writer = csv.writer(f)
    writer.writerow([count] + [sensor_data])
time.sleep(int(interval))
    count = count + 1
print('Finished - ' + str(count - 1) + ' samples collected')
```

Finally, don't forget that you will need to run all of the code described with superuser privileges. For example, if your Python3 program code is saved as temperature.py in a folder called Work_files on your desktop, the command to execute the program from the terminal program (e.g. LXTerminal) would be:

sudo python3 /home/pi/Desktop/Work_files/temperature.py

Digital-to-analogue conversion and the I²C bus

Digital-to-analogue conversion (DAC) can easily be added to the Raspberry Pi using one of the many

specialized DAC chips, such as the Microchip MCP4725. This is a single-channel, low-power 12-bit DAC which uses an I²C interface to a host controller. The MCP4725 incorporates an internal non-volatile EEPROM memory, allowing the chip to retain its digital input when the power is turned off. This feature makes it possible for the analogue output voltage to be retained so that it becomes immediately available without reprogramming each time the power is turned on. The simplified internal arrangement of the MCP4725 is shown in Fig. 18.30.

The MCP4725 is supplied in a tiny SOT-23-6 package and it uses the pin connections shown in Fig. 18.31. Since the chip is rather small and designed for surface mounting we recommend that you make use of the MCP4725 daughter board supplied by Adafruit Industries (see Fig. 18.32). This board can be fitted with a standard 0.1" spaced PCB header and this will make connection much easier and with significantly reduced chance of misconnection.

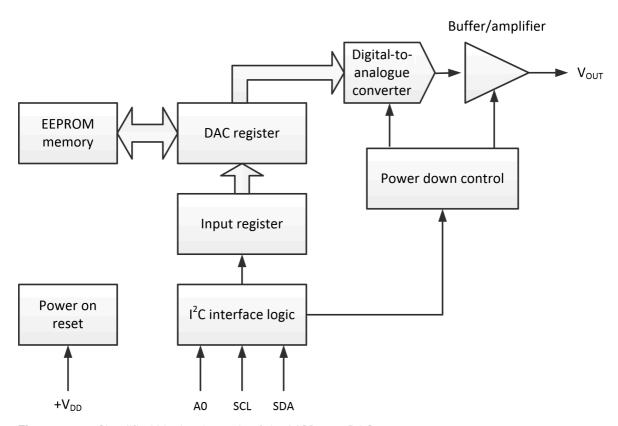
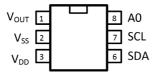
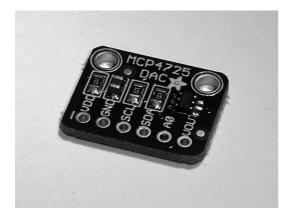
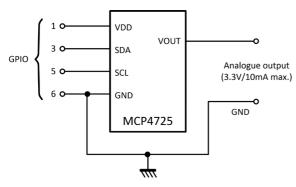


Figure 18.30 Simplified block schematic of the MCP4725 DAC

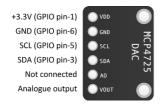

Figure 18.31 Pin connections for the MCP4725

Figure 18.32 Adafruit Industries MCP4725 daughter board

Figure 18.33 Circuit for interfacing the Adafruit MCP4725 daughter board to the Raspberry Pi

Figure 18.34 Pin connections for the Adafruit MCP4725 daughter board

The interface circuit and pin connections for the Adafruit board are shown in Figs. 18.33 and 18.34, respectively.

The MCP4725 is designed for operation over the voltage range 2.7 V to 5.5 V and thus will be

comfortable with the 3.3 V supply available from the Raspberry Pi's GPIO connector.

The I²C bus

In addition to SPI that we used earlier for the ADC application, the Raspberry Pi provides you with an alternative method of connecting to external devices by means of its 'Inter-Integrated Circuit' interface (abbreviated variously as IIC, I2C, I2C or I-squared-C) and communication with the MCP4725 is accomplished using this two-wire protocol.

I²C is a very simple bus system where bidirectional data appear on a single line (SDA) and a clock signal is sent on a second bus line (SCL). SPI, on the other hand, offers a point-to-point connection where the data are passed in and out on separate lines (MOSI and MISO). SPI is faster and generally easier to use than I²C but there can often be situations like this in which I²C is preferred simply because this is the interface that's built into the chip that you need to use.

I²C was the brainchild of Philips, but several of its competitors (including Motorola/Freescale, NEC, Siemens, STM and Texas Instruments) have developed their own I²C-compatible products. In addition, Intel's SMBus provides a stricter definition of I²C intended to improve the interoperability of I²C devices from different manufacturers.

Since the data line is shared between multiple devices, I²C uses a system of addressing in order to identify the device that it needs to communicate with. Communication is initiated by means of a unique start sequence. This involves pulling the data line (SDA) low while the clock line (SCL) is high. This can be achieved by using very simple bus interface logic where each of the bus lines are normally pulled high and driven low when activated by a device connected to the bus (see Fig. 18.36).

Fig. 18.37 shows a simple bus transaction which begins with a start condition, S, and ends with a stop condition, P. Note how the transaction starts and ends with the bus lines in their quiescent high state.

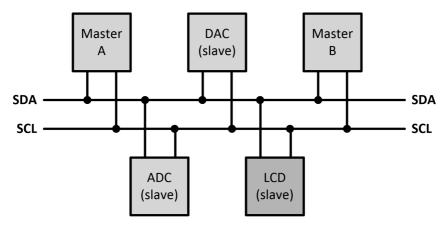


Figure 18.35 I²C bus with two bus masters and three slaves

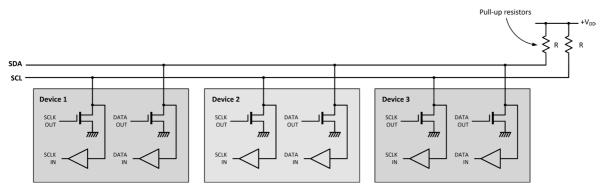
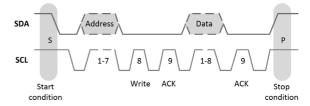



Figure 18.36 I²C bus interface logic

Following the start sequence, transmitted data is only allowed to change when the clock is in its low state. In its basic form, and by virtue of the seven bits available for addressing, the I²C protocol caters for a total of 127 devices. In addition to the seven bits used for addressing, the first byte of an I²C transfer generated by a master includes a bit that indicates the direction of the data transfer. The address is transferred with the most significant bit first (see Fig. 18.37).

The analogue output voltage can vary over the full supply voltage range (0 V to +3.3 V with the arrangement shown in Fig. 18.33). The output current should be limited to a few mA, but we will later show how this limitation (as well as the limited voltage range) can be easily overcome with the aid of a simple external amplifier).

Since the MCP4725 is a 12-bit DAC it will operate with digital codes over the range 000000000000

Figure 18.37 I²C bus transaction showing how first address and then data is placed on the bus

to 1111111111111 (corresponding to denary values extending from 0 to 4095). With a 3.3 V supply, the smallest code (000000000000) will correspond to an analogue output voltage of 0 V while the largest code (11111111111) will correspond to an analogue output of 3.3 V. This relationship yields the following:

$$V_{OUT} = Digital \ code \times \frac{3.3}{4096}$$

Figure 18.38 Using i2cdetect to show the i2c address map

From which:

Digital code =
$$V_{OUT} \times \frac{4096}{3.3}$$

Hence, if we need an analogue output of exactly 1.5 V, the required digital code would be:

Digital code =
$$1.5 \times \frac{4096}{3.3} = 1861$$

Note that the '1861' is (for convenience) a denary value. In binary it would appear as '11101000101' and this is the value that would be sent to the DAC register in Fig. 18.30.

Programming the MCP4725 DAC

In order to make use of the I²C interface you will need to have the i2c-tools package installed in your Raspberry Pi. In most current Debian distributions the package will already be installed, but if you do need to install the package you can use sudo apt-get install i2c-tools from the system prompt. Then, following installation, you should add a new user to the i2c group using sudo adduser pi i2c before rebooting the system using sudo shutdown –r now. Note that you will not need to do any of this if you already have i2c-tools installed.

Now, to check for I²C devices connected to your Raspberry Pi you will need to use **i2cdetect** from within LXTerminal (or equivalent) as follows:

sudo i2c detect -y 0

Note that, as explained earlier, for a Rev.2 board you will need to enter this command as:

sudo i2c detect -y 1

A typical display produced by this command is shown in Fig. 18.38. The display shows the mapping of 128 addresses within the I²C space (but note that a few addresses are reserved for special purposes so that not all of the 128 possible addresses can be mapped to I²C devices). If you look carefully at the display you will see that address 62 (hex.) has been mapped to the MCP4725 device and so we are now ready to start using it!

I²C from the command line

The i2c-tools package provides you with a handy command that allows you to send data to an I²C device. The command is i2cset and it is followed by three bytes of data. The first of these bytes is the address of the I²C device, while the second and third bytes are the data to be sent in conventional order (high-byte followed by low-byte). Here is a brief walkthrough that shows how you can use the i2cset command. For the purposes of this exercise we've assumed that you have the MCP4725 DAC connected to your Pi as shown in Fig. 18.33 and that you have a d.c. voltmeter connected to the two analogue output terminals.

First, it's worth checking that the I²C device is connected and verifying the address that has been allocated to it:

i2cdetect -y 0

This should show you the address of the MCP4725 within the I²C address range (see Fig. 18.38). In our case this appeared as 62 hex. (i.e. 0x62). If your address is not the same (e.g. 0x60) you will need to change the first byte of data in each of the commands that follow. Note also that if you are using a Rev.2 Raspberry Pi the command should be changed to:

i2cdetect -y 1

Now we will set the DAC output to its maximum value of 3.3 V. To do this we will need to use a digital code of 4095 denary, 1111111111111 binary or 0FFF hexadecimal:

i2cset -y 0 0x62 0x0f 0xff

Next we will set the DAC output back to 0 V and check that the voltage has returned to zero. To do this we will need a digital code of 0 denary, 000000000000 binary or 0000 hexadecimal:

i2cset -y 0 0x62 0x00 0x00

Finally, let's set the DAC to 1 V (or as near as we can get). To do this we can calculate the value using the relationship that we introduced earlier. The required data are 1232 denary, 010011010000 binary or 04D0 hexadecimal:

i2cset -y 0 0x62 0x04 0xd0

Important note: the use of the i2cset command in each of the foregoing fragments of code assumes that you are dealing with the use of a Rev.1 board. If you are using a Rev.2 board the I²C channel numbers should be changed from 0 to 1 (as mentioned earlier for the i2cdetect command).

If you've managed to follow these steps you are well on the way to making good use of the I²C interface. Next we will show you how to use Python to do the job in a much more elegant manner!

I²C and Raspberry Pi board revisions

The Raspberry Pi supports two I²C channels, 0 and 1. However, on the more recent Raspberry Pi revision (Rev.2) the primary and secondary I²C channels have been reversed. On Rev.1 (and earlier) boards the physical connections to the I²C channels are as shown in Table 18.5 but on the Rev.2 boards they are as shown in Table 18.6.

To facilitate the additional I/O present on Rev.2 boards a new connector, P5, can be fitted. The connecting pads for P5 are located immediately adjacent to the GPIO connector, P1. P5 makes available four additional GPIO signals, together with power. The pin assignment for P5 is shown in Table 18.7.

If you are unsure of which revision you have you can determine a board's revision status by entering the following at the command line: cat /proc/cpuinfo. This will show you the hardware revision code for the board in question and this can be used to determine the board's revision number (see Tables 18.5 and 18.6).

Table 18.5 I²C channels and physical connections for pre-Rev.2 Raspberry Pi boards

I ² C channel	I ² C signal	Physical connection	BCM2835 signal
0	SCL0	P1 pin-5	GPIO1
0	SDA0	P1 pin-3	GPIO0
1	SCL1	S5 pin-13	GPIO3
1	SDA1	S5 pin-14	GPIO2

Table 18.6 I²C channels and physical connections for Rev.2 Raspberry Pi boards

I ² C channel	I ² C signal	Physical connection	BCM2835 signal
0	SCL0	S5 pin-13	GPIO1
0	SDA0	S5 pin-14	GPIO0
1	SCL1	P1 pin-5	GPIO3
1	SDA1	P1 pin-3	GPIO2

In order to access the features of the I²C bus from within Python you can use one of the I²C libraries such as that available from Adafruit Industries (Adafruit_I2C). These libraries are designed to support the generic framework for an I²C device

Table 18.7 P5 connections for Rev.2 Raspberry Pi boards

P5 pin number	Signal connection
1	+5 V
2	+3.3 V
3	GPIO28
4	GPIO29
5	GPIO30
6	GPIO31
7	GND
8	GND

Table 18.8 Hardware revision codes and board revision numbers

Hardware code	Board revision	
2	Model B Rev.1	
3	Model B Rev.1	
4	Model B Rev.2	
5	Model B Rev.2	
6	Model B Rev.2	

but need to be augmented by supplementary libraries for specific I²C devices, such as I2C_DAC. PY from Adafruit. Another complication is that many of these libraries are designed to run with Python 2.7 and may currently not be compatible with version 3.x. All of this makes life rather difficult so we've decided to opt for a more simple approach that makes use of operating system sub-process calls directly from our Python code. Here is a fragment of code (written using Python 3.x) that uses a sub-process call to set the analogue output from the DAC to approximately 1.86 V:

import subprocess
return_code = subprocess.call(["i2cset -y 0 0x62 0x09 0x00"],
shell = True)
print(return_code)

This code is somewhat cryptic and needs an explanation. Before we can make use of the subprocess.call() function we need to import the subprocess library. The call requires several parameters, the first of which is the i2cset command from the i2c-tools library. Note how this command is enclosed in quotation marks (it is a *literal* string). The subprocess.call() generates a return code that can be used to let the Python

code know whether the command has executed successfully. If the return code is 1 this tells us that an error has occurred, but if it is 0 the command has been successfully executed. We've used the print() function at the end of the code fragment just to check that no errors have occurred, but in a practical application we would, of course, need to provide a more meaningful error message.

Raspberry Pi application: a stepped voltage generator

Now let's look at a practical example of using the DAC. Let's suppose that we need to generate a voltage that rises in ten steps of 0.3 V, from 0 V to 3 V, remaining at each step for two seconds before moving on to the next. Because the digital code is stored in the DAC's internal memory we need to ensure that the output voltage goes back to 0 V at the end of the cycle. The required digital codes are as shown in Table 18.9.

One possible solution might be to incorporate the digital codes from Table 18.9 into a list and then use the **subprocess.call()** function in ten separate lines of code, but this would be rather cumbersome. A more elegant solution would be to use a loop in which Python calculates the required digital code for each step and then builds a command string that can be sent via the **subprocess.call()** function. Fortunately, this isn't quite as difficult as it might sound and here's

Table 18.9 Digital codes (and their hexadecimal equivalents) for the stepped voltage generator

Step number	Voltage	Digital code	Hex. equivalent
0	0	0	0000
1	0.3	372	0175
2	0.6	744	02E8
3	0.9	1117	045D
4	1.2	1489	05D1
5	1.5	1861	0745
6	1.8	2234	08BA
7	2.1	2606	0A2E
8	2.4	2978	0BA2
9	2.7	3356	0D1C
10	3.0	3724	0E8B

some commented code that shows you how easily it can be done:

```
# Import the required libraries
import time
import subprocess
# Initial voltage = 0V
voltage = 0
step = 0
while step < 10:
  voltage = step * voltage
  # Calculate the digital code
  volts = voltage * 4096 / 3.3
  # Convert the digital code to two bytes
  code = int(volts)
  first = int(code / 255)
  second = code - (first * 256)
  # Format the two hexadecimal values
  value1 = format(first, '#04x')
  value2 = format(second, '#04x')
  # Build the command string
  command_string = "i2cset -y 0 0x62" + value1 + "" + value2
  # Make the sub-process call
  return_code = subprocess.call([command_string], shell=True)
  # Hold the voltage steady for two seconds
  time.sleep(2)
  # Increment the step counter
  step = step + 1
# After exiting the loop set the output back to 0V
command string = "i2cset -y 0 0x62 0x00 0x00"
return_code = subprocess.call([command_string], shell=True)
```

The voltage waveform generated by the Python ramp generator code is shown in Fig. 18.39.

Finally, here's a complete Python 3.x program that will let you produce any desired output voltage from the DAC in the range 0 V to 3.3 V:

```
# MCP4725 DAC for Pvthon 3.x
import subprocess
voltage = 0
while True:
  value = input("Output voltage: ")
  voltage = float(value)
  while voltage >= 0 and voltage < 3.3:
     volts = voltage * 4096 / 3.3
     code = int(volts)
     first = int(code / 255)
     second = code - (first * 256)
     value1 = format(first, '#04x')
     value2 = format(second, '#04x')
     command_string = "i2cset -y 0 0x62" + value1 + "" + value2
     return_code = subprocess.call([command_string],
shell=True)
     if return code == 0:
        print("Success - output now set to ", value + " V")
        print("Error setting DAC - output not changed!")
     voltage = -1
```

The main points of the program are as follows:

- 1. Prompt the user for the required output voltage and convert the input to a floating point number.
- 2. Check that the user's input is within the acceptable range (0 V to +3.3 V).
- 3. Convert the floating point value into two hexadecimal bytes.
- 4. Insert the two hexadecimal bytes into the i2cset() command string.
- 5. Make the subprocess.call(0).
- **6.** Check the return code and warn the user if an error is detected.

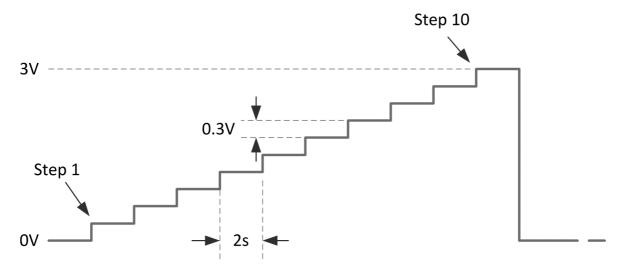


Figure 18.39 Python stepped voltage generator waveform

Note that the code is designed for use with a Rev.1 Raspberry Pi board. If you are using a Rev.2 board you will need to change **command_string** as noted earlier, with the 0 replaced by a 1.

Practical investigation

Objective

To build a simple two-way traffic-light controller based on a Raspberry Pi microcomputer. The traffic lights are to represent those at a UK crossroads and must show the correct sequence of lights (red, amber and green) at suitable intervals.

Components and test equipment

Raspberry Pi with display, a.c. power supply, keyboard and mouse. Breadboard. Six light emitting diodes (two red, two amber and two green) and six 270 Ω 0.25 W resistors. Assorted jumper wires.

Getting started

After constructing the breadboard components (six LEDs and series resistors) a good starting point is to construct a state diagram and/or flow chart in order to illustrate the correct sequence of lights, then assign each of the six lights to a different GPIO line. To help with the software development, the following fragment of Python code shows how a single set of three LED traffic lights can be operated in an endless loop. Note how the time library module is imported at the outset and then used to produce the necessary timing delays by means of time.sleep(). The sample code fragment can be easily modified and extended in order to operate a second set of lights.

import RPi.GPIO as GPIO import time

Configure GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(11, GPIO.OUT) # Red LED
GPIO.setup(13, GPIO.OUT) # Amber LED
GPIO.setup(15, GPIO.OUT) # Green LED

Red ON; Green and Amber OFF GPIO.output(11, True) GPIO.output(13, False) GPIO.output(15, False) time.sleep(10) # Wait 10 seconds # Red and Amber ON; Green OFF GPIO.output(11, True) GPIO.output(13, True) GPIO.output(15, False)

while True:

time.sleep(5) # Wait 5 seconds # Green ON; Red and Amber OFF

GPIO.output(11, False) GPIO.output(13, False)

GPIO.output(15, True) time.sleep(10) # Wait 10 seconds

Amber ON; Red and Green OFF GPIO.output(11, False)

GPIO.output(13, True) GPIO.output(15, False)

time.sleep(5) # Wait 5 seconds

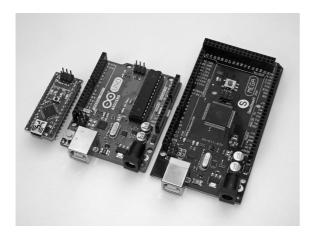
Problems

- 18.1 How many pins does the Raspberry
 Pi's main GPIO connector (P1) have and
 what type of connector should be used
 with it?
- 18.2 What supply voltages are available from the Raspberry Pi's GPIO connector (P1) and what maximum current should be drawn from them?
- 18.3 What voltage levels are used to represent high and low states on the Raspberry Pi's GPIO connector? How do these logic levels compare with those used for standard TTL devices?
- 18.4 What type of non-volatile memory can be directly connected to the Raspberry Pi board and what is this memory used for?
- 18.5 Briefly explain the differences between the Raspberry Pi's SPI and I²C buses. How many devices can each of these interface protocols support?

Answers to these problems appear on page 452.

Electronic applications and the Arduino

Chapter summary


The immensely popular Arduino microcontroller offers you a remarkably effective platform for developing a huge variety of projects; from operating a set of Christmas tree lights to remotely controlling a robotic vehicle through wireless or the Internet. The Arduino offers a handy solution to a wide range of problems and applications. It has a very modest price tag and a complete stand-alone microcontroller system should typically cost less than about £30, making the Arduino a highly cost-effective solution to a wide range of practical problems.

Introducing the Arduino family of microcontrollers

The first-ever Arduino was developed more than ten years ago by the Interaction Design Institute of Ivrea, based near the Italian city of Turin. The original aim of the project was to provide students with a simple yet powerful platform on which to develop interactive systems. Since then the Arduino's hardware and software has evolved on a continuous basis but the idea behind the Arduino has essentially remained the same. The Arduino has now become a highly effective platform for anyone needing a simple, low-cost microcontroller suitable for use in a very wide range of applications.

With only a few exceptions, members of the Arduino family (together with a multitude of clones and compatible microcontroller boards) are all based on the immensely popular range of chips developed and manufactured by Atmel. Most commonly used is the ATmega328, a powerful 8-bit general purpose RISC-based CMOS microcontroller with 32 Kbytes of built-in flash memory.

Members of the Arduino family include the Uno, Leonardo, Due and Micro models. In addition, there's a wide variety of low-cost clones and compatibles that emulate the features of each of their original Arduino counterparts. Currently, Uno clones can be obtained from Chinese suppliers at

Figure 19.1 Popular members of the Arduino family include the Uno, Nano and Mega microcontrollers

a cost of a little over £3 with free postage – good news for anyone working on a tight budget. At this point it's important to note that genuine Uno boards are invariably marked with the official Arduino logo. Low-cost clones can work well and provide you with a system that's extremely cost-effective but in more critical applications there's a need to ensure the highest level of software and hardware compatibility it can be well worth investing in an original and genuine version.

The Arduino Uno

The entry-level Uno contains virtually everything that you need to implement a complete microcontroller system. It is the most used and documented board of the entire Arduino family. To get started, the only additional items that you will need are a power source and a standard A to B USB cable for programming. The Uno will operate quite happily from nothing more than a standard 9V PP3 battery, making the microcontroller ideal for use in stand-alone applications where there's no mains supply available. Alternatively, the Uno can derive its power from an external DC supply of nominally 9V or via a USB cable and a powered USB port.

The Uno board measures approximately 69 mm by 53 mm and it provides a total of 14 digital input/output lines together with six analogue inputs. To compensate for the lack of conventional direct analogue outputs, signals on six of the 14 digital I/O lines can, where necessary, make use of pulse width modulation (PWM) to generate up to six analogue outputs. Later in the series we will explain how this works but for now you only need to be aware that, with appropriate circuitry, the Uno can produce analogue outputs as well as make use of regular analogue inputs. Figure 19.2 shows the Uno's board layout with the main components and connectors identified. The Arduino Uno technical specifications are shown in Table 19.1.

The ATmega328

The Uno is based on the immensely popular ATmega328 processor, one of a family of high

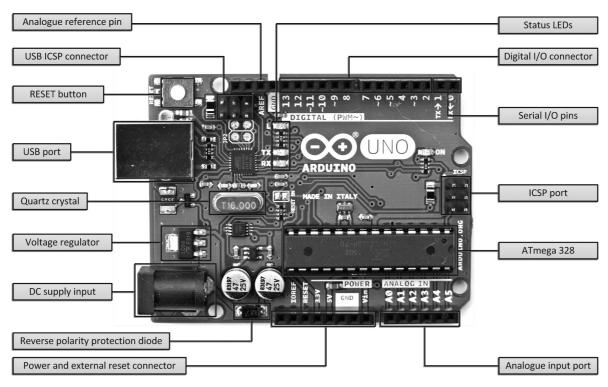


Figure 19.2 Uno board layout showing main components, power and I/O connectors

Table 19.1 Technical specifications for the Arduino Uno

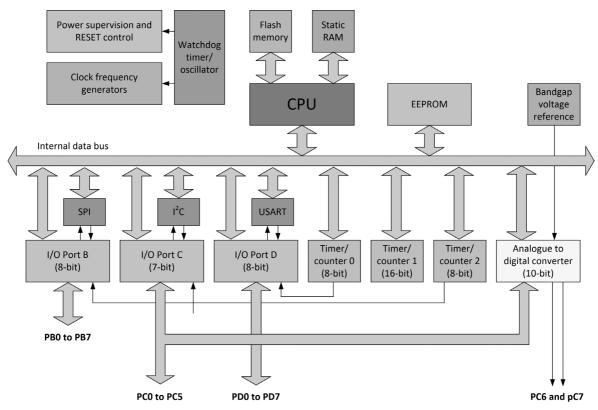
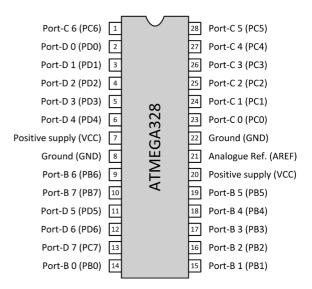
Microcontroller	ATmega328P
Clock speed	16 MHz
Flash memory	32 kB (note 1)
Static RAM (SRAM)	2 kB
EEPROM	1 kB
Supply voltage	5 V
Recommended DC input voltage range	7 V to 12 V (note 2)
Digital I/O pins	14
Digital I/O pins available for PWM output	6 (note 3)
Analogue input pins	6
Max. DC current output per pin	20 mA
Max. DC current available from 3.3V supply	50 mA
Dimensions	68.6 mm × 53.4 mm
Weight	25 g

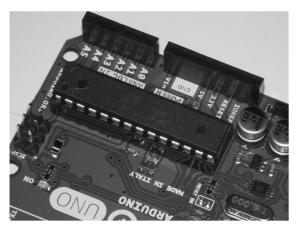
Notes

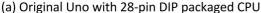
- 1. 512 bytes of which is used for the bootloader
- 2. Maximum DC input voltage is 20V
- 3. See text.

performance, low power 8-bit microcontrollers with 4, 8, 16 and 32 Kbytes of in-system programmable memory. The '328 offers the largest memory capacity of the series and it has 32 kbytes of flash memory used for storing program code (of which 512 bytes is reserved for bootloader code which will allow you to communicate with the device and upload your code to it). The ATmega328 also has 2 kbytes of static random-access memory (SRAM) and 1kbyte of electrically erasable programmable read-only memory (EEPROM).

The simplified internal arrangement of the ATmega328 is shown in Figure 19.3. The chip incorporates a variety of peripheral functions including two 8-bit timer/counters with separate pre-scaler and compare mode and one 16-bit timer/counter with a separate pre-scaler. The chip incorporates six pulse-width modulated (PWM) channels which, with appropriate signal conditioning, can be used to provide analogue outputs. The device also incorporates a six channel 10-bit analogue to digital converter (ADC) and incorporates a variety of communications


Figure 19.3 Simplified internal schematic of the ATmega328


ports including a programmable serial USART, an SPI Serial Interface and a byte-oriented 2-wire serial I²C compatible interface. For good measure the chip also incorporates a programmable watchdog timer.

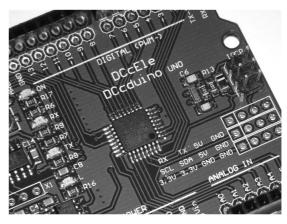

It's important to be aware that the original 'genuine' version of the Arduino is supplied with a 28-pin dual-in-line packaged (DIP) version of the ATmega328 processor, the pin connections for which are shown in Figure 19.4. Cheaper clones and compatible versions are often supplied with differently packaged processors, usually 28-pin TQFP or MLF types. These processors are soldered directly to the printed circuit board and cannot ordinarily be removed whereas the DIP version is mounted in a socket and can, if necessary, be removed and replaced. This alone is a good reason to do all your development work on a genuine Arduino board! For comparison, Figure 19.5 shows the different processors fitted to two versions of the Uno, genuine and clone respectively.

Figure 19.4 Pin connections for the 28-pin DIP packaged ATmega328

(b) Uno clone with 32-pin MLF packaged CPU

Figure 19.5 (a) 28-pin DIP and (b) 32-pin MLF packaged versions of the ATmega328 fitted to original and clone versions of the Uno (note that both boards have the same form factor and connector pinout).

Uno I/O lines and port configuration

The ATmega328 has a total of 23 input/output (I/O) lines. Before we expand on what these can do it is important to be aware that ATmega328 I/O lines can be software configured for different functions. As an example, pin 17 of the DIL packaged version of the ATmega328 is labelled 'PB3' (Port B, Bit 3). The pin provides Master data output and Slave data input when the chip is configured for use with the Serial Peripheral Interface (SPI) bus. Alternatively, it can be configured to provide an external output for the PWM timer function or as a pin-change external interrupt source. I will explain how the digital I/O ports are used a little later but, for the time being, it is just necessary to remember that the I/O pins can have several different functions depending on the chip's software configuration. Now let's look at the Uno's I/O ports,

Port-B (PB0 to PB7)

Port-B is an 8-bit bi-directional I/O port with internal pull-up resistors (which can be individually selected for each bit). The Port-B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port-B pins that are externally pulled low will source current if the pull-up resistors are activated.

The Port-B pins are placed in a tri-state (high-impedance) condition when a reset condition becomes active, even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the inverting oscillator amplifier and input to the internal clock operating circuit. In the same manner, PB7 can be used as output from the inverting Oscillator amplifier. If the internal calibrated R-C Oscillator is used as chip clock source, PB6 and PB7 (pins 9 and 10 of the DIL packaged version of the ATmega328) are used as inputs for the asynchronous Timer/Counter 2.

Port-C (PC0 to PC5)

Port-C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC0 to PC5 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port-C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port-C pins are tri-stated when a reset condition becomes active, even if the clock is not running. PC6 (pin-1 of the DIL packaged version of the ATmega328) can be fuse programmed for use as an I/O pin or to function as a RESET pin. In the latter case a RESET will be generated when a low level is present on this pin.

Port-D (PD0 to PD7)

Port-D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port-D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port-D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port-D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

The USB interface

The Arduino's Universal Serial Bus (USB) interface is external to the ATmega328. In current versions of the Uno the interface is implemented using an ATmega8U2 CMOS RISC-based 8-bit microcontroller. This replaces the popular FTDI FT232 serial interface chip found in earlier versions and in many other microcontroller designs. The Uno's USB interface is brought out to a standard four-pin Type-A printed circuit board connector (see Figure 19.2).

The ATmega328 is programmed from the USB port using its own resident bootloader code that will let you upload your own code to it without the use of an external hardware programmer. Alternatively, you can bypass the bootloader so that you can then program the microcontroller through the Uno's In-Circuit Serial Programming (ICSP) header.

Power supplies

The Uno can derive its power from various sources including a powered USB port using the standard A to B USB cable that we mentioned earlier. Alternatively, an external supply derived from a battery or AC-to-DC adapter can be connected to the external 2.1 mm (centrepositive) DC connector. The power source is selected automatically. As a further alternative, a supply derived from a battery may be connected directly to the ground (GND) and input voltage (Vin) pins of the POWER header connector.

The specifications (see Table 19.1) state that operation should be from an external DC supply of between 6 V and 20 V. However, to ensure

reliable operation we would recommend that the range of supply voltages is kept between 7 V (minimum) and 12 V (maximum). This makes a small 9 V battery-derived supply ideal for applications where a mains supply is unavailable.

During software development it can be more convenient to supply power using the Uno's USB connector and a hub or other powered external USB device. In this case the supply voltage will be +5 V. The USB connector can also be used just to provide power for the Uno. In most cases this will involve the use of a USB charger and matching cable.

To provide power for external boards and 'shields', there's a separate 3.3 V power rail available from the Uno's on-board voltage regulator. It's important to note that the load current available from this supply should not exceed 50 mA. Having briefly described the Uno's hardware configuration it's time to move on to explain how the digital and analogue I/O lines are configured and used for different applications.

Using the Arduino's digital I/O ports

Each of the 14 digital I/O pins on the Uno can be configured as an input or output by using the appropriate C functions, pinMode(), digitalWrite(), and digitalRead(). All of the digital I/O lines operate at standard TTL-compatible levels. Each of the I/O pins can source or sink a maximum current of 40 mA and internal pull-up resistors of around 20 to 50 k Ω can be selected where necessary. Note that the internal pull-up facility is disabled by default). It is important to be aware that many of the digital I/O lines also have specialized functions (as previously mentioned).

Serial I/O using digital I/O pins 0 and 1

These include the serial RX and TX pins that can be used to receive (RX) and transmit (TX) TTL serial data respectively using pins 0 and 1 respectively. These pins are connected to the corresponding pins of the ATmega8U2 serial USB-to-TTL device.

Interrupt inputs using digital I/O pins 2 and 3

These two pins are available for use with external interrupts. They can be configured to trigger an interrupt on a low value, a rising or falling edge, or a change in value. The attachInterrupt() function can be used to configure the interrupt feature.

Pulse width modulation (PWM) output using digital I/O pins 3, 5, 6, 9, 10, and 11

These six lines can be used to provide outputs that are pulse width modulated (PWM). This feature can be used to provide quasi-analogue outputs using the analogWrite() function.

Serial SPI communication using digital I/O pins 10, 11, 12 and 13

These four pins support SPI serial communication by providing SS, MOSI, MISO and SCK signals respectively. Note that although the underlying hardware supports this interface SPI communication is not currently included in the Arduino language.

LED indication using digital I/O pin 13

An LED status indicator is provided for this (and only this) I/O pin. When the pin is HIGH the LED will be on and LOW the LED will be off. The built-in LED provides a handy way of testing simple I/O code routines without the need to connect an external indicator.

Using analogue I/O

In addition to the 14 digital I/O lines, the Uno has 6 analogue inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5V, though is it possible to change the upper end of the measurement range using the AREF pin and the analogReference() function (more of this in a future instalment). As with the digital I/O lines, some of the analogue input pins also have specialized functions.

 \slashed{PC} communication using analogue using pins 27 and 28

Analogue I/O port lines 4 and 5 (pins 27 and 28 respectively) can be used to provide access to

the SDA and SCL signals respectively used to facilitate the two-wire interface (TWI or I²C).

Analogue output from the digital I/O lines
Analogue output (as distinct from input) can be obtained from six of the digital I/O lines (pins 5, 11, 12, 15, 16 and 17). In a future instalment we will explain how this works but for now you just need to know that, by switching the digital outputs on and off and averaging the voltage produced it is possible to produce an analogue voltage. For example, if one of the digital outputs is alternately taken high (+5 V) for 50% of the time and low (0 V) for 50% of the time the average voltage produced will be +2.5 V.

Communicating with the Uno

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega328 provides UART TTL (5 V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An ATmega8U2 (see earlier) provides serial communication over USB and appears as a virtual COM port when used with software running on an external Windows or Linux-based computer. The ATmega8U2 firmware uses the standard USB COM drivers, and no external driver is needed. However, when using some versions of Windows, clones and compatibles, a driver information (.INF) file maybe required (see later).

The Arduino's Integrated Development Environment (IDE) incorporates a serial monitor which allows simple text data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-serial chip and USB connection to the computer (but not for TTL serial communication using pins 0 and 1). A Software Serial library allows for serial communication on any of the Uno's digital pins. As already noted, the Uno can also support I²C (TWI) and SPI communication. This is ideal for communication with external hardware devices, sensors and transducers.

The Arduino Uno has a resettable polysilicon fuse that's designed to protect against short-circuit

and overcurrent conditions. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection until the short or overload is removed. Although computers usually have their own internal protection, this fuse does provide you with an extra layer of protection.

Installing and configuring the IDE

Before you can begin to enter code into your Arduino you will need to connect it to a PC that has a copy of the Arduino's Integrated Development Environment (IDE) installed on it. The process is quite painless, but it requires a machine with an Internet connection so that you can download the latest version of the IDE package.


The IDE package can be successfully installed on a whole host of different computers including some running 32- and 64-bit versions of Windows 7, 8 and 10 and also a couple running different flavours of Linux. The step-by-step procedure described here was carried out on a computer running Windows 7 but the process is similar, if not quite identical, on other machines. Note that an installation under Linux may require the installation of the Java run-time environment (JRE) if not already installed. Also, if you are using a low-cost Arduino clone (i.e. not a 'genuine' Arduino) you might need a different USB driver from the one supplied with the official IDE package.

- Open your Web browser and go to www. arduino.cc (the official Arduino home page). When the page has loaded click on 'Download' in the top menu bar and then select the IDE version for your machine.
- 2. At this point you will be asked if you would like to make a contribution to the development of the software. You can either click on 'Just download' or 'Contribute and download'. When you've made your choice the installation file will be downloaded to your computer. The download is quite large so, depending on the speed of your Internet connection, you may have to wait for a minute or two for the download to complete.

- 3. Next click on the installer or unzip the file (depending on which version you have chosen) and follow the prompts. You can select installation options (see Figure 19.6) and choose a destination folder (see Figure 19.7). Finally, click on 'Install' to start the installation process.
- 4. Depending on the speed of your computer the installation process may take a few minutes but as it nears completion you will be given the option of installing a USB driver (see Figure 19.8). This driver will allow your computer to communicate with a standard Arduino by means of the USB port. We recommend that you click on 'Install' to install this additional system software (not part of the IDE itself). Note that if you are using one or more different versions of the Arduino you may need to install specific drivers in order

Figure 19.6 Selecting installation options

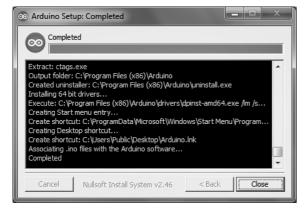

Figure 19.7 Choosing a destination folder for the installation

Figure 19.8 Option to select a USB driver for use with the IDE package

to cope with different versions. If you are not using a 'genuine' Arduino but are using a low-cost clone you may need to install an alternative USB driver. Information on how to do this is usually supplied with the microcontroller in question.

- **5.** When the installation is complete, and the USB driver has been added you can click on 'Close' to return to your normal desktop. Note that during IDE installation the progress can provide you with a detailed list of the files that are being installed on your system (see Figure 19.9).
- **6.** If you have previously clicked on the option to create a shortcut (from either the desktop or for the start menu) you will be able to click on it and start the IDE for the first time. If all is well, you should see a window like that shown in Figure 19.10.
- **7.** Now connect your Arduino board to the PC using one of its (powered) USB ports. At

Figure 19.9 Detailed information is available during IDE installation

Figure 19.10 The IDE displayed on a Windows PC

this point, and since the USB supplies +5V there's no need for a separate DC supply for the microcontroller. The various LEDs on the Arduino should flash momentarily as the system boots and, if it's 'new out of the box' it's likely that the 'L' LED will be flashing on and off slowly. This confirms that power is being supplied by the host computer and that the Arduino is functioning properly.

- **8.** Next you will need to tell the IDE software what version of the Arduino you are using, and which port is being used to communicate with it. Click on 'Tools' from the menu bar at the top of the window and then on 'Board' from the drop-down. Select your Arduino version from the list that appears (see Figure 19.11). Note that the default will be 'Genuine Arduino Uno'.
- **9.** Now you will need to tell the IDE software select 'Port' from the 'Tools' drop-down menu and click on the port that you are using. The default will be 'COM1' but we have selected 'COM7' in Figure 19.12.
- 10. If you now look at the bottom right of the IDE window you should see that the status message has changed indicating the board type and port number that you are using. If everything is as you expect you can now test out your connection from the IDE to the Arduino.

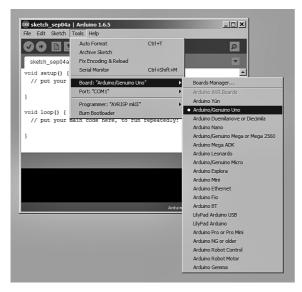
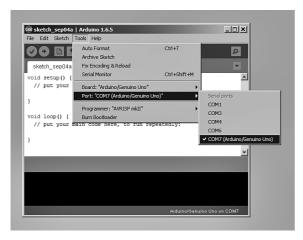



Figure 19.11 Selecting your Arduino version

Figure 19.12 Selecting the port to be used for communication

11. Click on 'Sketch' from the menu bar and then 'Verify/compile'. This will compile the current empty sketch and, after a short time. You should notice the Arduino's LEDs flashing and a 'Done compiling' message should appear. You are now ready to get to grips with your first Arduino program.

If things don't work

Sometimes you might find that your code upload doesn't work because the Arduino IDE fails to connect with your Uno. Getting your program

Figure 19.13 Error message resulting from incorrect port setting

code onto your Arduino involves several stages and if any of them have problems, the upload can fail. Reasons for a failed upload can include driver problems as well as incorrect board and serial port selection. There can also problems with the physical connection to the port, a missing bootloader or the Uno's on-board fuse settings.

The IDE displays error messages in a scrolling list at the bottom of the IDE window (see Figure 19.13). In this particular case the IDE is reporting that COM Port 7 is unavailable. By clicking on Tools and then Port from the drop-down menu the current configuration is displayed. This shown the Arduino Uno using COM Port 9.

If your port doesn't appear, try restarting the IDE with the board connected to the computer. On the Mac, the serial port should be something like /dev/tty.usbmodem621 for the Uno or /dev/tty.usbserial-A02f8e for older, FTDI-based boards. On Linux, it should be /dev/ttyACM0 or similar (for the Uno) or /dev/ttyUSB0 or similar for older boards. On Windows, it will be a COM port, but you'll need to check in the Device Manager (under Ports) to see which one. If you find that there's no serial port allocated to your Arduino board, you will need to

check that you have the correct driver installed. In the case of Arduino, the drivers work by providing a virtual serial port (or virtual COM port). The Arduino Uno uses the standard USB CDC drivers that are normally provided by the operating system. These drivers allow the host computer to communicate with the ATmega8U2 on the Arduino board. Some other Arduino boards use FTDI drivers to communicate with an FTDI chip on the board (or in the USB-serial convertor).

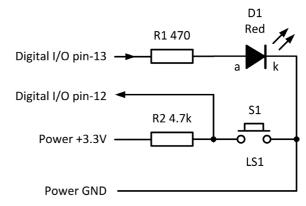
The easiest way to check if the drivers for your board are installed correctly is by clicking on Tools and then Port from the drop-down menu (see Figure 19.13). On Windows 7 (particularly the 64-bit version), you might need to go into the Device Manager and update the drivers for the Uno. Just right click on the device (the board should be connected to your computer), and point Windows at the appropriate driver information (.INF) file. You will find this located in the Drivers directory of the Arduino software (not in the FTDI USB Drivers sub-directory). Further information is available concerning a failed driver installation is available from the official Arduino website.

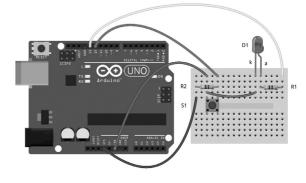
Finally, it's important to remember that you will be unable to communicate with the Arduino if there's no bootloader present. It's easy to check this by simply resetting the board (by removing the power or pressing the reset button) and noting the state of the L-LED (connected to digital I/O pin-13). If the bootloader is present this LED should start to blink. If the LED doesn't blink, it's likely that the bootloader is missing.

A simple test circuit

The best way to get to grips with the Arduino is via a simple test circuit comprising of nothing more than a switch and LED. This minimises the need for anything much in the way of additional hardware so you will only need a mini-breadboard and a few commonly available components. The aim of this exercise is simply to control an LED from a switch but if you are already familiar with this task feel free to jump forward to the next section.

The circuit of the test circuit is shown in Figure 19.14. The LED (D1) is connected to the Arduino's




Figure 19.14 Circuit of the LED and switch interface

Digital I/O pin-13 which will be configured as an output whilst the push-button switch (S1) will be connected to Digital I/O pin-12 configured as an input. R1 is connected in series with D1 to limit the LED current whilst R2 is used to pull-up the input voltage to a HIGH (+3.3V) level when S1 is not being operated.

Breadboard layout

The components are shown mounted on a small breadboard in Figure 19.15. The LED will need to be connected with the correct polarity so that its cathode (the shorter of the two leads) is connected to 0V, as shown in Appendix 4.

Listing 19.1 shows the code for the LED and switch test circuit application (at this stage you might not understand what the code does, but I've added comments to help explain what's going on).

fritzing

Figure 19.15 Fritzing breadboard arrangement for Figure 19.14

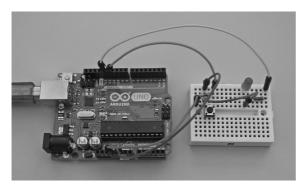


Figure 19.16 Actual breadboard arrangement

Listing 19.1 Code for the simple LED and switch test circuit

/* Simple LED and button example. Uses an external button connected to pin-12 to control an LED connected to pin-13 */

int inButton = 12; // Switch connected to digital pin-12 int outLED = 13; // LED connected to digital pin-13

boolean LEDstate = LOW;

```
void setup() {
  pinMode(inButton, INPUT); // Button is an input
  pinMode(outLED, OUTPUT); // LED is an output
}
```

```
void loop() {
  if (digitalRead(inButton) == LOW)
  // button has been pressed so turn the LED 'on'
  {
    LEDstate = HIGH;
    digitalWrite(outLED, LEDstate);
  }
  else
  // button has been released so turn the LED 'off'
  {
    LEDstate = LOW;
    digitalWrite(outLED, LEDstate);
  }
}
```

The code should be entered into the IDE and then saved before compiling and uploading it to the Arduino as described earlier. Notice also how the lines of code have been indented in order to make the code more readable.

Before you start to enter your code click on File and New to produce a new editing window with a blank code template. You will find that the IDE has already started you off by adding empty setup() and loop() functions. You can now type

in your code as shown above. When you finish don't forget to save your work by clicking on 'File' and 'Save' or 'Save As...'. Next click on 'Sketch' and 'Verify/Compile'. When you've corrected any coding errors that the compiler reports you will be ready to upload your code to the Uno. Just click on the upload arrow and watch the progress report. The LEDs on the Uno should flash, and the code should begin to execute. At this point D1 should become illuminated (along with the L-LED on the Uno board) whenever the push-button is pressed.

Toggle action

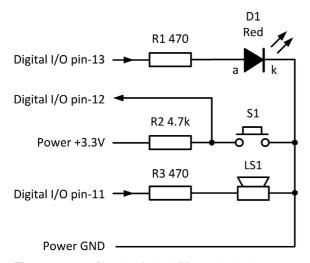
In many cases it might be desirable 'toggle' the state of an output line rather than simply turn it on when the push-button is pressed and off when it is released. With the toggle action the LED will become illuminated when the button is first pressed, and it will remain illuminated until the button is pressed again (after which it will remain turned turn off). In other words, every time the button is pressed the state of the LED will change. In order to accomplish the toggle action, the Uno will need to 'remember' the state of the line so it can recognise when it has been changed. Listing 19.2 shows how this can be done.

Listing 19.2 Code for the test circuit with toggle switching action

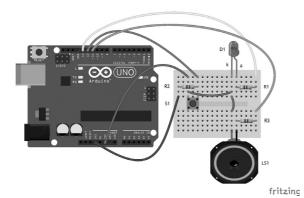
/* Simple LED and button example. Uses an external button connected to pin-12 to toggle the state of an LED connected to pin-13 */

int inButton = 12; // Switch connected to digital pin-12 int outLED = 13; // LED connected to digital pin-13

boolean LEDstate = LOW; boolean buttonState = HIGH; boolean lastButtonState = LOW;


void setup() {
 pinMode(inButton, INPUT); // Button is an input
 pinMode(outLED, OUTPUT); // LED is an output
}

void loop() {
 buttonState = digitalRead(inButton);
 if (buttonState == LOW && lastButtonState == HIGH) {
 if (LEDstate == LOW){


```
LEDstate = HIGH;
}
else
{
    LEDstate = LOW;
}
digitalWrite(outLED, LEDstate);
lastButtonState = buttonState;
}
```

Adding some sound

Now let's add some sound to our application so that an audible warning will be generated whenever the button is being pressed (see Listing 19.3). We will need to add a miniature loudspeaker to the circuit and breadboard layout as shown in Figures 19.17 and 19.18.

Figure 19.17 Circuit of the LED and switch interface with added loudspeaker

Figure 19.18 Fritzing breadboard layout for Figure 19.17

The loudspeaker (LS1) is connected to Digital I/O pin-11. R3 is connected in series with the loudspeaker in order to minimise the current drawn from the Uno. R3 can be reduced to 220 Ω or 100 Ω in order to increase the volume of sound produced by the loudspeaker.

Listing 19.3 Code for the test circuit with sound output

/* Simple LED and button example. Uses an external button connected to pin-12 to operate an LED connected to pin-13 and a small loudspeaker connected to pin-11 */

int outSpeaker = 11;// Speaker connected to digital pin-11 int inButton = 12; // Switch connected to digital pin-12 int outLED = 13; // LED connected to digital pin-13

boolean LEDstate = LOW;

void setup() {

```
pinMode(inButton, INPUT); // Button is an input pinMode(outLED, OUTPUT); // LED is an output pinMode(outSpeaker, OUTPUT); // Speaker as output }

void loop() {
```

```
if (digitalRead(inButton) == LOW)

// button has been pressed so turn the LED 'on'

// and send a tone signal to the speaker

{
    LEDstate = HIGH;
    digitalWrite(outLED, LEDstate);
    tone(outSpeaker, 700);
}
else

// button has been released so turn the LED 'off'

// and stop sending the tone signal to the speaker

{
    LEDstate = LOW;
    digitalWrite(outLED, LEDstate);
    noTone(outSpeaker);
}
```

Data

As you've already seen, in order to get your Arduino microcontroller hardware to do something useful you need to have code that will tell it what to do and how to respond when something happens. The process of producing code (i.e. coding) is not particularly difficult but it does require a structured and systematic approach. If you've ever had to provide someone with a detailed set of instructions for travelling

somewhere you will know how important it is not to forget any steps and how to give your instructions in a clear and unambiguous way. The same applies to computer coding but with the added complication that we need to present our instructions in a way that can be interpreted by a machine rather than a human being. Coding is easy to learn provided that you 'start simple' and build up your skills progressively and systematically.

Boolean data

Data that can only take one of two possible values is referred to as 'Boolean data'. Inside the Arduino this type of data can be represented using a single byte (8-bits) of data and it can take a value of either TRUE or FALSE, HIGH or LOW or simply 'on' and 'off'. These two states are mutually exclusive, and we refer to them as Boolean because they conform to the rules of Boolean Logic (much more of this in a later instalment).

The variables that we use in our code need to be declared before they can be used. An example of a Boolean declarations is as follows:

boolean powerGood = FALSE: // power status

At some later point in the code (within the main loop that executes forever) you might encounter the following line:

powerGood = !powerGood; // toggle the power status

Note that the '!' in the foregoing code fragment can be read as 'not' and the line of code simply changes the state of the Boolean variable to the opposite of what it was before. In other words, if powerGood had previously been HIGH it will become LOW, and vice versa.

Unfortunately, there's some potential for confusion here. The Arduino uses a byte (8-bits) of memory to store Boolean data but since Boolean data can only exist on one of two possible states and where available memory is limited (as it is with the Arduino) it would be advantageous to use just a single bit of data rather than an entire byte because seven of the eight bits used to store the Boolean data are just not being used (a stored binary value of 0000000 will be interpreted as FALSE and anything else will be interpreted

as TRUE). This is rather wasteful and so it's important to remember that using a Boolean data type is no more efficient in terms of memory usage than using integer values (see later). That said, it can often be rather neat and convenient to use Boolean data types.

Integer data

Whole numbers (i.e. numbers with no decimal point) are frequently stored as integers (or 'ints'). Integers require two bytes (16 bits) of storage and the most significant bit (MSB) is used to indicate the sign of the number. When this bit is 0 the value is positive and when it is 1 the value is negative. The method of representing numbers is referred to as 2's complement notation and with 16-bits of data it yields a range that extends from -32768 to +32767.

A typical line from an application's setup code might be:

int powerLED = 11; // Output pin used for the power good LED

This line of code defines and initialises a variable that we've named powerLED. We've told the Arduino that it is to be handled as an int (i.e. an integer) and that it is to be given an initial value of 11. The statement ends with a semicolon (;) and this is followed by a brief comment designed to act as a reminder of what the purpose of the statement is. Brief comments like this can be invaluable later on when the time comes to do some software maintenance and also when code is shared amongst several authors.

Later, in the program code you might find a line of the form:

digitalWrite(powerLED, HIGH); // Illuminate the power good LED

Even if you've never done any coding before you can probably make a reasonable guess of what this statement does. At another point in the code you might find something like this:

```
if(powerGood = = FALSE) {
    digitalWrite(powerLED, LOW);
}
```

The above code fragment turns the 'power good' LED off when the system has sensed a problem with the power supply. It does this by examining

the state of the **powerGood** Boolean variable (see earlier) and, if found to be FALSE (in other words, not good) the 'power good' LED is turned 'off' by writing a low (0V) to its digital output pin (pin-11 as defined within the integer declaration earlier in the code).

The syntax for the declaration (in this particular case it's a constant rather than a variable) is simply the name followed by the value that you've assigned to it. Note that the name takes the form of a meaningful description (two words with no space included between them). Note also that the first word begins with a lower-case character and the second word with a single upper-case character. This convention helps make the code easier to read and it avoids the need to include a space character in the name (which would be invalid).

At some point later in the code you might find something like this:

```
if(powerGood = = FALSE) {
    digitalWrite(powerLED, LOW);
}
```

There's often a need to increment or decrement a variable within a program loop (for example, when counting events) but, because of the use of two's complement notation, it is very important to be aware that when a variable is incremented or decremented variable will roll-over whenever it reaches the maximum allowable size. So, for example, incrementing 32767 (the maximum allowable *positive* value) will cause the value to become –32768 (note the change of sign). In a similar manner, decrementing a value of –32768 (the maximum allowable *negative* value) will cause a variable to take a new value of +32767.

Finally, please be aware that the use of two bytes to store an integer is not consistent over all Arduino versions. For example, the Arduino Due uses four bytes (32-bits) to store integer values. This provides a range of values extending from -2,147,483,648 to +2,147,483,647.

Floating point data

As the name implies, floating point numbers, or 'floats', are numbers that include a decimal point. They offer a much larger range from

-3.4028235E+38 to +3.4028235E+38. Floats are stored using four bytes (32 bits) of data.

Floats are often used to represent analogue values from sensors. Due to the need for four bytes of data, floating point maths can be significantly slower than when integers are used (where only two bytes of data are involved) consequently it is advisable to use integers rather than floats whenever speed of execution is important.

A typical extract from a program's setup code might be:

float peakConvert = 1.4159; // To convert from RMS to peak

We could then determine the peak voltage and peak current present in a 50 Ω load using something of the form:

```
peakVoltage = rmsVoltage * peakConvert;
peakCurrent = peakVoltage / 50;
```

Byte data

Byte is used to store 8-bits of data as unsigned binary numbers. So, for example, a binary value of 10000001 (equivalent to 81 in hexadecimal or 128 in decimal) might be defined as follows:

```
byte bitMask = 0x81; // mask unwanted bits
```

Note that the **0x** prefix denotes a value expressed in hexadecimal (base 16) format. Because only eight bits are used byte data is limited in range. The minimum value that can be represented is 0 when all of the bits are 0 (hexadecimal 0x00) and the maximum value is 255 (hexadecimal 0xFF) when all of the bits are set to 1. Despite the restricted range, byte data can be useful in a variety of applications, particularly when dealing with the status of byte-wide (i.e. eight bit) input or output lines. For example:

```
byte inputStatus = 0x00; // initialise input port status
byte inputFailure = 0xFF; // all port lines have gone high
```

At some later point in the code we might encounter a line of the form

```
if(inputStatus = = inputFailure) {
    Serial.print("Warning: Input failure!");
}
```

In this example a fault is present if all of the input lines are simultaneously in the HIGH state and in this condition the value of the inputStatus variable will be 0xFF, If this condition is detected a brief warning message will be sent from the Arduino's serial port.

Character data

The character data type is used when we just need to represent alphanumeric information such as plain text. The character data type uses a single byte of memory to store each character. Thus the word 'character' would need nine bytes of storage. Character literals are enclosed within single quotes (e.g. 'A') whilst double quotes are used for strings comprising several characters (e.g. "Arduino").

Character data is encoded using the American Standard Code for Information Interchange (ASCII). Each character is represented by a corresponding signed 8-bit value. 'A' for example is encoded as 01000001 in binary. This is equivalent to 41 in hexadecimal or 65 in decimal 65. The basic ASCII character set uses only seven bits (equivalent to a decimal range that extends from 0 to +127. When the leading bit is set (i.e. 1 and not 0) the signed byte becomes negative with a range extending from -1 to -128. These 128 values can be used to represent special characters.

Note that the following three lines of code are equivalent:

```
char testChar = 'A';
char testChar = 65;
char testChar = 0x41;
```

Note how the number base in the last example indicated by the prefix 0x which indicates that the number that follows is written in hexadecimal format.

The Serial.println() function provides you with a way of printing data using several different representations.

```
Serial.println(analogValue); // print as ASCII-encoded decimal
```

 $Serial.println(analogValue,\,DEC);\,\,\textit{//}\,\,print\,\,as\,\,ASCII\text{-encoded}\,\,decimal}$

Serial.println(analogValue, HEX); // print as ASCII-encoded hex Serial.println(analogValue, OCT); // print as ASCII-encoded octal Serial.println(analogValue, BIN); // print as ASCII-encoded binary

You will find an example of the use of serial printing in the next section.

Arduino simulation

If you don't have an Arduino to hand you can still develop and test your code with a variety of virtual I/O devices using an Arduino simulator and one of the best of these is UnoArduSim, an excellent freeware real-time simulator developed by Dr. Stan Simmons at Queen's University in Ontario, Canada.

UnoArduSim is designed for students as well as Arduino enthusiasts and it will allow you to experiment with, and to easily debug, Arduino programs without the need for any physical hardware devices. You can choose from a variety of virtual I/O devices, configure and connect them to a virtual Arduino Uno using the Lab Bench Pane. There's no need to worry about wiring errors, misconnections or faulty devices when developing your code.

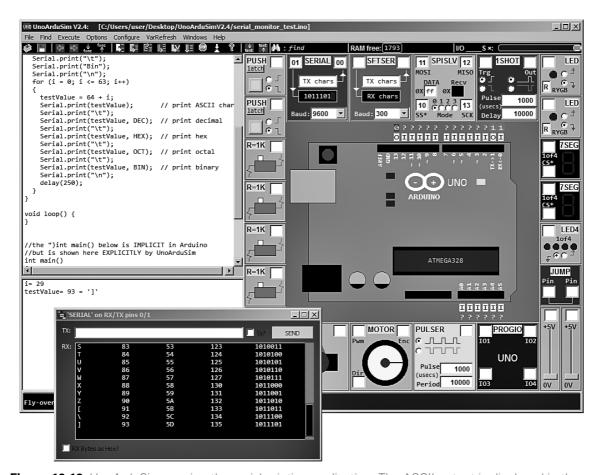
UnoArduSim provides simple error messages for any parse or execution errors it encounters, and allows debugging with Reset, Run, Run-To, Halt, and flexible stepping in the Code Pane. This provides a simultaneous view of all global and currently active local variables, arrays, and objects in the Variables Pane. Run-time array-bounds checking is provided, and internal RAM overflow will be detected and the culprit program line highlighted. Any electrical conflicts with attached I/O devices are flagged and reported as and when they occur.

Arduino source code files (INO or PDE) are loaded into the program Code Pane. The program is then parsed, and "compiled" into a tokenized executable which is then ready for simulated execution (note that, unlike the Arduino's Integrated Development Environment, a standalone binary executable is not created). Any parse errors are detected and flagged by highlighting the line that failed to parse, with the reported error displayed in the Status Bar at the very bottom of the UnoArduSim application window. This is an extremely useful feature.

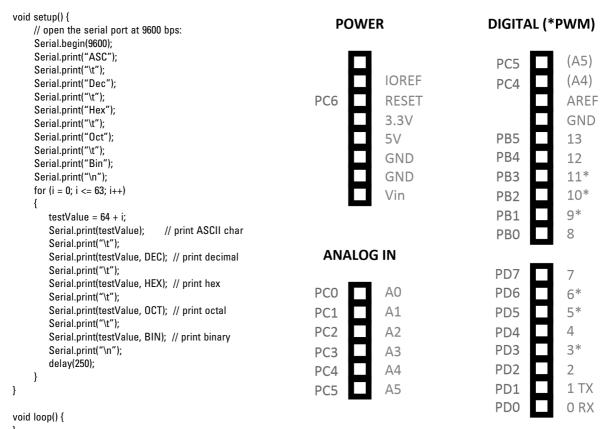
An Edit/View window can be opened to allow you to see and edit a syntax-highlighted version of your user program. Errors during simulated execution (such as mismatched baud rates) are reported on the Status bar, and via a pop-up Message Box.

UnoArduSim is a substantially complete implementation of the Arduino programming language as documented on the official Arduino website. Whilst the package does not support the full C++ implementation present in the Arduino IDE and its underlying GNU compiler, it is likely that only the most advanced programmers would discover something they wished to use was missing. It is usually possible to avoid problems with simple work arounds.

Because UnoArduSim is a high-level-language simulator, only C/C++ statements are supported, assembly language statements are not. Similarly, because it is not a low-level machine simulation, ATmega328 registers are not accessible for either reading or writing, although register-allocation, passing and return are emulated when selected from within the Options Menu. UnoArduSim


is currently only available for the Windows platform but porting the software to Linux, MacOS or Java might be a project for the future. You can download the installation software from: https://www.sites.google.com/site/unoardusim/services

Finally, Figure 19.19 shows UnoArduSim running the code shown in Listing 19.4 that displays a table of ASCII character data (see earlier) with the program's output displayed using the simulator's Serial Monitor window.

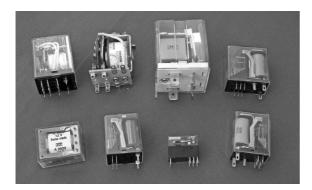

Listing 19.4 Serial printing with UnoArduSim

/* Use serial printing to produce an ASCII table with values shown in decimal, hex, octal and binary */

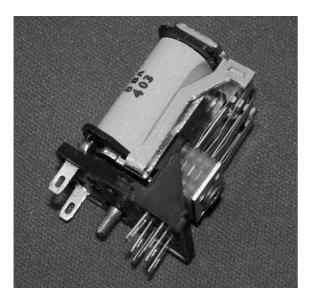
int i; // loop counter char testValue;

Figure 19.19 UnoArduSim running the serial printing application. The ASCII output is displayed in the Serial Monitor window

Figure 19.20 The Arduino Uno's I/O pin assignment


Driving external loads

Earlier I mentioned that the ATmega328 processor provides a total of 23 input/output (I/O) lines. These lines are made available at one or more of the Uno's I/O connectors (see Figure 19.20). As mentioned last month, the I/O pins can be given different functions depending on the software configuration. The I/O port lines can be individually configured as inputs or outputs using the pinMode()function to configure the port direction (i.e. input or output) and digitalWrite() to turn the respective line on or off. Note that the action is latching, so that, once an output is turned on or off it will remain in that state until a further command is generated to change the state.


Relay outputs

The Arduino Uno's I/O pins can source or sink a maximum current of 40mA at standard 5V logic

levels. This is sufficient for a lot of purposes (including illuminating an LED) but not enough to operate actuators, motors, lamps and many other 'real-world' output devices. Fortunately, the problem of driving the vast majority of high voltage and high current loads can be easily solved using one or more miniature relays (see Figure 19.21). These electromechanical devices comprise of a coil wound on a high-permeability core and a moving armature mechanically linked to a set of contacts that make and break when the device is actuated (see Figure 19.21). When sufficient current is applied to the relay coil, the resulting magnetic field will cause the soft iron armature to pull-in and this in turn will open or close the relay's electrical contacts. A typical miniature PCB mounted relay will operate from a 5V DC supply and its contacts will pull-in at typically 75% of this value.

Figure 19.21 A selection of common types of relays with contact ratings ranging from 1A to 20A

Figure 19.22 Internal arrangement of a typical relay showing the coil, armature and contacts

Table 19.2 Electrical specifications of a typical miniature PCB mounting relay

Nominal operating voltage	5V DC
Nominal operating current	73 mA
Maximum load rating	AC 250 V 10 A, DC 30 V 10 A
Pull-in voltage (typical)	3.8 V
DC coil resistance	70 Ω
Power consumption (typical)	0.36 W
Operating time (max.)	10 ms
Release time (max.)	5 ms
Contact resistance (max.)	0.11 Ω
Operating life	100,000 operations at rated load
Maximum switching rate	30 operations per second

It's important to note from Table 19.2 that the relay coil requires an operating current that's well beyond the output drive capability of the Arduino. We therefore need an interface that will provide the extra current required. Fortunately, this can be little more than a low-power transistor and a handful of other components, as shown in Figure 19.23.

In Figure 19.23 the transistor can be almost any NPN type with a current gain of around 100, or more. The diode, D1, counters the effects of the induced voltage that will appear across the relay coil when the current (and consequently the magnetic flux) collapses when the transistor reverts from a conducting to a non-conducting state. A typical value for R1 would be 2.2 k Ω

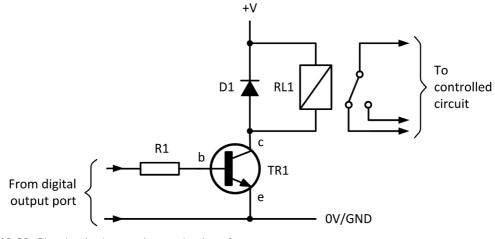
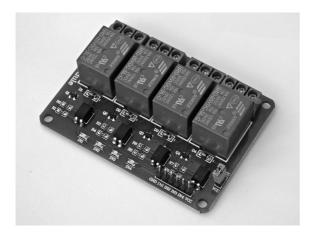
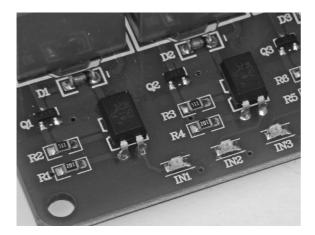


Figure 19.23 Simple single-transistor relay interface

when using a relay coil that requires less than 200 mA to operate (for example, a 700 Ω coil rated at 12 V). This value for R1 is sufficiently small to ensure that TR1 is driven into saturation when a high-state output voltage appears on the digital I/O line but large enough to reduce the demand on the I/O port to around 2 mA.

If you have several relays to operate, a neater alternative is to use an integrated circuit driver such as the popular ULN2803 but if you only have a couple of high current/high voltage loads to drive a simple discrete circuit like the one shown in Figure 19.23 is all that you need. Fortunately, most simple control projects can be based on a ready-made relay board, avoiding the need to construct your own interface circuit. There are quite a few to choose from and the two most

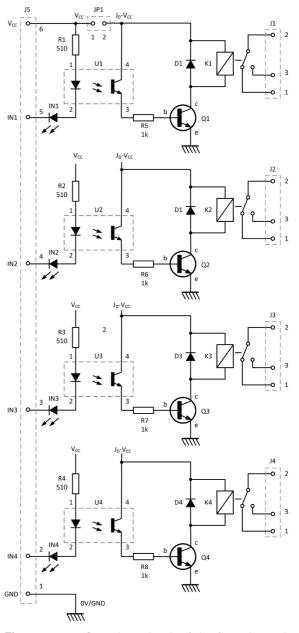

Figure 19.24 A four-channel relay interface

Figure 19.25 Transistor drivers and optical isolators on the four-channel relay board

common types are fitted with either four or eight relays with each relay having its own driver circuit.

Figure 19.24 shows a typical four-channel relay board. The board has a transistor driver and an opto-isolator for each output channel. Similar boards can be purchased very cheaply (often less than £5) and so it is invariably more cost effective

Figure 19.26 Complete circuit of the four-channel relay interface board

to purchase one of these boards rather than attempt to build one yourself. Individual relays are normally fitted with single-pole changeover contacts (equivalent to an SPDT switch) and are commonly rated 250V AC at 10A or 30V DC at 10A. Inputs are usually TTL compatible and active low (in other words, they require a logic 0 output from the Arduino to operate).

Isolated supplies

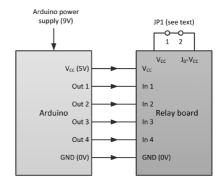
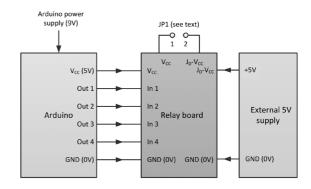
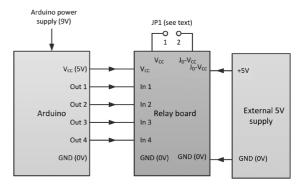

Many relay boards (like the one shown in Figure 19.24) incorporate opto-isolators and this makes it possible to isolate the relay driver circuitry from the Arduino's circuitry (see Figure 19.27). However, in many applications this feature will not be required, and the relay driver circuitry can then be operated from the same supply and ground connection as used by the Arduino itself. In Figure 19.27(a) the +5V and GND connections are common between the Arduino and the relay board. In this arrangement the relays must be 5V types and the only isolation between the Arduino and the load will be that afforded by the relay alone. This will usually be perfectly adequate for most applications, including switching mains loads at currents of up to several amps.

Figure 19.27(b) shows how higher-voltage (e.g. 12 V or 24 V) relays can be used whilst retaining a common ground (GND) connection between the Arduino and the relay board. Higher power relays can be used for applications that involve switching currents of up to 20 A. In all cases it is important to check the specifications of the relay that you plan to use and verify its suitability for use in a particular application.


In Figure 19.27(c) we have shown a fully optically isolated arrangement in which there is no common ground connection between the Arduino and the relay board. This arrangement offers the greatest amount of isolation together with improved noise immunity.

Coding relay outputs


Fortunately, it's very easy to control one or more relays using just a few lines of simple code. Firstly you will need to make sure that you define

(a) Arduino 5V relay supply with isolation provided by relays

(b) External 5V supply with common GND/0V

(c) External 5V supply and full optical isolation

Figure 19.27 Three possible relay board configurations providing different amounts of isolation

the digital output pins to which the relays are connected using a line of the form:

int pump = 5; // Pump connected via a relay on digital pin-5 int heater = 6; // Heater connected via a relay on digital pin-6

19 Electronic applications and the Arduino

Next you will need to add a couple of lines into the setup() code block, as follows:

pinMode(pump, OUTPUT); // Pump is configured as an output pinMode(heater, OUTPUT); // Heater is configured as an output

The relays and their respective loads can be turned on and off incorporating the following lines of code at appropriate points in the main program loop:

```
digitalWrite(pump, LOW); // Turn the pump off digitalWrite(pump, HIGH); // Turn the pump on digitalWrite(heater, LOW); // Turn the heater off digitalWrite(heater, HIGH); // Turn the pump on
```

Listing 19.5 shows a complete sample application where a fluid is heated and pumped in a continuous 30 s cycle. Note that the main loop repeats indefinitely and can only be interrupted by using the Arduino's reset button.

Listing 19.5 Example of using digitalWrite

```
/* Hot fluid cycle: heat for 24s and then pump for 6s */
```

int pump = 5; // Pump connected via a relay on digital pin-5 int heater = 6; // Heater connected via a relay on digital pin-6

```
void setup() {
    pinMode(pump, OUTPUT); // Pump is configured as an output
    pinMode(heater, OUTPUT); // Heater is configured as an
    output
}

void loop() {
    digitalWrite(pump, LOW); // Turn the pump off
    digitalWrite(heater, HIGH); // Turn the heater on
    delay(24000); // Wait 24s
    digitalWrite(heater, LOW); // Turn the heater off
    digitalWrite(pump, HIGH); // Turn the pump on
    delay(6000); // Wait 6s
}
```

Storing data using an SD card

For many applications it can be useful to store data in the form of a file that can be saved and later recalled or transferred to another system for further processing and analysis. This can be accomplished with the aid of an ordinary SD card and some simple code to handle the necessary file processing. There are several different ways that you can connect an SD card, including (in rough order of cost):

- ► An outboard SD card module with an SPI bus interface
- ➤ A datalogger shield such as those produced by Adafruit (these have the added bonus that they usually incorporate a real-time clock for 'date stamping' your data)
- ► An Ethernet shield fitted with an SD card slot.

Regardless of which of the above is used the interface between the microcontroller and the SD card module is achieved by means of the Arduino's Serial Peripheral Interface (SPI) bus. SPI is a communication bus that is used to interface one or more peripheral devices (known as 'slaves') to a microprocessor or microcontroller (referred to as the 'master'). In addition to SD card modules, a large number of SPI devices are available, including analogue to digital converters (ADC), digital to analogue converters (DAC), general purpose input/output (GPIO) expansion chips, temperature sensors and accelerometers. The bus is capable of operating at high speed over short distances (faster than the I2C bus) but it normally requires a four-wire connection with one additional chip select wire for each peripheral SPI device.

The SPI bus is a synchronous (serial clocked) bus capable of supporting data transfer in both directions, master to slave and slave to master, at the same time (this is referred to as 'full duplex' operation). The Arduino's SPI implementation uses four signal wires (plus ground). These are listed in Table 19.3 together with the pin connections conventionally used on the Uno.

Table 19.3 SPI implementation in the Arduino Uno

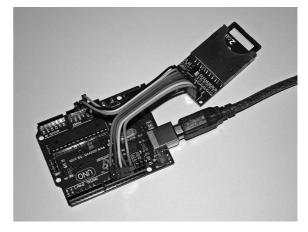
Designation	Function	Direction	Uno pin number
SCLK	Serial clock	Output from Uno	13
MOSI	Master output/slave input	Output from Uno	11
MISO	Master input/ slave output	Input to Uno	12
CS/SS	Chip select/ slave select	Output from Uno	10
GND	Ground	Common	GND

It's important to be aware that conventional SD cards are designed for operation from a 3.3 V supply and thus it is necessary to ensure that the I/O levels and supply voltage are level-shifted within the hardware interface. This is normally the case with Arduino shields and modules, but it is important to check when modules may have been designed for operation with other systems and may have links or switches fitted.

Using the SD Library

The Arduino's built-in SD Library provides you with a set of tools that you can use to read from and write to an SD card. The library supports the popular FAT16 and FAT32 file systems commonly used with standard SD and SDHC cards. Filenames should follow the normal '8 + 3' convention and can include paths separated by forward-slashes, /. It is worth noting that, because the working directory is always the root of the SD card, a name refers to the same file whether or not it includes a leading slash. Thus mydata.dat is the same as /mydata.dat. The SD library currently supports multiple file opening.

To communicate with an SD card you will need to make use of the SPI bus (see earlier) which is available on digital I/O pins 11, 12, and 13 of the Arduino Uno. A further pin must be used to select the SD card via the chip select (CS) pin. On the Uno this is usually pin-10 (the hardware SS pin) but an alternative pin can be specified in the call to SD.begin(). Note that even if you don't use the hardware SS pin, it must be left as an output or the SD library will not function.


At the start of your code you will need to include the SPI and SD card libraries:

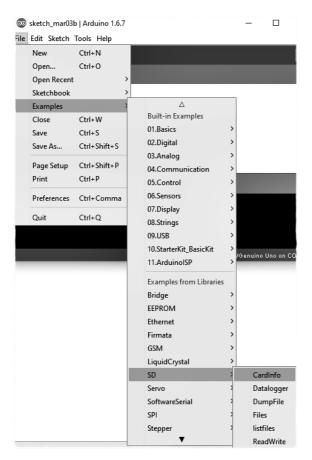
// Include the SD and SPI libraries #include <SPI.h> #include <SD.h>

Next you will need to set up the variables that you will use in the SD library:

// Set up variables for use with the SD library Sd2Card card; SdVolume volume; SdFile root:

The next step is rather important because you will need to specify the pin number that will be used

Figure 19.28 An SD card module connected to an Arduino Uno using the SPI bus


for the chip select (CS) signal to the SD module. Because this varies with SD card modules and shields from different manufacturers you will need to check the documentation supplied. The standard Arduino Ethernet shield and several types of stand-alone SD card module use pin-4, whilst Adafruit SD shields and others appear to use pin-10 and Sparkfun shields use pin-8. In the code fragment that follows we have used pin-10 for use with the SD card module shown in Figure 19.28.

// CS signal (change as required)
const int chipSelect = 10;

Testing the SD card interface

The best way to test an SD card module or shield and (also to get information on the SD card that you're using) is to use the CardInfo program supplied with the examples in the Arduino IDE. To locate this program, you need to select the File option from the main menu and then Examples followed by SD from within the section marked 'Examples from libraries'. Finally, you can select CardInfo at the top of the list as shown in Figure 19.29 and upload it to your Arduino. At this point you might need to modify the example program so that the correct pin number is used for the card's chip select (CS) signal, as described earlier.

The CardInfo example first checks that the interface is working and that there's an SD card present. If this is not the case, an error message will appear when you first open the Serial Monitor

Figure 19.29 Selecting the CardInfo example program

in the Arduino IDE. If everything is working correctly and the card is functional you will be presented with summary information like that shown in Figure 19.30. Note that this displays some useful data on your card including the file system (FAT16 in this case) and the size of the card (2GB in this case). You should also be presented with a list of files present on the card. In this case four files are stored on the SD card; one text file, one web page, one data file, and one image file (see Figure 19.30). The date and size of each of these files is given in bytes. Note that the files are shown here sorted in order of size with the smallest first.

Reading and writing data

Data can be very easily written to an SD card or read from it. First you will need to initialize the card. This can be done using a few lines of code:

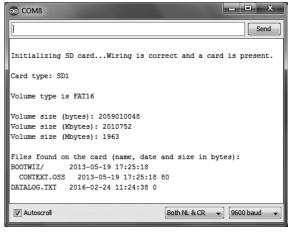


Figure 19.30 CardInfo displays some useful information about the SD card

```
Serial.print("Initializing SD card...");
if (!SD.begin(10)) {
    Serial.println("Card not ready!");
    return;
}
Serial.println("Card ready!");
```

Notice in this code that we've explicitly stated the pin used for the CS signal (in this case pin-10). We could do this in a more elegant way by defining the chip select pin as an integer at the start of the code, like this:

```
const int chipSelect = 10; // CS on pin-10
```

We would then need to change the initializing code so that it reads as follows:

```
Serial.print("Initializing SD card...");
if (!SD.begin(chipSelect)) {
    Serial.println("Card not ready!");
    return;
}
Serial.println("Card ready!");
```

Before you can write to a file you need to open it using the SDopen() function, as follows:

```
myFile = SD.open("data.dat", FILE_WRITE);
```

If the file opens without an error you will be able to write to it. If myFile returns true, the file has been opened but if myFile is false an error will have occurred and you will be unable to write to the file. Here's some code that writes a series of values to the file that we've (hopefully) just

opened (note that you will need to close the file when you have finished writing to it):

```
if (myFile) {
    Serial.print("Writing file ...");
    myFile.println("207, 188, 219, 155, 0");
    myFile.close(); // Close the file
    Serial.println(" done.");
} else {
    // It didn't open so print an error message
    Serial.println("Error opening the file!");
}
```

Reading a file is just as easy. First you need to open the file for reading:

```
myFile = SD.open("test.txt");
```

Then you need to read data from the file, sending it to the Serial Monitor until you reach the end:

```
if (myFile) {
    Serial.println("test.txt:");
    while (myFile.available()) {
        Serial.write(myFile.read());
    }
    myFile.close(); // Close the file
} else {
    // It didn't open so print an error message
        Serial.println("Error opening the file!");
}
```

Listing 19.5 provides you with an example of a simple data logging application that reads and record data from one of the Arduino's analogue ports.

Listing 19.6 A simple Arduino data logging application

/* SD card datalogger - reads analogue input A0 and records 100 data values, one every second * /

```
#include <SPI.h> // Include the SPI library
#include <SD.h> // Include the SD library
```

const int chipSelect = 10; // Change as required by the hardware const int analogPin = 0; // Input to analogue A0 File outputFile;

```
void setup()
{
Serial.begin(9600); // Open the serial monitor
while (!Serial) {
   ; // Wait for the serial port to connect
}
Serial.print("Initializing the SD card ... ");
if (!SD.begin(chipSelect)) {
   Serial.println("Card not ready!");
```

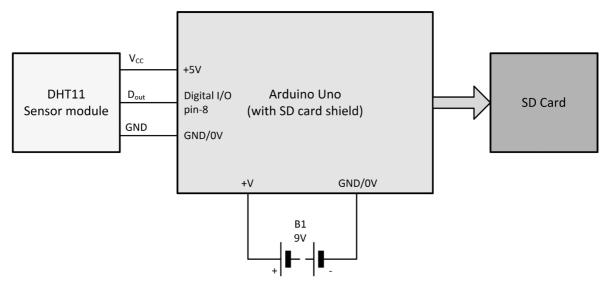
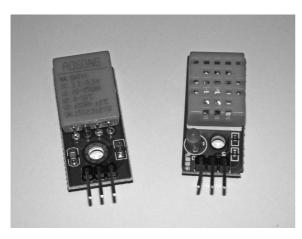
```
while (1);
Serial.println("Card ready!");
outputFile = SD.open("voltage.dat", FILE_WRITE);
if (!outputFile) {
 Serial.println("Could not open the file!"):
 while (1); // Error so wait for user intervention
 }
}
void loop()
int count = 0; // Loop counter
while (count < 100) {
 Serial.print("Collecting data ... "):
 Serial.println(count);
 String dataString = ""; // Create a string to hold the data
 int input = analogRead(analogPin); // Read the input
 dataString += String(input);
                                  // Add it to the string
 outputFile.println(dataString); // Write the data to the file
 outputFile.flush();
                              // and then flush the buffer
 // Take 1 measurement every second
 delay(1000);
 count = count + 1; // Increment the count
Serial.println("Data file created/appended!");
while (1); // Finished so wait for user intervention
```

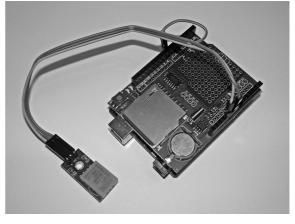
A simple environmental monitor

This simple Arduino-based environmental monitor will record relative humidity, temperature (in °C and °F), and heat index. Large amounts of data can be captured and stored on a standard SD card and then used for later analysis with virtually any spreadsheet package. The environmental monitor uses a popular low-cost temperature sensor, the DHT11. A typical application for this project would be monitoring the humidity and temperature in a greenhouse or in any area where plants are cultivated.

The schematic of our Arduino environmental monitor is shown in Figure 19.31. Apart from the DHT11 humidity/temperature sensor and the SD card shield, the circuit uses no other components and shows just how easy it can be to use an Arduino in a simple but worthwhile application.

The SD card shield mounts directly over the Arduino Uno and it provides a convenient and low-cost way of assembling the components and making connections to the Uno's I/O and power headers. The DHT11 humidity/temperature


Figure 19.31 Complete circuit of the Arduino Uno based environmental monitor

sensor is normally supplied already mounted on a small printed circuit board (see Figure 19.32) and it will only require three short male/female leads to make the required connections to the Uno's I/O and power connections. If necessary, the DHT11 can be mounted in a small enclosure, taking care to ensure that the sensor is exposed to the external environment. For obvious reasons it should not be mounted in a sealed enclosure! If you look carefully at Figure 19.32 you will notice that the basic DHT11 sensor is supplied in a small four-pin package whilst the printed circuit board has only three pin connections. These pins

are often labelled, GND, OUT (for data), and Vs, as shown in Appendix 4. Note that differently labelled connections are used by different manufacturers, so it is wise to check the actual pin markings on the version that you use. Note also that if you are using basic sensor in its four-pin package you will need to ensure that a 10 k Ω resistor is connected between the data terminal (OUT) and the positive supply (Vs or Vcc). This 'pull-up' resistor is not needed if your sensor is supplied already mounted on printed circuit board which has its own 'pull-up' resistor fitted.

Figure 19.32 Two DHT11 combined humidity/ temperature sensors

Figure 19.33 The complete Arduino Uno environmental monitor showing the SD card shield and DHT11 humidity/temperature sensor

When outputting raw temperature and humidity values the 8-bit resolution of the DHT11 humidity/ temperature sensor supplies only the decimal part of each, keeping the fractional part zero. The more expensive (and also more accurate) DH21 and 22 sensors fill the fractional parts with data. However, with the lower cost device the fractional part is not really important as it is usually less than the accuracy of the sensor (which is quoted as typically ±4% of relative humidity and ±2°C for temperature). The DHT11 device is specified for a temperature range from 0°C to 50°C and relative humidity from 20% to 90%. The sensor has a typical response time of 10s and is specified for a maximum cable length of about 20 m.

Listing 19.7 shows the complete code for the Arduino Uno environmental monitor. As always, we've included numerous comments in the code to help you understand what's going on. The code requires three libraries; DHT.h, SPI.h and SD.h. The first of these provide functions that facilitate the use of the DHT family of humidity/ temperature sensors, whilst the second deals with the serial peripheral interface (SPI) used by the sensor an the third provides the functions associated with reading from and writing to the SD card. Note that if you are using an earlier version of the Arduino IDE you might also need to include the mathematics library that provides the function for rounding the temperature values before they are stored on the SD card, math.h. The rounding function is important to remove the fractional part of the values returned from the DHT11 sensor which might otherwise confuse a conventional spreadsheet program (which might otherwise regard the data as text rather than numerical).

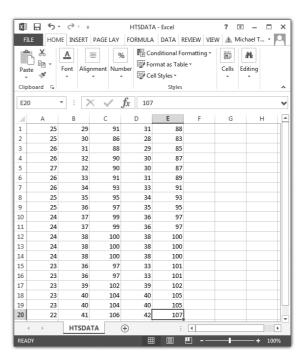
For demonstration purposes I've restricted the number of data values captured to 20. I've also kept the interval between capturing data values to a minimum recommended. In practice you would want to increase the number of times around the loop and also the interval between readings. For stand-alone applications you will also need to remove the serial monitor functions as they will normally only be required for local testing.

```
Listing 19.7 Complete environmental monitor application
```

/* Humidity, temperature and heat index data logging with a

```
DHT11 sensor. Records data on an SD card */
#include "DHT.h"
                     // Include the sensor library
#include <SPI.h>
                    // Include the SPI library
#include <SD.h>
                     // Include the SD library
#define DHTPIN 8 // Sensor connected to digital I/O pin-8
#define DHTTYPE DHT11
DHT dht(DHTPIN, DHTTYPE);
File outputFile;
const int chipSelect = 10; // Change as required for the SD card
void setup() {
 dht.begin();
 Serial.begin(9600); // serial monitor commands can be removed
 if (!SD.begin(chipSelect)) {
   Serial.println("SD card not present or not recognized");
 outputFile = SD.open("htsdata.dat", FILE_WRITE);
 Serial.println("Ready .... collecting data!");
void loop()
int count = 0; // Loop counter
while (count < 20) { // Change as required
 delay(10000); // Set the interval between measurements
 float h = dht.readHumidity();
 // Read temperature as Celsius (the default)
 float t = dht.readTemperature();
  // Read temperature as Fahrenheit (isFahrenheit = true)
 float f = dht.readTemperature(true);
 // Compute heat index in Fahrenheit (the default)
 float hif = dht.computeHeatIndex(f, h);
 // Compute heat index in Celsius (isFahreheit = false)
 float hic = dht.computeHeatIndex(t, h, false);
 // Prepare data to be written to the card as an ASCII string
 String dataString = ""; // Create a string to hold the data
 dataString += String(round(h)); // Add humidity
 dataString += ","; // Comma separator
 dataString += String(round(t)); // Add raw temp in deg.C
 dataString += ","; // Comma separator
 dataString += String(round(f)); // Add raw temp in deg.F
 dataString += ","; // Comma separator
 dataString += String(round(hic)); // Centigrade heat index
 dataString += ","; // Comma separator
 dataString += String(round(hif)); // Fahrenheit heat index
 outputFile.println(dataString); // Write the data to the file
 outputFile.flush(); // ... and then flush the buffer
 count = count + 1; // Increment the count
 outputFile.close();
 Serial.println("Finished ... data ready!");
while (1); // Finished so wait for user intervention
}
```

The code in Listing 19.7 should first be entered into the IDE and then saved before compiling and uploading it to the Uno as described previously. When you've debugged and corrected your code don't forget to save it by clicking on 'File' and 'Save' or 'Save As...'. Next click on 'Sketch' and 'Verify/Compile'. Any compilation errors will then be reported in the window at the bottom of the IDE. Note that, if not already present, you may need to add the necessary library files using the IDE's File Manager.

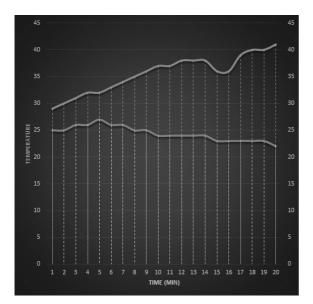

When you've corrected any coding errors that the compiler reports you will be ready to upload your code to the Uno. Just click on the upload arrow and watch the progress report. After the Uno performs a reset you should open the serial monitor and check that the SD card has been detected. If the SD card is not present, or if the SD card interface is not functioning correctly, the program will stop, and an error message will appear. If this is the case the first thing to check is that you have set the chip-select line correctly. Depending on the type of SD card interface, this will usually be 4, 8 or 10.

Once the interface is ready it will start to collect data, writing it to the SD card on each pass through the loop. You should always wait until the program terminates before attempting to remove the SD card so that you can transfer the data to a PC or other device. If you run the program several times (without removing the SD card) you will find that further data will be appended to the file. If necessary, you can always remove the SD card, place it in a PC card reader slot and simply rename the file manually.

The data stored on the SD card is in comma delimited format. Each time round the loop five data values are stored in the file, namely:

- 1. The relative humidity (as a percentage)
- 2. The raw temperature in °C
- 3. The raw temperature in °F
- **4.** The Centigrade heat index
- 5. The Fahrenheit heat index.

If you don't require all of these values, you can simply comment out the ones that you don't need. However, if you import the data into a spreadsheet (such that each set of values appears in a different column) you can easily operate on


Figure 19.34 The captured data can be easily imported into a spreadsheet package for analysis

just those that you need. Note that, in common with many spreadsheet packages, if you open the data file in Excel you will need to specify that the file uses 'delimiters' and that the character used as the delimiter is a comma. Figure 19.34 shows how s typical set of data appears when imported into Excel whilst Figure 19.35 shows how the data can be represented visually within Excel.

There's a great deal of scope for going further with the Arduino based environmental monitor. Alarms could be set when critical values are detected, and outputs could be used to operate indicators, piezoelectric sounders, and relays. Another refinement might be date/time stamping of the filename so that unique names are generated each time the application is run. All of this is relatively simple to do and will provide you with a great opportunity to further develop your coding skills.

Problems

19.1 How many digital I/O pins are available on an Arduino Uno and what setup command is used to set individual pins as either inputs or outputs?

Figure 19.35 A graph produced by Microsoft Excel showing how the humidity (blue line) and temperature (orange line) vary during a period in which 20 sets of data have been captured by the Arduino Uno environmental monitor

19.2 With which digital I/O pin is the Arduino Uno's on-board status LED indicator associated?

- 19.3 What facility is available within the Arduino's IDE for testing serial communication?
- 19.4 What is the maximum DC current that can be supplied to a load connected to one of the Arduino's output pins?
- 19.5 Explain the function of each of the following code fragments:
 - (a) int powerLED = 11;
 - (b) powerGood = !powerGood;
 - (c) digitalWrite(powerLED, HIGH);
 - (d) Serial.println("Power good!");
- 19.6 Figure 19.6 shows the circuit of a simple thermostatic controller based on an Arduino Uno and a two-line alphanumeric LCD display.
 - (a) Which of the Uno's inputs is used to sense the analogue voltage from the TMP36 temperature sensor?
 - (b) Which of the Uno's I/O digital I/O pins must be configured as outputs?
 - (c) What supply voltage is used for the relay board?
 - (d) Sketch a labelled circuit diagram for the relay board and include typical values.

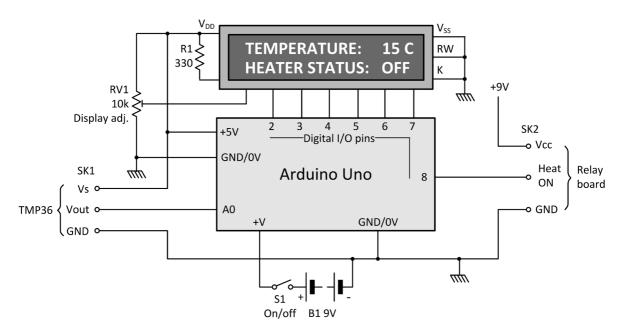


Figure 19.36 See Problem 19.6

Circuit construction

Chapter summary

This chapter deals with the techniques used to produce a working circuit from an initial 'paper design' to a working circuit ready for testing and performance measurement. Various methods are used for building electronic circuits. The method that's actually chosen for a particular application depends on a number of factors, including the available resources and the scale of production.

Techniques used for large-scale electronic manufacture generally involve fully automated assembly using equipment that can produce complex circuits quickly and accurately and at very low cost with minimal human intervention. On the other extreme, if only one circuit is to be built then a hand-built prototype is much more appropriate. It's also worth noting that, when a circuit is designed for a commercial application it will invariably be tested using computer simulation techniques before a prototype is manufactured (see Chapter 16). It's also possible for the computer simulation to output data that can be used by CNC equipment to manufacture a printed circuit board on which the real circuit will be assembled. These techniques have been instrumental in significantly reducing the time taken to get a prototype electronic circuit off the computer screen and into production.

We begin with a quick introduction to the different methods of circuit construction before looking in greater detail at the stages involved in the layout and manufacture of stripboards and printed circuit boards. Consideration is also given to the correct choice of enclosure and connectors as this is crucial in making the finished equipment both functional and attractive. The chapter also deals with soldering and desoldering techniques and the selection of heatsinks.

Circuit construction methods

There are several different ways of building an electronic circuit. The method that you choose depends on a number of factors, including the resources available to you and whether you are building a 'one-off' prototype or a large number of identical circuits. The methods that are available to you include:

Point-to-point wiring

With the advent of miniature components, printed circuit boards and integrated circuits, point-to-point wiring construction is a technique that is nowadays considered obsolete. The example shown in Fig. 20.1 is the underside of a valve amplifier chassis dating back to the early 1960s. Unless you are dealing with a very small number of components or have a particular desire to

use **tag strips** and **group boards**, point-to-point wiring is not a particularly attractive construction method these days!

Breadboard construction

Breadboard construction is often used for assembling and testing simple circuits prior to production of a more permanent circuit using a stripboard or printed circuit board. The advantage of this technique is that changes can be quickly and easily made to a circuit and all of the components can be re-used. The obvious disadvantages of breadboard construction are that it is unsuitable for permanent use and also unsuitable for complex circuits (i.e. circuits with more than half a dozen or so active devices or integrated circuits). Fig. 20.2 shows the simple bistable circuit that you met in Chapter 10 assembled and ready for testing.

Matrix board construction

Fig. 20.3 shows matrix board construction. This low-cost technique avoids the need for a printed circuit but is generally only suitable for one-off prototypes. A matrix board consists of an insulated board into which a matrix of holes are drilled with copper tracks arranged as strips on the reverse side of the board. Component leads are inserted through the holes and soldered into place. Strips (or tracks) are linked together with a short length of tinned copper wire (inserted through holes in the board and soldered into place on the underside of the board). Tracks can be broken at various points as appropriate. The advantage of this technique is that it avoids the need for a printed circuit board (which may be relatively expensive and may take some time to design). Disadvantages of matrix board construction are that it is usually only suitable for one-off production and the end result is invariably less compact than a printed circuit board. The matrix board shown in Fig. 20.3 is a simple oscilloscope calibrator based on a PIC16F84.

Printed circuit boards

Printed circuit board construction (see Fig. 20.4) technique is ideal for volume manufacture of electronic circuits where speed and repeatability of production are important. Depending on the

complexity of a circuit, various types of printed circuit board are possible. The most basic form of printed circuit (and one which is suitable for home construction) has copper tracks on one side and components mounted on the other. More complex printed circuit boards have tracks on both sides (they are referred to as 'double-sided') while boards with up to four layers are used for some of the most sophisticated and densely packed electronic equipment (for example, computer motherboards). The double-sided printed circuit board shown in Fig. 20.4 is part of an instrument landing system (ILS) fitted to a passenger aircraft. A further example of printed circuit construction is shown in Fig. 20.5. This shows 'ziq-zaq' inductive components fabricated using the copper track surface together with leadless 'chip' capacitors and a leadless transistor which is soldered directly to the surface of the copper track.

Surface mounting

Fig. 20.6 shows an example of surface mounting construction. This technique is suitable for sub-miniature leadless components. These are designed for automated soldering directly to pads on the surface of a printed circuit board. This technique makes it possible to pack the largest number of components into the smallest space but, since the components require specialized handling and soldering equipment, it is not suitable for home construction nor is it suitable for hand-built prototypes. The example shown in Fig. 20.6 is part of the signal processing circuitry used in a computer monitor.

Using matrix boards and stripboards

Matrix boards and stripboards are ideal for simple prototype and one-off electronic circuit construction. The distinction between matrix boards and stripboards is simply that the former has no copper tracks and the user has to make extensive use of press-fit terminal pins which are used for component connection. Extensive inter-wiring is then necessary to link terminal pins together. This may be carried out using sleeved

tinned copper wire (of appropriate gauge) or short lengths of PVC-insulated 'hook-up' or **equipment wire**.

Like their matrix board counterparts, stripboards are also pierced with a matrix of holes which, again, are almost invariably placed on a 0.1 in pitch. The important difference, however, is that stripboards have copper strips bounded to one surface which link together rows of holes along the complete length of the board. The result, therefore, is something of a compromise between a 'naked' matrix board and a true printed circuit. Compared with the matrix board, the stripboard has the advantage that relatively few wire links are required and that components can be mounted and soldered directly to the copper strips without the need for terminal pins.

Conventional types of stripboard (those with parallel runs of strips throughout the entire board surface) are generally unsuitable for relatively complex circuitry of the type associated with microprocessor systems. Fortunately, several manufacturers have responded with specialpurpose stripboards. These have strips arranged in groups which not only permit the mounting of DIL integrated circuits (including the larger 28-pin and 40-pin types) but are also available in a standard range of 'card' sizes (both single and double-sided and with and without plated through holes). Boards designed for prototyping using integrated circuits also tend to have sensibly arranged strips for supply distribution together with edge connectors (either direct or indirect types) for use with microprocessor bus systems.

Stripboard layout techniques

The following steps are required when laying out a circuit for stripboard construction:

- 1. Carefully examine a copy of the circuit diagram.
- Mark all components to be mounted 'off-board' and identify (using appropriate letters and/or numbers, e.g. SK, pin-2) all points at which an 'off-board' connection is to be made.
- 3. Identify any multiple connections required between integrated circuits or between

Figure 20.1 Point-to-point wiring

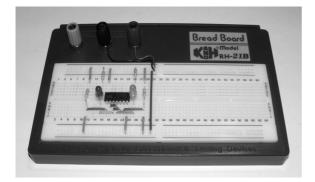


Figure 20.2 Breadboard construction

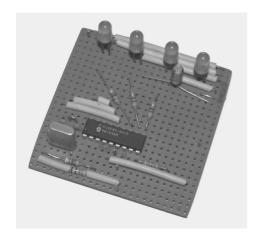


Figure 20.3 Matrix board construction

integrated circuits and connectors. Arrange such components in physical proximity and with such orientation that will effectively minimize the number of links required.

4. Identify components that require special attention (such as those which require heatsinks or have special screening

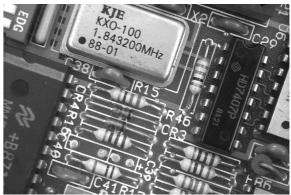


Figure 20.4 Printed circuit construction

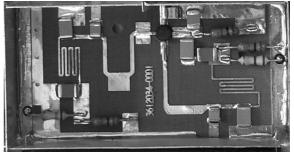


Figure 20.5 Printed circuit construction at UHF

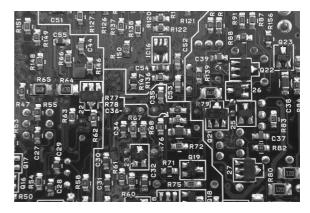


Figure 20.6 Surface mounted devices

requirements). Ensure that such components are positioned sensibly bearing in mind their particular needs.

- 5. Keep inputs and outputs at opposite ends of the stripboard. This not only helps maintain a logical circuit layout (progressing from input to output) but, in high gain circuits, it may also be instrumental in preventing instability due to unwanted feedback.
- **6.** Use standard sizes of stripboard wherever possible. Where boards have to be cut to

- size, it is usually more efficient to align the strips along the major axis of the board.
- 7. Consider the means of mounting the stripboard. If it is to be secured using bolts and threaded spacers (or equivalent) it will be necessary to allow adequate clearance around the mounting holes.
- 8. Produce a rough layout for the stripboard first using paper ruled with squares, the corners of the squares representing the holes in the stripboard. This process can be carried out 'actual size' using 0.1 inch graph paper or suitably enlarged by means of an appropriate choice of paper. For preference, it is wise to choose paper with a faint blue or green grid as this will subsequently disappear after photocopying, leaving you with a 'clean' layout.
- 9. Identify all conductors that will be handling high currents (i.e. those in excess of 1 A) and use adjacent strips connected in parallel at various points along the length of the board.
- 10. Identify the strips that will be used to convey the supply rails: as far as possible these should be continuous from one end of the board to the other. It is often convenient to use adjacent strips for supply and 0 V (or 'ground') since decoupling capacitors can easily be distributed at strategic points. Ideally, such capacitors should be positioned in close proximity to the positive supply input pin to all integrated circuits which are likely to demand sudden transient currents (e.g. 555 timers, comparators, IC power amplifiers).
- 11. In high-frequency circuits, link all unused strips to 0 V at regular points. This promotes stability by ensuring that the 0 V rail is effective as a common rail.
- 12. Minimize, as far as possible, the number of links required. These should be made on the upper (component) side of the stripboard. Only in exceptional cases should links be made on the underside (foil side) of the board.
- 13. Experiment with positioning of integrated circuits (it is good practice, though not essential, to align them all in the same direction). In some cases, logic gates may be exchanged from package to package

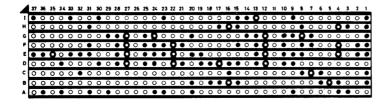
(or within the same package) in order to minimize strip usage and links. (If you have to resort to this dodge, do not forget to amend the circuit diagram!)

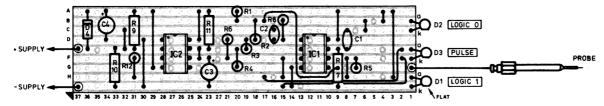
When the stripboard layout is complete, it is important to carefully check it against the circuit diagram. Not only can this save considerable frustration at a later stage but it can be instrumental in preventing some costly mistakes. In particular, one should follow the positive supply and 0 V (or 'ground') strips and check that all chips and other devices have supplies. The technique employed by the author involves the use of coloured pencils that are used to trace the circuit and stripboard layout; associating each line in the circuit diagram with a physical interconnection on the stripboard. Colours are used as follows:

Positive supply rails
Negative supply rails
Common 0 V rail
Analogue signals
Digital signals
Off-board connections
Mains wiring
Red
Black
Green
Yellow/pink
White/grey
Orange/violet
Brown and blue

Assembly of the stripboard is happily a quite straightforward process. The sequence used for stripboard assembly will normally involve mounting IC sockets first followed by transistors, diodes, resistors, capacitors and other passive components. Finally, terminal pins and links should be fitted before making the track breaks. On completion, the board should be carefully checked, paying particular attention to all polarized components (e.g. diodes, transistors and electrolytic capacitors). Fig. 20.7 shows a typical stripboard layout together with matching component overlay.

Using printed circuits


Printed circuit boards (PCBs) comprise copper tracks bonded to an epoxy glass or synthetic resin bonded paper (SRBP) board. The result is a neat and professional-looking circuit that is ideal for prototype as well as production quantities. Printed circuits can easily be duplicated or modified from original master artwork and the production


techniques are quite simple and should thus not deter the enthusiast working from home.

The following steps should be followed when laying out a PCB:

- Carefully examine a copy of the circuit diagram. Mark all components which are to be mounted 'off-board' and, using appropriate letters and/or numbers (e.g. SK1, pin-2), identify all points at which an 'off-board' connection is to be made.
- Identify any multiple connections (e.g. bus lines) required between integrated circuits or between integrated circuits and edge connectors. Arrange such components in physical proximity and with such orientation that will effectively minimize the number of links required.
- Identify components that require special attention (such as those that require heatsinks or have special screening requirements). Ensure that such components are positioned sensibly, bearing in mind their particular needs.
- 4. Keep inputs and outputs at opposite ends of the PCB wherever possible. This not only helps maintain a logical circuit layout (progressing from input) but, in high gain circuits, it may also be instrumental in preventing instability due to unwanted feedback.

- 5. Use the minimum board area consistent with a layout which is uncramped. In practice, and to prevent wastage, you should aim to utilize as high a proportion of the PCB surface area as possible. In the initial stages, however, it is wise to allow some room for manoeuvre as there will doubtless be subsequent modifications to the design.
- 6. Unless the design makes extensive use of PCB edge connectors, try to ensure that a common 0 V foil is run all round the periphery of the PCB. This has a number of advantages, not the least of which is the fact that it will then be relatively simple to find a route to the 0 V rail from almost anywhere on the board.
- 7. Consider the means of mounting the PCB and, if it is to be secured using bolts and threaded spacers (or equivalent) you should ascertain the number and location of the holes required. You may also wish to ensure that the holes are coincident with the 0 V foil; alternatively where the 0 V rail is not to be taken to chassis ground, it will be necessary to ensure that the PCB mounting holes occur in an area of the PCB that is clear of foil.
- 8. Commence the PCB design in rough first using paper ruled with squares. This process can be carried out 'actual size' using 0.1 inch graph paper or suitably enlarged by means of an appropriate choice of paper.

Figure 20.7 Stripboard layout and component overlay for the logic probe circuit shown in Fig. 14.16 on page 286

- For preference, it is wise to choose paper with a faint blue or green grid as this will subsequently disappear after photocopying, leaving you with a 'clean' layout.
- 9. Using the square grid as a guide, try to arrange all components so that they are mounted on the standard 0.1 inch matrix. This may complicate things a little but is important if you should subsequently wish to convert the design using computer-aided design (CAD) techniques (see later).
- Arrange straight runs of track so that they align with one dimension of the board or another. Try to avoid haphazard track layout.
- 11. Identify all conductors that will be handling significant current (i.e. in excess of about 500 mA) and ensure that tracks have adequate widths. Table 20.1 will act as a rough guide. Note that, as a general rule, the width of the 0 V track should be at least *twice* that used for any other track.
- 12. Identify all conductors that will be handling high voltages (i.e. those in excess of 150 V d.c. or 100 V r.m.s. a.c.) and ensure that these are adequately spaced from other tracks. Table 20.2 provides you with a rough quide.
- 13. Identify the point at which the principal supply rail is to be connected. Employ extra wide track widths (for both the 0 V and supply rail) in this area and check that suitable decoupling capacitors are placed as close as possible to the point of supply connection. Check that other decoupling capacitors are distributed at strategic points around the board. These should be positioned in close proximity to the positive supply input pin to all integrated circuits that are likely to demand sudden transient currents (e.g. 555 timers, comparators, IC power amplifiers). Ensure that there is adequate connection to the 0 V rail for each decoupling capacitor that you use. Additional decoupling may also be required for high-frequency devices and you should consult semiconductor manufacturers' recommendations for specific guidance.

Table 20.1 Current and track width

Current	Minimum track width
Less than 500 mA	0.6 mm
0.5 A to 1.5 A	1.6
1.5 A to 3 A	3
3 A to 6 A	6
6 A to 12 A	10

Table 20.2 Voltage and track spacing

Voltage	Minimum track spacing
Less than 50 V	0.6 mm
50 V to 150 V	1 mm
150 V to 300 V	1.6 mm
300 V to 600 V	3 mm
600 V to 1 kV	5 mm

- 14. Fill unused areas of PCB with 'land' (areas of foil which should be linked to 0 V). This helps ensure that the 0 V rail is effective as a common rail, minimizes use of the etchant, helps to conduct heat away from heat-producing components, and furthermore, is essential in promoting stability in high-frequency applications.
- 15. Lay out the 0 V and positive supply rails first, then turn your attention to linking to the pads or edge connectors used for connecting the off-board components. Minimize, as far as possible, the number of links required. Do not use links in the 0 V rail and avoid using them in the positive supply rail.
- 16. Experiment with positioning of integrated circuits (it is good practice, though not essential, to align them all in the same direction). In some cases, logic gates may be exchanged from package to package (or within the same package) in order to minimize track runs and links. (If you have to resort to this dodge, do not forget to amend the circuit diagram.)
- 17. Be aware of the pin spacing used by components and try to keep this consistent throughout. With the exception of the larger wirewound resistors (which should be mounted on ceramic stand-off pillars) axial lead components should be mounted flat against the PCB (with their leads bent at right

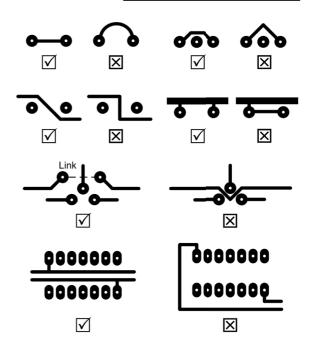

- angles). Axial lead components should not be mounted vertically.
- 18. Do not forget that tracks may be conveniently routed beneath other components. Supply rails in particular can be routed between opposite rows of pads of DIL integrated circuits; this permits very effective supply distribution and decoupling.
- 19. Minimize track runs as far as possible and maintain constant spacing between parallel runs of track. Corners should be radiused and acute internal and external angles should be avoided. In exceptional circumstances, it may be necessary to run a track between adjacent pads of a DIL integrated circuit. In such cases, the track should not be a common 0 V path, neither should it be a supply rail.

Fig. 20.8 shows examples of good and bad practice associated with PCB layout while Fig. 20.9 shows an example of a PCB layout and matching component overlay that embodies most of the techniques and principles discussed.

As with stripboard layouts, it is well worth devoting some time to checking the final draft PCB layout before starting on the master artwork. This can be instrumental in saving much agony and heartache at a later stage. The same procedure should be adopted as described on page 404 (i.e. simultaneously tracing the circuit diagram and PCB layout).

The next stage depends upon the actual PCB production. Four methods are commonly used for prototype and small-scale production. These may be summarized as follows:

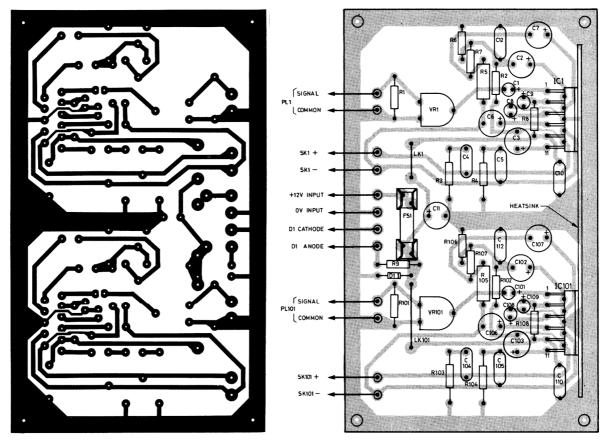

- (a) Drawing the track layout directly on the copper surface of the board using a special pen filled with etch resistant ink. The track layout should, of course, conform as closely as possible with the draft layout.
- (b) Laying down etch resistant transfers of tracks and pads on to the copper surface of the PCB following the same layout as the draft but appropriately scaled.
- (c) Producing a transparency (using artwork transfers of tracks and pads) conforming to the draft layout and then applying photographic techniques.

Figure 20.8 Some examples of good and bad practice in PCB layout

(d) Using a PCB layout CAD package (see page 410).

Methods (a) and (b) have the obvious limitation that they are a strictly one-off process. Method (a) is also extremely crude and only applicable to very simple boards. Method (c) is by far the most superior and allows one to re-use or modify the master artwork transparency and produce as many further boards as are required. The disadvantage of the method is that it is slightly more expensive in terms of materials (specially coated copper board is required) and requires some form of ultraviolet exposure unit. This device normally comprises a light-tight enclosure into the base of which one or more ultraviolet tubes are fitted. Smaller units are available which permit exposure of boards measuring 250 mm x 150 mm while the larger units are suitable for boards of up to 500 mm x 350 mm. The more expensive exposure units are fitted with timers which can be set to determine the actual exposure time. Low-cost units do not have such a facility and the operator has to refer to a clock or wristwatch in order to determine the exposure time.

Figure 20.9 Example of a manually produced PCB layout for an automotive stereo amplifier. The copper foil layout is shown on the left and the matching component overlay is shown on the right

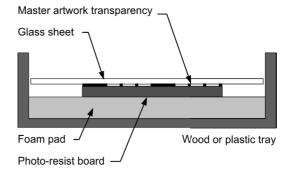
In use, the 1:1 master artwork (in the form of opaque transfers and tape on translucent polyester drafting film) is placed on the glass screen immediately in front of the ultraviolet tubes (taking care to ensure that it is placed so that the component side is uppermost). The opaque plastic film is then removed from the photo-resist board (previously cut roughly to size) and the board is then placed on top of the film (coated side down). The lid of the exposure unit is then closed and the timer set (usually for around four minutes but see individual manufacturers' recommendations. The inside of the lid is lined with foam which exerts an even pressure over the board such that it is held firmly in place during the exposure process.

It should be noted that, as with all photographic materials, sensitized copper board has a finite shelf-life. Furthermore, boards should ideally be stored in a cool place at a temperature of between 2°C and 10°C. Shelf-life at 20°C will only be around 12 months and thus boards should be used reasonably promptly after purchase.

Note that it is not absolutely essential to have access to an ultraviolet light-box as we all have at least occasional access to an entirely free source of ultraviolet light. Provided one is prepared to wait for a sunny day and prepared to experiment a little, the exposure process can be carried out in ordinary sunlight. As a guide, and with the full sun present overhead, exposure will take around 15 minutes. Alternatively, one can make use of a sun-ray lamp. Again, some experimentation will be required in order to get the exposure right. With a lamp placed approximately 300 mm from the sun ray source (and arranged so that the whole board surface is evenly illuminated) an exposure time of around four minutes will be required. Note that,

if you use this technique, it is important to follow the sun-ray lamp manufacturer's instructions concerning eye protection. A pair of goggles or dark sunglasses can be used to protect the eyes during the exposure process. However, one should never look directly at the ultraviolet light source even when it is 'warming up'.

Finally, one can easily manufacture one's own light-box (using low-power ultraviolet tubes) or make use of a standard ultraviolet bulb (of between 150 W and 300 W) suspended above the work area. If this technique is used, the bulb should be hung approximately 400 mm above the table on which the sensitized board, artwork and glass sheet have been placed. A typical exposure time for a 300 W bulb is in the range of 10 to 15 minutes. A pair of dark sunglasses can again be used to protect the eyes during the process. Where one is using an 'alternative' technique, a frame should be constructed along the lines shown in Fig. 20.10. This can be used to hold the transparency in contact with the coated copper board during the exposure process.


Whichever method of exposure is used some experimentation may be required in order to determine the optimum exposure time. After this time has elapsed, the board should be removed and immersed in a solution of sodium hydroxide that acts as a developer. The solution should be freshly made and the normal concentration required is obtained by mixing approximately 500 ml of tap water (at 20 °C) with one tablespoon of sodium hydroxide crystals. A photographic developing tray (or similar shallow plastic container) should be used to hold the developer. Note that care should be taken when handling the developer solution and the use of plastic or rubber gloves is strongly recommended. This process should be carried out immediately after exposure and care should be taken not to allow the board to be further exposed under room lights.

The board should be gently agitated while immersed in the developer and the ensuing process of development should be carefully watched. The board should be left for a sufficiently long period for the entire surface to be developed correctly but not so long that the tracks lift. Development times will depend upon the

temperature and concentration of the developer and on the age of the sensitized board. Normal development times are in the region of 30 to 90 seconds and after this period the developed image of the track layout (an etch-resist positive) should be seen.

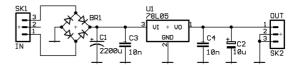
After developing the board it should be carefully washed under a running tap. It is advisable not to rub or touch the board (to avoid scratching the surface) and the jet of water should be sufficient to remove all traces of the developer. Finally, the board should be placed in the **etchant** which is a ferric chloride solution (FeCl3). For obvious reasons, ferric chloride is normally provided in crystalline form (though at least one major supplier is prepared to supply it on a 'mail order basis' in concentrated liquid form) and should be added to tap water (at 20 °C) following the instructions provided by the supplier. If no instructions are given, the normal quantities involved are 750 ml of water to 500 g of ferric chloride crystals. Etching times will also be very much dependent upon temperature and concentration but, for a fresh solution warmed to around 40 °C the time taken should typically be 10 to 15 minutes. During this time the board should be regularly agitated and checked to ascertain the state of etching. The board should be removed as soon as all areas not protected by etch resist have been cleared of copper; failure to observe this precaution will result in 'undercutting' of the resist and consequent thinning of tracks and pads. Where thermostatically controlled tanks are used,

Light source

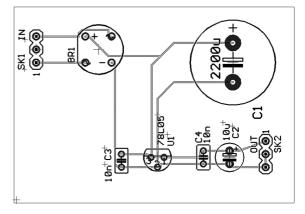
Figure 20.10 Exposure frame suitable for photoetch PCB production

times of five minutes or less can be achieved when using fresh solution.

It should go without saying that great care should be exercised when handling ferric chloride. Plastic or rubber gloves should be worn and care must be taken to avoid spills and splashes. After cooling, the ferric chloride solution may be stored (using a sealed plastic container) for future use. In general, 750 ml of solution can be used to etch around six to ten boards of average size; the etching process taking longer as the solution nears the end of its working life. Finally, the exhausted solution must be disposed of with care (it should not be poured into an ordinary mains drainage system).


Having completed the etching process, the next stage involves thoroughly washing, cleaning and drying the PCB. After this, the board will be ready for drilling. Drilling will normally involve the services of a 0.6 mm or 1 mm twist drill bit for standard component leads and IC pins. Larger drill bits may be required for the leads fitted to some larger components (e.g. power diodes) and mounting holes. Drilling is greatly simplified if a special PCB drill and matching stand can be enlisted. Alternatively, provided it has a bench stand, a standard electric drill can be used. Problems sometimes arise when a standard drill or hand drill is unable to adequately grip a miniature twist drill bit. In such cases one should make use of a miniature pin chuck or a drill fitted with an enlarged shank (usually of 2.4 mm diameter).

PCB CAD packages


The task of laying out a PCB and producing master artwork (both for the copper foil side of a board and for the component overlay) is greatly simplified by the use of a dedicated PCB CAD package. Some examples of the use of these packages are shown in Figs 20.11 to 20.14.

Connectors

Various forms of connectors may be required in any particular item of electronic equipment. These may be categorized in various ways but the following should serve as a guide:

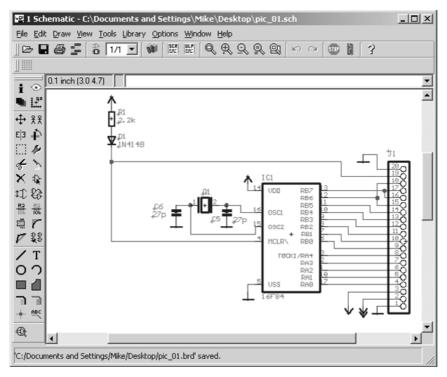


Figure 20.11 Circuit of a simple 5 V regulated power supply module based on a 78L05 three-terminal voltage regulator

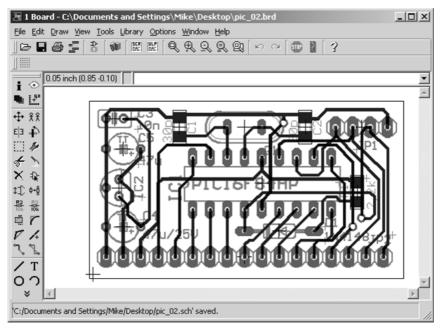


Figure 20.12 PCB track layout for the circuit shown in Fig. 20.11 produced by an autorouting CAD package (shown prior to optimization)

- (a) Mains connectors. These connectors are intended for use with an a.c. mains supply. Standard three-pole IEC types should be employed wherever possible.
- (b) Single-pole connectors. These are available in ranges having diameters of 4 mm, 3 mm, 2 mm and 1 mm and are ideal for use with test-leads (i.e. as input and output connectors in test equipment) and for low-voltage power supplies. Plugs and sockets are available in various colours to permit identification.
- **(c)** Multi-pole connectors. A huge range of multipole connectors is currently available and the following types are worthy of special note:
 - (i) DIN standard connectors of the type commonly used in audio equipment
 - (ii) DIN 41612 indirect stripboard and PCB edge connectors with 32-, 64- or 96-ways
 - (iii) DIN 41617 low-cost indirect edge connectors

Figure 20.13 Circuit of a PIC16F84-based microcontroller shown in the circuit schematic editor of the Eagle CAD software (see Appendix 9)

Figure 20.14 Double-sided PCB layout for the circuit shown in Fig. 20.13 generated by the Eagle CAD software (shown after optimization)

- (iv) D-connectors. These are available with 9-, 15-, 25- and 37-ways and are popularly used in microcomputer applications
- (v) IEEE-488 connectors. These 14, 24, 36 and 50-way connectors are commonly used with equipment which uses the popular IEEE-488 instrument bus system.

Note that **insulation displacement connectors** (IDCs) provide a means of terminating multiway ribbon cables without the need for soldering. Simple tools are used to assemble the connector and strain relief clamp onto the cable, the insulation of which is pierced by the tines of the connector pins.

- (d) Coaxial connectors. These connectors are used for screened test leads and also for r.f. equipment. The following three types are most popular:
 - (i) BNC. These are available in both 50 Ω and 75 Ω series and are suitable for operation at frequencies up to 4 GHz.
 - (ii) PL259/SO239 (popularly known as UHF). These 50 Ω types are suitable for use at frequencies up to 250 MHz.
 - (iii) Belling-Lee (popularly known as TV). These low-cost connectors are suitable for use at frequencies up to 800 MHz with an impedance of 75 Ω .

The process of choosing a connector is usually very straightforward. It will first be necessary to ensure that an adequate number of ways are catered for and that the connector is suitably rated as far as current and voltage are concerned (one should consult individual manufacturers' ratings where any doubt arises). It is advisable to maintain compatibility with equipment of similar type and one should avoid using too wide a range of connectors and cables. In addition, a common pin-usage convention should be adopted and strictly adhered to. This will help to avoid problems later on and will make interwiring of equipment and exchange of modules a relatively straightforward process.

Enclosures

An appropriate choice of enclosure is vitally important to the 'packaging' of any electronic

equipment. Not only will the enclosure provide protection for the equipment but it should also be attractive and add to the functionality of the equipment. Enclosures can be divided into five main types:

- Instrument cases. These are ideal for small items of test gear (e.g. meters and signal generators) and are available in a wide variety of styles and sizes. One of the most popular low-cost ranges of instrument cases is that manufactured by BICC-Vero and known as Veroboxes. This enclosure comprises plastic top and bottom sections with anodized aluminium front and back panels. Other ranges of instrument cases feature steel and aluminium construction and are thus eminently suited for larger projects or those fitted with larger mains transformers (such as heavy-duty power supplies).
- 2. Plastic and diecast boxes. These low-cost enclosures comprise a box with removable lid secured by means of four or more screws. Boxes are available in a range of sizes and the diecast types (which are ideal for use in relatively hostile environments) are available both unpainted and with a textured paint finish
- 3. Rack systems. These are designed to accept standard cards and are ideal for modular projects. The outer case comprises an aluminium framework fitted with covers and a series of connectors at the rear from which the modules derive their power and exchange signals. Individual circuit cards (which may be stripboard or PCB) are fitted to a small supporting chassis and anodized aluminium front panel (available in various widths). The card assembly slides into the rack using appropriately positioned clip-in guides. Rack systems are expensive but inherently flexible.
- Desk consoles. These enclosures are ideal for desktop equipment and generally have sloping surfaces that are ideal for mounting keyboards and keypads.
- Special-purpose enclosures. Apart from the general-purpose types of enclosure described earlier, a variety of special-purpose enclosures are also available. These include such items as clock and calculator housings, enclosures

for hand-held controllers, and cases for in-line mains power supplies (including types having integral 13 A plugs).

Having decided upon which of the basic types of enclosure is required, the following questions should be borne in mind when making a final selection of enclosure:

- ► Is the size adequate?
- ➤ Will the enclosure accommodate the stripboard or PCB circuitry together with the 'off-board' components (including, where appropriate, the mains transformer)?
- ➤ Will the enclosure be strong enough?
- Will other equipment be stacked on top of the enclosure?
- ► Can the mains transformer be supported adequately without deforming the case?
- ▶ Is the front panel of sufficient size to permit mounting all of the controls and displays?
- ▶ Is any protection (in the form of handles or a recessed front panel) necessary for the front panel mounted components?
- ▶ Is there any need for ventilation?
- ► How much heat is likely to be produced within the equipment?
- ► Can heat-producing components be mounted on the rear panel?
- ▶ Will a cooling fan be required?
- ▶ Is the style of the equipment commensurate with other equipment of its type and within the same range?
- ► Is there a need to include screening or filtering in order to minimize incoming or outgoing noise or stray electric/magnetic fields?

When laying out the front panel of the equipment, it is important to bear in mind the basic principles of ergonomic design. All controls should be accessible. They should be logically arranged (grouping related functions together) and clearly labelled. Consideration should be given to the type of controls used (e.g. slider versus rotary potentiometers, push-button versus toggle switches).

It is also important to wire controls such that their action follows the expected outcome. Rotary 'gain' and 'volume' controls, for example, should produce an increase in output when turned in a

clockwise direction. Indicators should operate with adequate brightness and should be viewable over an appropriate angle. Indicators and controls should be arranged so that it is possible to ascertain the status of the instrument at a glance. If necessary, a number of opinions should be sought before arriving at a final layout for the front panel; one's own personal preferences are unlikely to coincide exactly with those of the 'end user'.

Solder and soldering technique

Most solders are an alloy of two metals: tin (Sn) and lead (Pb). The proportion of tin and lead is usually expressed as a percentage or as a simple ratio. For example, the term **60/40 solder** refers to an alloy which comprises 60% tin and 40% lead by weight. The proportion of tin and lead is instrumental in determining the melting point of the solder alloy and the proportion of the constituents is usually clearly stated.

In the past, solder was often categorized by its intended application and the terms **radio solder**, **electronic solder**, **general-purpose solder** and **silver bearing solder**. The difference between these types of solder can be briefly summarized as follows:

Radio solder

A medium melting point temperature (typically 230 °C) solder used for making joints in point-to-point wiring as typically found in radios and early TV receivers. Typical joints would be quite substantial based on tag strips, group boards, valve bases, etc., and each joint might involve several wires or component leads of substantial diameter.

Electronic solder

A low melting point temperature (typically 185 °C) used for making joints on PCBs. A joint would normally involve a single component lead and its associated copper pad and excessive temperature would have to be avoided in order to prevent damage both to the component (whose connecting lead might be of a very short length) and the PCB itself (where copper pads and tracks might lift due to the application of excessive heat).

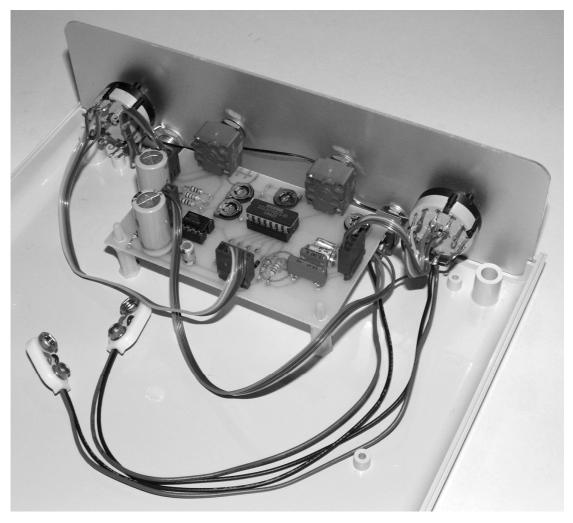


Figure 20.15 Internal wiring of a waveform generator based on PCB headers and coloured ribbon cable

General-purpose solder

A high melting point temperature (typically 255 °C) designed for general electrical repair work (and unsuitable for use with electronic equipment).

Silver bearing solders

Silver bearing solders tend to flow more smoothly and form stronger joints. Unfortunately they generally require higher soldering and de-soldering temperatures and this can make component removal and replacement difficult. In particular, the higher temperatures involved may cause damage to the bond between copper pads and tracks and the printed circuit substrate on which

they are formed. In turn, this can result in the lifting of pads and tracks and permanent damage can result.

Flux

Flux has two roles in soldering. First, it helps with the removal of any oxide coating that may have formed on the surfaces that are to be soldered; and second, it helps to prevent the formation of oxides caused by the heat generated during the soldering process itself. Flux is available in both paste and liquid form. However, in the case of solder for electronic applications, it is also available incorporated within the solder itself. In this case, the flux is contained within a number of

cores that permeate through the solder material rather like the letters that appear on a piece of souvenir seaside rock.

Safety when soldering

While soldering is not a particularly hazardous operation, there are a number of essential safety and other precautions that should be observed. These are listed below:

Fumes

Solder fumes are an irritant and exposure, particularly if prolonged, can cause asthma attacks. Because of this it is essential to avoid the build up of fumes, particularly so when a soldering iron is in continuous use. The best way to do this is to use a proprietary system for fume extraction. In addition, many professional quality irons can be fitted with fume extraction facilities which are designed to clear fumes from the proximity of the soldering iron bit.

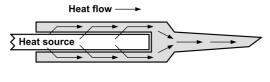
Even when a soldering iron is only used intermittently it is essential to ensure that the equipment is used in a well-ventilated area where fumes cannot accumulate. Fume extraction should be fitted to all soldering equipment that is in constant use. Most good-quality soldering irons that are designed for professional use can be fitted with fume extraction equipment. Fig. 20.16 shows a modern soldering station equipped with fume extraction.

Damage to eyes

Molten solder or flux additives can cause permanent eye damage. Some means of eye protection is essential. This can take the form of safety glasses or the use of a bench magnifier. Ordinary reading or prescription glasses will also offer a measure of protection and may also be of benefit when undertaking close work.

Static hazards

Many of today's electronic devices are susceptible to damage from electric fields and stray static charges. Unfortunately, simply earthing the tip of a soldering iron is not sufficient to completely eliminate static damage and


Figure 20.16 A modern temperature-controlled soldering station with ESD and fume extraction facilities

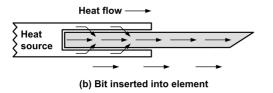

Figure 20.17 Fume extraction facility which can be added to a temperature-controlled iron when necessary

Figure 20.18 Two different types of bit fitted to small soldering irons

(a) Bit surrounds element

Figure 20.19 Heat transfer in the two types of soldering iron bit shown in Fig. 20.18

additional precautions may be required to avoid any risks of electro-static damage (**ESD**). These may involve using a low-voltage supply to feed the heating element fitted in the soldering iron, incorporating low-zero-voltage switching, and the use of conductive (antistatic) materials in the construction of the soldering iron body and the soldering station itself.

Burn, melt and fire hazards

The bit of a soldering iron is usually maintained at a temperature of between 250 °C and 350 °C. At this temperature, conventional plastic insulating materials will melt and many other materials (such as paper, cotton, etc.) will burn. It should also go without saying that personal contact should be avoided at all times and the use of a properly designed soldering iron stand is essential.

Shock hazards

Mains voltage is present in the supply lead to a mains operated soldering iron and also in the supply lead to any soldering station designed for use with a low-voltage iron. If the soldering iron bit comes into contact with a mains lead there can be a danger that the insulation will melt, exposing the live conductors. In such situations, heatproof insulation is highly recommended both for the supply to the iron itself and also to any power unit.

Soldering guns

Soldering guns (where the bit is effectively a short-circuited turn) can become extremely hot and continuous operation of this type of iron can be extremely dangerous as the mains transformer fitted into the handle of the gun can easily become overheated. This can cause the insulation to reach a dangerously high temperature which can result in melting and short-circuits which will cause permanent damage to the gun. Because of their rather clumsy nature and high power, soldering guns should be avoided for all general electronic work.

Soldering and de-soldering techniques

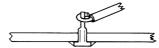
Soldered joints effectively provide for both electrical and mechanical connection of components with pins, tags, stripboards, and PCB. Before a soldering operation is carried out, it is vitally important that all surfaces to be soldered are clean and completely free of grease and/or oxide films. It is also important to have an adequately rated soldering iron fitted with an appropriate bit. The soldering iron bit is the all-important point of contact between the soldering iron and the joint and it should be kept scrupulously clean (using a damp sponge) and free from oxide. To aid this process, and promote heat transfer generally, the bit should be regularly 'tinned' (i.e. given a surface coating of molten solder).

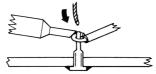
The selection of a soldering bit (see Figs 20.18 and 20.19) depends on the type of work undertaken. Fig. 20.20 shows a number of popular bit profiles, the smaller bits being suitable for sub-miniature components and tightly packed boards. The procedures for making soldered joints to terminal pins and PCB pads are shown in Figs 20.21 and 20.22, respectively. In the case of terminal pins, the component lead or wire should be wrapped tightly around the pin using at least one turn of wire made using a small pair of longnosed pliers. If necessary, the wire should be trimmed using a small pair of side cutters before soldering. Next, the pin and wire should then be simultaneously heated by suitable application of

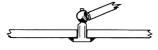
the soldering iron bit and then sufficient solder should be fed on to the pin and wire (not via the bit) for it to flow evenly around the joint, thus forming an airtight 'seal'. The solder should then be left to cool (taking care not to disturb the component or wire during the process). The finished joint should be carefully inspected and re-made if it suffers from any of the following faults:

- (a) Too little solder. The solder has failed to flow around the entire joint and some of the wire turn or pin remains exposed.
- **(b)** Too much solder. The solder has formed into a large 'blob', the majority of which is not in direct contact with either the wire or the pin.
- **(c)** The joint is 'dry'. This usually occurs if either the temperature of the joint was insufficient to permit the solder to flow adequately or if the joint was disturbed during cooling.

In the case of a joint to be made between a component and a PCB pad, a slightly different technique is used (though the requisites for cleanliness still apply). The component should be fitted to the PCB (bending its leads appropriately at right angles if it is an axial lead component) such that its leads protrude through the PCB to the copper foil side. The leads should be trimmed to within a few millimetres of the copper pad then bent slightly (so that the component does not fall out when the board is inverted) before soldering in place. Opinions differ concerning the angles through which the component leads should be bent. For easy removal, the leads should not be bent at all, while for the best mechanical joint, the leads should be bent through 90°. A good compromise, and that preferred by the author, involves bending the leads through about 45°. Care should again be taken to use the minimum of solder consistent with making a sound electrical and mechanical joint.


Finally, it is important to realize that good soldering technique usually takes time to develop and the old adage 'practice makes perfect' is very apt in this respect. Do not despair if your first efforts fail to match with those of the professional!

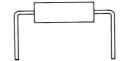

Figure 20.20 Typical soldering iron bit profiles


Carefully insert the terminal pin and solder it to the copper strip on the underside of the board

Strip the end of the wire and wrap a single turn around the pin

Simultaneously apply heat from the soldering iron bit to the component lead and pin. At the same time, feed solder to the joint and let it flow

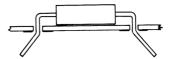
Carefully inspect the completed joint for flaws


Figure 20.21 Procedure for making a soldered joint to a terminal pin

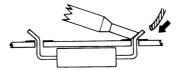
Component removal and replacement

Care must be exercised when removing and replacing printed circuit mounted components (see Figs 20.23 to 20.28). It is first necessary to accurately locate the component to be removed on the upper (component) side of the PCB and then to correctly identify its solder pads on the underside of the PCB. Once located, the component pads should be gently heated using a soldering iron. The soldering iron bit should be regularly cleaned using a damp sponge (a small tin containing such an item is a useful adjunct to any soldering work station). The power rating of the iron should be the minimum consistent with effective removal of the components and should therefore not normally exceed 20 W for types which do not have temperature control since excessive heat can not only damage components but may also destroy the bond between the copper track and the board itself. This latter effect causes lifting of pads and tracks from the surface of the PCB and should be avoided at all costs.

Once the solder in the vicinity of the pad has become molten (this usually only takes one or two seconds) a de-soldering suction pump should be used to remove the solder. This will often require only one operation of the de-soldering pump; however, where a large area of solder is present or where not all of the solder in the vicinity of the pad has become molten, a second application of the tool may be required. If the de-soldering tool has to be repeatedly applied this usually indicates that either the tool is clogged with solder or that the soldering iron is not hot enough. With practice only one application of the soldering iron and de-soldering pump should be required. Once cleared of solder, the component lead should become free and a similar process should be used for any remaining leads or pins. Special tools are available for the rapid removal of IC and SMD devices and these permit the simultaneous heating of all pins (see Figs 20.29 and 20.30).

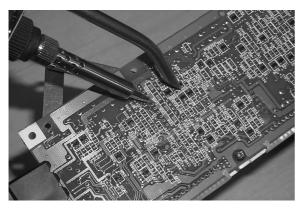

When de-soldering is complete, the component should be gently withdrawn from the upper (component) side of the board and the replacement component should be fitted, taking care to observe the correct polarity and orientation

Prepare the component leads by bending to size using pliers

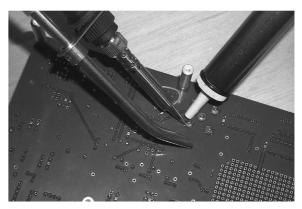

Insert the component into its correct location on the PCB

Bend the component leads through approximately 45°

Trim the component leads using a pair of side cutters



Simultaneously apply heat from the soldering iron bit to the component lead and copper pad. At the same time, feed solder to the joint and let it flow



Carefully inspect the completed joint for any flaws and rework if necessary

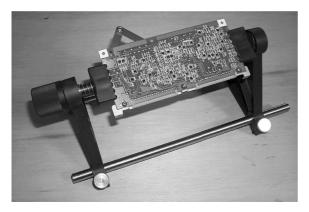

Figure 20.22 Procedure for making a soldered joint to a PCB pad

Figure 20.23 Making a soldered joint on a PCB. A fine point soldering bit is being used

Figure 20.26 Using a de-soldering pump to remove excess solder

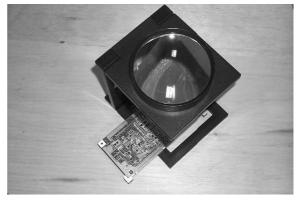
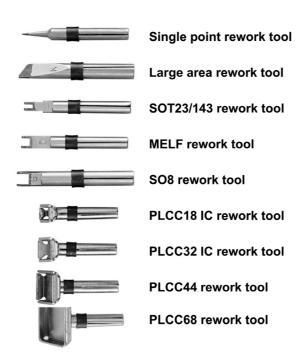

Figure 20.24 A PCB holder can be a useful soldering accessory when working on large boards

Figure 20.27 A variety of de-soldering tools (including de-soldering pump and wire brush)

Figure 20.25 A soldering iron bit cleaner. Regular cleaning is essential to ensure good soldered joints

Figure 20.28 A PCB bench magnifier is ideal for inspecting finished work for soldering defects



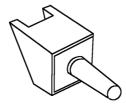


Figure 20.29 Typical de-soldering and rework tools

Chips, MELF, SOD and SOT packages

Small outline IC packages

Figure 20.30 SMD de-soldering tools for integrated circuits

where appropriate. The leads should protrude through the PCB to the copper foil side and should be trimmed to within a few millimetres of the copper pad, then bent slightly (so that the components do not fall out when the board is inverted) before soldering in place. Care should be taken to use the minimum of solder consistent with making a sound electrical and mechanical joint. As always, cleanliness of the soldering iron bit is extremely important if dry joints are to be avoided.

Finally, a careful visual examination of the joint should be carried out. Any solder splashes or bridges between adjacent tracks should be removed and, if necessary, a sharp pointed instrument should be used to remove any surplus solder or flux which may be present.

In some cases it may be expedient (or essential when the PCB has been mounted in such a position that the copper foil side is not readily accessible) to remove a component by cutting its leads on the upper (component) side of the board. However, care should be taken to ensure that sufficient lead is left to which the replacement component (with its wires or pins suitably trimmed) may be soldered. During this operation, extra care must be taken when the soldering iron bit is placed in close proximity to densely packed components on the upper side of the PCB. Polystyrene capacitors and other plastic encapsulated components are particularly vulnerable in this respect. Fig. 20.31 and 20.32 show some typical arrangements used with SMD and conventional components.

Heatsinks

The electronic equipment designer is often faced with the task of designing circuits that will operate within a range of temperatures that will ensure safe and reliable operation. This task is normally carried out with the aid of a comprehensive set of manufacturers' data and a number of simple formulae. The symbols shown in Table 20.3 are commonly used in heatsink calculations:

Determining temperature rise

The ability of a heatsink and transistor mounting arrangement to dissipate heat can be measured in terms of the amount by which the junction temperature exceeds the ambient (or surrounding air) temperature. A perfect heatsink and mounting arrangement would keep the junction

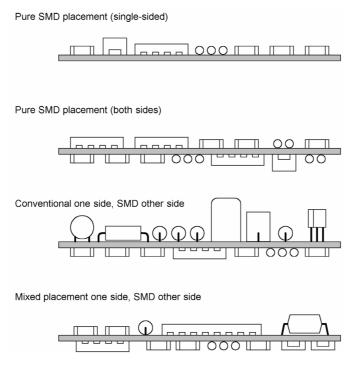


Figure 20.31 Various PCB layouts involving SMD and conventional components

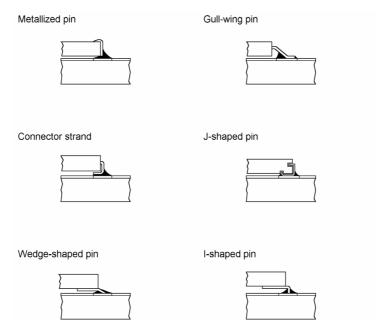


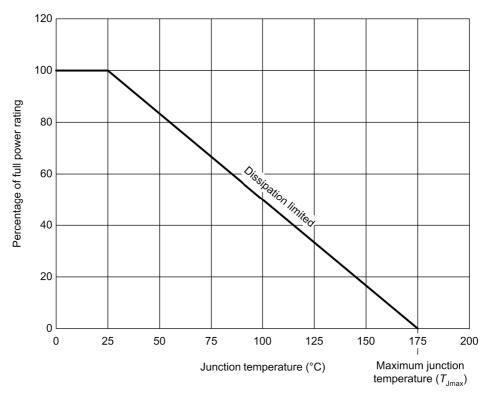
Figure 20.32 Different pin styles used with SMD devices

Table 20.3 Symbols used in heatsink calculations

Symbol	Meaning	Units
T_{A}	Ambient temperature	°C
T_{Amax}	Maximum ambient temperature	°C
T_{J}	Junction temperature	°C
T_{Jmax}	Maximum junction temperature	°C
$T_{\rm c}$	Case temperature	°C
$T_{\rm S}$	Heatsink surface temperature (note 1)	°C
$ heta_{ extsf{JA}}$	Thermal resistance (from junction to ambient)	°C/W
$ heta_{ t CS}$	Thermal resistance (from case to surface)	°C/W
$ heta_{SA}$	Thermal resistance (from surface to ambient)	°C/W
$ heta_{\!\scriptscriptstyle op}$	Total thermal resistance (from junction to ambient)	°C/W
$P_{\scriptscriptstyle extsf{T}}$	Total power dissipation (note 2)	W
P _{Tmax}	Maximum total power dissipation (note 2)	W

Notes:

- 1. At the point of contact with the semiconductor device
- 2. For one or more devices mounted on the heatsink


temperature the same as that of the surrounding air. In practice, the junction temperature will rise under operational conditions.

In practice, a rise in junction temperature is unavoidable. What is important, however, is that the maximum junction temperature, $T_{\rm Jmax}$, must never be exceeded. Furthermore, manufacturers provide a de-rating characteristic that must be used to determine device rating (percentage of full power rating at 25 °C) when the junction temperature exceeds its normally specified value (see Fig. 20.33).

The temperature rise, ΔT , above ambient will be given by:

$$\Delta T = P_{\scriptscriptstyle T} \times \theta_{\scriptscriptstyle T} \tag{1}$$

where $P_{\rm T}$ is the total power dissipated by the semiconductor device(s) and $\theta_{\rm T}$ is the total thermal resistance of the heatsink and mounting arrangement.

Figure 20.33 A typical semiconductor de-rating characteristic. Note how full power (100%) is available at temperatures of up to 25 °C but above this the percentage must be reduced progressively

Determining the junction temperature

The temperature rise is simply the difference between the actual junction temperature and the surrounding (or ambient) temperature. Ultimately, the operating junction temperature is vitally important since exceeding the maximum operating junction temperature ($T_{\rm J_{max}}$) can result in the destruction of the semiconductor device!

Now
$$\Delta T = T_1 - T_{\Delta}$$
 (2)

Combining equations (1) and (2) gives:

$$T_{\perp} - T_{\Delta} = P_{\perp} \times \theta_{\perp}$$

From which:

$$T_{J} = (P_{T} \times \theta_{T}) + T_{A} \tag{3}$$

It is worth using an example to explain the use of this formula in helping us to determine just how hot a semiconductor junction actually gets!

Example 20.1

A TO220 transistor dissipates a total power of 5W. If the total thermal resistance is 8°C/W and the ambient temperature is 30°C, determine the junction temperature.

Applying equation (3) gives:

$$T_1 = (P_T \times \theta_T) + T_\Delta = (5 \times 8) + 30 = 70 \,^{\circ}\text{C}$$

Determining thermal resistance

Fig. 20.34 shows a typical TO3 case style transistor mounted on a finned **heat dissipator** (i.e. heatsink). Heat is conducted away from the semiconductor junction to the outer case of the TO3 package and then, via an insulating washer, to the surface of the heatsink. From this point, heat is conducted to the extremities of the fins where it is radiated into the surrounding air space.

The total thermal resistance, $\theta_{\rm T}$, present in any heatsink arrangement is actually the sum of several individual thermal resistances. Consider the case of a transistor bolted directly to a metal heat radiator (see Fig. 20.35). The total thermal resistance, $\theta_{\rm T}$, is the sum of the following thermal resistances:

1. The thermal resistance that exists between the semiconductor junction and the case of the transistor (i.e. the thermal resistance *inside* the transistor package), $\theta_{\rm ic}$

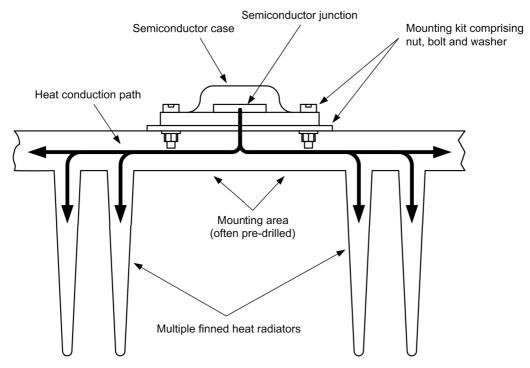
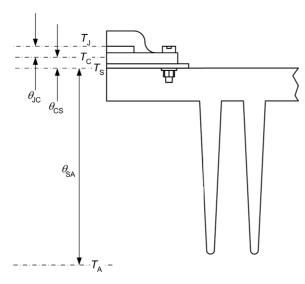
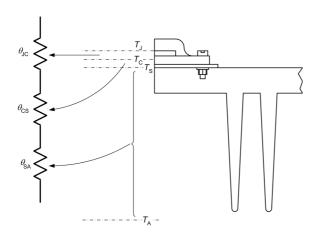



Figure 20.34 Typical mounting arrangement for a TO3 transistor


20 Circuit construction

- 2. The thermal resistance between the case of the transistor and the heat radiator (i.e. the thermal resistance of an insulating washer, where fitted), $\theta_{\rm CS}$
- **3.** The thermal resistance between the surface of the heat radiator and the space surrounding it (i.e. the thermal resistance between the surface and ambient), θ_{SA}

Fig. 20.36 shows these three thermal resistances together with the temperatures that exist at each point in the arrangement shown in Fig. 20.35. The three thermal resistances shown in Fig. 20.36

Figure 20.35 Thermal resistances identified for the TO3 mounting arrangement

Figure 20.36 Equivalent thermal resistances in Fig. 20.35

actually appear 'in series' and we can use a simple electrical analogy to represent the thermal 'circuit' in electrical terms (see Fig. 20.37).

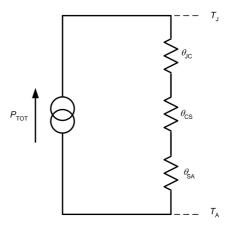
From Fig. 20.37 we can conclude that the total thermal resistance, θ_{T} , is given by:

$$\theta_{\mathsf{T}} = \theta_{\mathsf{IC}} + \theta_{\mathsf{CS}} + \theta_{\mathsf{S}\Delta} \tag{4}$$

Note that the total thermal resistance is actually the same as the thermal resistance between the junction and ambient.

Thus:

$$\theta_{\rm T} = \theta_{\rm JC} + \theta_{\rm CS} + \theta_{\rm SA} = \theta_{\rm JA} \tag{5}$$


The complete electrical equivalent circuit of the heatsink arrangement is shown in Fig. 20.37. Note that the source of power (P_{TOT}) is the semiconductor device and the 'potentials' at the two extreme ends of the series chain of thermal resistances are T_{J} (junction temperature) and T_{A} (ambient or surrounding air temperature).

Example 20.2

A transistor has a thermal resistance from junction to case of 1.5 °C/W. If the transistor is fitted with a washer and mounting kit having a thermal resistance of 1.75 °C/W, and a heatsink of 2.25 °C/W, determine the total thermal resistance that exists between junction and ambient.

Applying equation (5) gives:

$$\theta_{JA} = \theta_{JC} + \theta_{CS} + \theta_{SA} = 1.5 + 1.75 + 2.25$$

= 5.5 °C/W

Figure 20.37 Equivalent circuit showing heat source and thermal resistances

Worst case conditions

In the design of electronic equipment we often need to plan for the **worst case** conditions, ensuring that the absolute maximum junction temperature, $T_{\rm Jmax}$, is not exceeded when the total power dissipation and ambient temperature jointly reach their maximum working values.

From equation (3) we can infer that, under the worst case conditions:

$$T_{\text{Jmax}} = (P_{\text{Tmax}} \times \theta_{\text{T}}) + T_{\text{Amax}}$$

Combining this with equation (5) gives:

$$T_{\text{Jmax}} = (P_{\text{Tmax}} \times (\theta_{\text{JC}} + \theta_{\text{CS}} + \theta_{\text{SA}})) + T_{\text{Amax}}$$
 (6)

Example 20.3

A transistor has an absolute maximum junction temperature rating of 150° and a thermal resistance from junction to case of 1.0°C/W. If the device is fitted with a washer and mounting kit having a thermal resistance of 1.25°C/W and a heatsink of 2.75°C/W, determine whether the maximum ratings are exceeded when the total power dissipation reaches a maximum of 25 W at a maximum ambient temperature of 40°C.

Applying equation (6) gives:

$$T_{\text{lmax}} = (25 \times (1.0 + 1.25 + 2.75) + 40 = 165 \,^{\circ}\text{C}$$

The absolute maximum junction temperature rating (150 °C) is exceeded and the designer should either reduce the power dissipation to a safe value or reduce the thermal resistance present (or both!).

Determining heatsink specifications

The electronic equipment designer often has to determine the required heatsink specifications given the absolute maximum junction temperature, thermal resistance from junction to case, maximum expected ambient temperature, etc. To do this, we need to re-arrange equation (6) to make θ_{SA} the subject of the equation. Thus:

$$\theta_{SA} = \frac{T_{Jmax} - T_{Amax}}{P_{Tmax}} - (\theta_{JC} + \theta_{CS})$$
 (7)

The value obtained for $\theta_{\rm SA}$ will be the minimum acceptable rating for the required heatsink. In

practice, we would choose a component with a higher rating to allow for a margin of safety.

Example 20.4

Determine the minimum acceptable thermal resistance rating for a heatsink for use with a transistor under the following conditions:

Maximum junction temperature:	175°C
Thermal resistance of case to surface:	1.25°C/W
Thermal resistance of washer and mounting kit:	1.75°C/W
Maximum total power dissipation:	75W
Maximum ambient temperature:	45°C

Applying equation (7) gives:

$$\theta_{\text{SA}} = \frac{T_{\text{Jmax}} - T_{\text{Amax}}}{P_{\text{Turns}}} - \left(\theta_{\text{JC}} + \theta_{\text{CS}}\right)$$

from which:

$$\theta_{SA} = \frac{175 - 45}{13} - (1.25 + 1.75) = 10 - 3 = 7 \text{ °C/W}$$

Example 20.5

A power FET operates with a maximum continuous drain current ($I_{\rm D}$) of 0.5 A at a maximum continuous drain-source voltage ($V_{\rm DS}$) of 40 V. Determine the minimum acceptable thermal resistance rating for a heatsink for use with the device under the following conditions:

Maximum junction temperature:	175°C
Thermal resistance of case to surface:	1.35°C/W
Thermal resistance of washer and mounting kit:	1.45°C/W
Maximum ambient temperature:	55°C

First we need to determine the maximum total power dissipation. Since the device is a FET, the gate dissipation can be neglected. Thus the total power dissipation will be:

$$P_{\text{Tmax}} = V_{\text{DS}} \times I_{\text{D}} = 40 \times 0.5 = 20 \,\text{W}$$

Applying equation (7) gives:

$$\theta_{SA} = \frac{T_{Jmax} - T_{Amax}}{P_{Tmax}} - (\theta_{JC} + \theta_{CS})$$

$$\theta_{SA} = \frac{175 - 55}{20} - (1.35 + 1.45) = 6 - 2.8 = 3.2 \text{ °C/W}$$

All of the previous calculations assume that the heatsink is subject to natural convection. Increasing the airflow across the surface of the heatsink can dramatically increase the amount of heat radiated and consequently it will also significantly reduce the effective thermal resistance of the heatsink.

Practical heatsink arrangements

Having explained some of the theory behind the design of heat dissipators, we shall move on to describe some practical heatsink and mounting arrangements. Typical thermal resistance for several common case styles are listed in Table 20.4.

A selection of heatsink cross-sections is shown in Fig. 20.41. These range from a simple folded U-section metal plate with a thermal resistance of 20°C/W to a complex aluminium alloy extrusion with a thermal resistance of 1.2°C/W. Lower values of thermal resistance can be obtained with the use of forced air cooling.

Natural convection airflow can be enhanced by the proper placement of heatsinks and other heat-producing components. Since warm air rises, vertical surfaces tend to transmit heat to the air better than comparable horizontal surfaces. The hottest devices should be located on the upper side of a horizontally mounted PCB or close to the upper edge of a vertically mounted PCB.

Semiconductor mounting arrangements

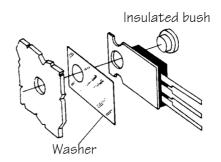
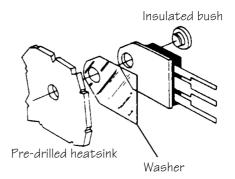

A typical mounting arrangement for a TO220 semiconductor package is shown in Fig. 20.38. In

Table 20.4 Typical thermal resistances for various case styles


Case style	θ _{JA} (no heatsink) (°C/W)	θ _{Jc} (°C/W)
TO92	200 to 350	40 to 60
TO126	83 to 100	3 to 10
TO220	60 to 70	1.5 to 4
TO202	62 to 75	6 to 13
TO218	30 to 45	1 to 1.56

many cases, the tab of the device is connected to one of three terminals (often the collector or drain) in which case a mica or thermally conductive plastic washer must be fitted. Note also that an insulated bush must be used in order to prevent the mounting bolt shorting the metal tab to the heatsink. Fig. 20.39 shows a similar mounting arrangement used for a TO218 packaged device while Fig. 20.40 shows how a TO3 device is fitted.

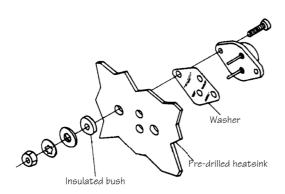

The thermal resistance of the mounting kit used with a semiconductor device can have a major effect on the efficiency of the heat conduction from the surface of the case to the heat radiator. Special thermally impregnated washers have significantly lower thermal resistance than simple mica washers. Thermally conductive silicone grease should NOT be used with this type of washer.

Figure 20.38 Typical mounting arrangement for a TO220 packaged device

Figure 20.39 Typical mounting arrangement for a TO218 or TAB packaged device

Figure 20.40 Typical mounting arrangement for a TO3 packaged device

A practical example

We conclude this chapter with an example of circuit construction based on a simple bench power supply. The requirement was for a small adjustable d.c. power supply that could be used for general-purpose bench testing of electronic circuits. After some preliminary investigation the following basic requirements were established:

- 1. It should be mechanically and electrically rugged.
- 2. It should use proven and reliable technology.
- 3. It should be low-cost and easy to maintain.
- It should comply with appropriate European legislation (e.g. the EMC and low-voltage directives).

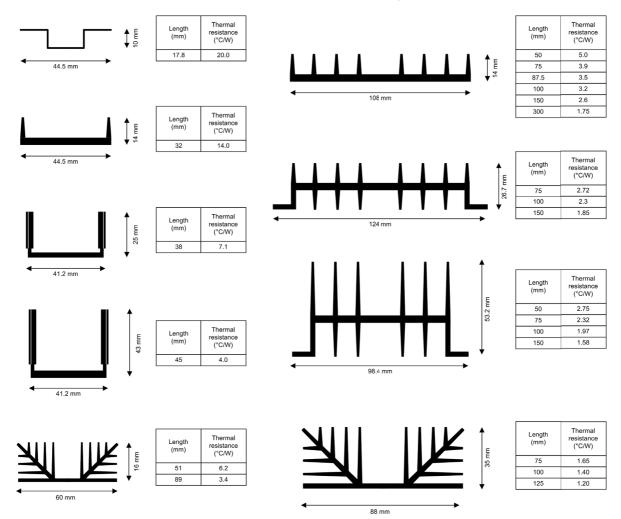


Figure 20.41 Some common heatsink types and their associated thermal resistances

20 Circuit construction

- 5. It should have one variable (3 V to 15 V) output and one fixed (+5 V) accessory output and both outputs should be protected against a short-circuit connected to the output.
- 6. With the exception of the accessory output and the a.c. mains input, all controls, connectors and switches should be made available on the front panel.
- 7. It should have colour-coded output terminals that will accept standard 4 mm plugs. The terminals should also allow wires that have not been fitted with plugs to be clamped directly using a screw action.
- 8. It should operate from a standard 220 V a.c. mains supply which should be connected using a standard 3-pin IEC connector.
- It should be 'tamper-proof' (it should not be possible to remove the knobs or the enclosure without having to resort to the use of special tools).
- 10. It should be lightweight and portable.
- It should have LED indicators to show that the power supply is switched on and that the outputs are present.

Design specification

Having determined a need for our product and obtained a detailed list of requirements, the next stage was that of firming up the design brief and producing a detailed specification for the power supply. This **design specification** was a detailed performance specification that included numerical values for relevant parameters (such as output voltage and output current). The detailed design specification was important because we returned to it when we needed to confirm that our prototype power supply met our requirements. We did this by comparing the measured performance specification with the original design specification. Taking into account the requirements listed above, we arrived at the following design specification:

Fixed output:

- Output voltage adjustable from 3 V to 15 V
- Output current adjustable from 50 mA to 1 A max.
- ▶ 4 mm binding post connectors (red and black).

Variable output:

- ► Output voltage fixed at + 5V ± 5%
- ▶ Output current 1 A max.
- 4 mm binding post connectors (yellow and black).

Input:

► 200 to 240 V a.c. via IEC connector, 1 A fuse and FMC filter.

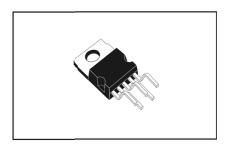
Prototype manufacture

The next stage in the development of the power supply was that of examining a range of solutions before deciding on the particular solution that formed the basis of a prototype. Since the product has both electrical/electronic and mechanical aspects it was possible to consider these separately.

Research was needed to find a suitable electronic circuit and to identify the components that would be needed to build it. Various sources of information were available including books, magazines, data sheets (see Fig. 20.42) from manufacturers and suppliers as well as the internet. After carrying out some initial investigations a suitable circuit design was located (see Fig. 20.43). This circuit was based on two low-cost readily available integrated circuit devices (see requirements 2 and 3) and the data sheets were obtained for each (see Fig. 20.42).

The initial prototype was constructed on stripboard and tested after fitting into the enclosure (as shown in Fig. 20.47). A further prototype (see Fig. 20.48) was developed using a printed circuit board (PCB), the track layout for which was designed using a PCB CAD package which had an autorouting facility.

In order to satisfy requirements 1 and 4, a fully screened metal enclosure was used. This was based on a simple two-part construction (see requirement 3). An internal EMC filter was fitted in order to comply with the EMC directive (see requirement 4). Before manufacturing the enclosure it was necessary to produce some general arrangement and detail drawings showing how the sheet metal should be drilled, punched, cut and bent. These drawings had to be accurately


Howard Associates

DATA SHEET

L200 Adjustable Voltage Regulator

MAIN FEATURES

- Adjustable output voltage down to 2.85 V
- Adjustable output current up to 2 A
- Input overload protection (up to 60 V for 10 ms)
- Thermal overload protection
- 5-pin Pentawatt® package
- · Low bias current on regulation pin
- · Low standby current drain
- Low cost



DESCRIPTION

The L200 is a monolithic integrated circuit voltage regulator which features variable voltage and variable current adjustment. The device is supplied in a 5-pin Pentawatt® package (a TO-3 packaged version is also available to special order). Current limiting, power limiting, thermal shutdown and input

over-voltage protection (up to 60 V for 10 ms) make the L200 virtually blow-out proof. The L200 can be used in a wide range of applications wherever high-performance and adjustment of output voltage and current is required.

DIMENSIONS

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			4.8			0.189
С			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
Е	0.35		0.55	0.014		0.022
E1	0.76		1.19	0.030		0.047
F	0.8		1.05	0.031		0.041
F1	1		1.4	0.039		0.055
G	3.2	3.4	3.6	0.126	0.134	0.142
G1	6.6	6.8	7	0.260	0.268	0.276
H2			10.4			0.409
НЗ	10.05		10.4	0.396		0.409
L	17.55	17.85	18.15	0.691	0.703	0.715
L1	15.55	15.75	15.95	0.612	0.620	0.628
L2	21.2	21.4	21.6	0.831	0.843	0.850
L3	22.3	22.5	22.7	0.878	0.886	0.894
L4			1.29			0.051
L5	2.6		3	0.102		0.118
L6	15.1		15.8	0.594		0.622
L7	6		6.6	0.236		0.260
L9		0.2			0.008	
M	4.23	4.5	4.75	0.167	0.177	0.187
M1	3.75	4	4.25	0.148	0.157	0.167
V4	40° (typ.)					

Page 1 of 8

Figure 20.42 Data sheet for the L200 integrated circuit variable voltage regulator. The data sheet provides all of the essential information required to produce a working circuit design, including maximum ratings, mounting details, and thermal characteristics

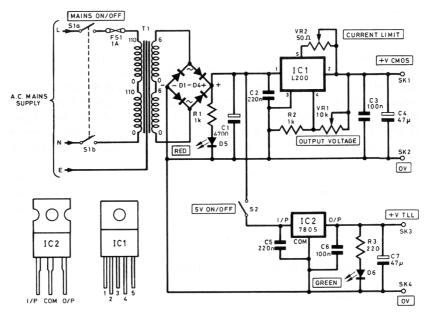


Figure 20.43 Circuit diagram for the variable bench power supply

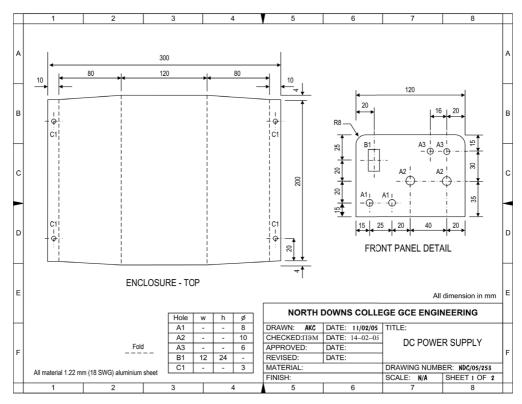
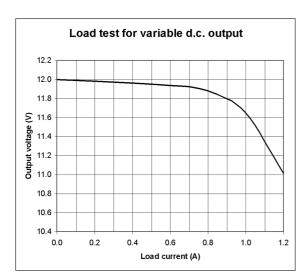


Figure 20.44 Mechanical details for the power supply enclosure


dimensioned in order to accommodate the components used. The drawings were produced using a simple 2D CAD package. One drawing was produced to show the enclosure top and front panel detail (see Fig. 20.44) while a second drawing was used to show the enclosure bottom and rear panel detail.

The material selected for the enclosure was 1.22 mm (18 SWG) aluminium sheet. The reasons for this choice of material were that it was reasonably lightweight (see requirement 10), low-cost (see requirement 3) and easy to process. It could also be attractively paint finished. Figs 20.49 and 20.50 show the assembled prototype.

Testing to specification

Having assembled a working prototype the next stage was that of measuring its performance in order to ensure that it fully conformed with the requirements set down in the design brief.

Prototype testing was carried out by applying a variable load to the output of the power supply and measuring corresponding values of output voltage and output current. To simplify the analysis, the test data were entered into a spreadsheet and graphs of each load test were generated (see Figs 20.45 and 20.46).

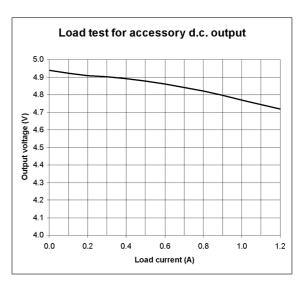
Figure 20.45 Load test graph for the variable d.c. output. Note how the output voltage begins to fall rapidly when the load current exceeds 0.9 A

Performance measurement

The measured performance specifications for the power supply (obtained from the load tests) were as follows (figures from the original design specification are shown in square brackets):

Variable output

- Minimum output voltage = 2.85 V [3 V]
- ► Maximum output voltage = 15.23 V [15 V]
- ► Maximum output current = 1.2 A [1 A]


Fixed output

- ► Output voltage (no load) = 4.94 V [5 V]
- ► Output voltage (1 A load) = 4.77 V [4.75 V]
- Output current = 1.2 A [1 A]

These results provide confirmation that the prototype conformed closely with the original design specification.

Evaluation and modification

Having carried out detailed testing of the prototype power supply and having verified that the design specification had been met, the next stage was that of finalizing the prototype and carrying out any modifications prior to passing the design for production.

Figure 20.46 Load test graph for the fixed accessory output. Note how the output voltage falls below 4.75 V at an output current of about 1.1 A

20 Circuit construction

Feedback was obtained from a number of 'test users' who were asked to check that each of the original requirements had been satisfied. Several recommendations were made as a result of this feedback, including:

- ▶ fitting a carrying handle to the enclosure
- ▶ fitting calibrated scales to the voltage and current controls
- ► relocating the +5 V accessory output switch to the front panel

- mounting both integrated circuit devices on the same heatsink (suitably up-rated) to reduce space and cost
- providing an over-current indicator that will become illuminated when/if the supply is overloaded.

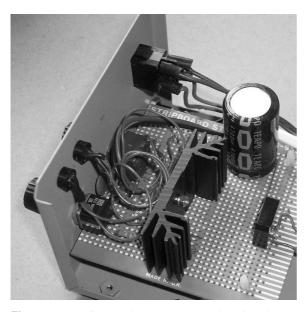
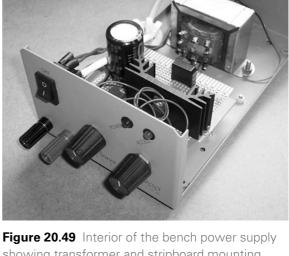



Figure 20.47 Internal arrangement showing the prototype stripboard and front panel wiring

showing transformer and stripboard mounting

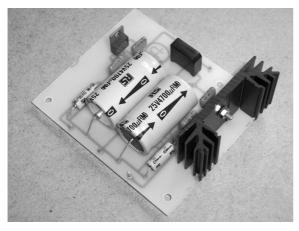


Figure 20.48 PCB layout developed for the final version of the bench power supply

Figure 20.50 External view of the bench power supply showing the front panel controls and enclosure

Practical investigation

Objective

To construct a simple circuit using (a) a stripboard and (b) a printed circuit board.

Components and test equipment

Stripboard and photo-resist copper laminate measuring approximately 6 cm square, 555 timer and 8-pin low-profile DIL socket (two required), resistors of 10 k Ω (four required), 560 k Ω (two required), 470 Ω (four required) 5% 0.25 W, capacitors of 100 μF and 47 μF 16 V (two of each required), red and green LEDs (two of each required), four normally open (NO) printed circuit board mounting push-button switches, 9 V PP3 battery connectors (two required).

Procedure

Following the procedures described earlier in this chapter, design and manufacture the one-minute timer circuit using (a) stripboard and (b) printed

Table 20.5 See Problem 20.3

Maximum junction temperature:	155°C
Thermal resistance of case to surface:	1.4°C/W
Thermal resistance of washer and mounting kit:	1.75°C/W
Maximum total power dissipation:	40W
Maximum ambient temperature:	45°C

circuit board construction techniques. Test each circuit when complete.

Problems

- 20.1 Identify the type of circuit construction used for the low-pass L-C filter shown in Fig. 20.52.
- 20.2 Explain, with the aid of a diagram, how a PIC can be programmed without having to remove it from the target system.
- 20.3 Determine the minimum acceptable thermal resistance rating for a heatsink for use with a power transistor operating under the conditions shown in Table 20.5.

Answers to these problems appear on page 452.

Figure 20.52 See Problem 20.1

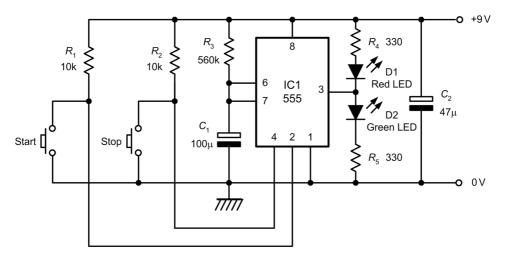


Figure 20.51 The one-minute timer circuit used in the Practical investigation

Student assignments

Chapter summary

The student assignments provided here have been designed to support the topics introduced in this book. They can also be used to satisfy the assessment requirements of a taught course. Please note that the assignments are not exhaustive and may need modification to meet an individual awarding body's requirements as well as the locally available resources. The first 10 assignments satisfy the requirements for the level 2 courses while the remaining 12 are designed to meet the requirements of level 3 courses. Assignments can normally be carried out in three to five hours, including analysis, report writing and evaluation.

Level 2 assignments

Assignment 1 Electronic circuit construction For each one of five simple electronic circuits shown in Figs A1.1 to A1.5:

- (a) Identify and select the components required to build the circuit.
- **(b)** Identify an appropriate method of construction selected from the following list:
- breadboard
- tag board
- stripboard
- printed circuit board
- wire wrapping.

Assemble and test each circuit according to its circuit diagram. Note that a different construction method must be selected for each circuit.

Assignment 2 Electronic circuit testing

For each of the circuits in Figs A1.1 to A1.5, describe the type and nature of the input and output signals (as appropriate). For each circuit select and use appropriate measuring instruments (e.g. multimeter and oscilloscope) to test and check the operation of each circuit. Write a short report to summarize your findings.

Assignment 3 Semiconductor investigation

Prepare a report describing the construction of (a) a junction diode and (b) a bipolar transistor. Describe, in your own words, the principle of operation of each device. With the aid of a simple circuit diagram, describe a typical application for each type of semiconductor.

Assignment 4 Basic logic functions

Write a report identifying the types and symbols (both BS3939 and MIL/ANSI) used for all basic logic gates (AND, OR, NOT, NAND and NOR). Include in your report a description of the operation of each logic gate together with a truth table.

Assignment 5 Applications of logic circuits

With the aid of labelled diagrams, describe TWO applications of logic gates. One application should be based on combinational logic while the other should use sequential logic.

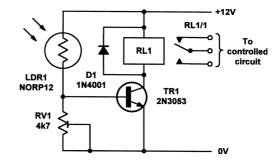


Figure A1.1 See Assignments 1 and 2

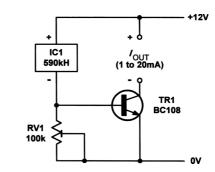


Figure A1.2 See Assignments 1 and 2

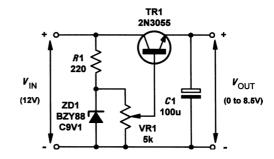


Figure A1.3 See Assignments 1 and 2

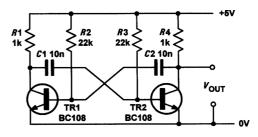


Figure A1.4 See Assignments 1 and 2

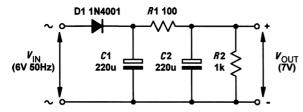


Figure A1.5 See Assignments 1 and 2

Assignment 6 Electronic measuring instruments

Write a report describing the operation and use of (a) a multimeter and (b) an oscilloscope. Illustrate your report with records of measurements carried out on three common electronic components and two simple electronic circuits.

Assignment 7 Microprocessors

Investigate TWO common types of microprocessor. Produce an A4-size data sheet for each device, giving a brief specification of the chip, package and pin-connecting details, clock frequencies, details of the internal registers, descriptions of bus signals (including the number of address and address lines), etc.

Assignment 8 Monostable timer

Design, construct and test a variable timer based on a 555 device connected in monostable mode. The timer is to be adjustable over the range 10 s to 90 s and is to produce an output for driving a low-voltage relay.

Assignment 9 Square wave generator

Design, construct and test a 5 V 1 kHz square wave generator based on a 555 timer connected in astable mode.

Assignment 10 A dipole aerial

Design, construct and test a half-wave dipole aerial for DAB radio reception. Select a suitable feeder to connect the aerial to a DAB receiver and investigate the directional properties of the aerial. Compare these with what you would expect from radio theory.

Level 3 assignments

Assignment 11 Power supply investigation
With the aid of an electrical specification and operating manual for a typical low-voltage d.c. power supply, write a report explaining the characteristics of the unit. Also explain the meaning of each of the unit's specifications. Carry out a simple load test on the supply, plot a graph to illustrate your results and comment on your findings.

Assignment 12 Amplifier circuit investigation

Write a report that describes and explains one small-signal Class-A discrete amplifier circuit, one Class-B power amplifier circuit, and one amplifier circuit based on an operational amplifier. The report should identify and give typical specifications for each type of amplifier.

Carry out a simple gain and frequency response test on one of the amplifier circuits, plot a graph to illustrate your results and comment on your findings.

Assignment 13 Small-signal amplifier design and construction

Design, construct and test a single-stage transistor amplifier. Write a report describing the model used for the small-signal amplifier and include a detailed comparison of the predicted characteristics compared with the measured performance of the stage.

Assignment 14 Electronic counter investigation

Prepare a report describing the characteristics of J–K bistable elements when compared with D-type and R–S bistables. Using the data obtained, design, construct and test a four-stage binary counter. Modify the design using a standard logic gate to produce a decade counter. Include in your report timing diagrams for both the binary and decade counters.

Assignment 15 Pulse generator investigation

Prepare a report describing one oscillator circuit, one bistable circuit and one monostable circuit. The report should include a description of one industrial application for each of the circuits together with sample calculations of frequency

and pulse rate for the two oscillator circuits, and pulse width for the monostable circuit.

Assignment 16 Performance testing

Carry out performance tests on two different amplifier circuits, two waveform generators and two digital circuits. Compare the measured performance of each circuit with the manufacturer's specification and present your findings in a written report. The report should include details of the calibration and operation of each test instrument in accordance with the manufacturer's handbooks as well as evidence of the adoption of safe working practice.

Assignment 17 Microprocessor clock

Design, construct and test (using an oscilloscope) a microprocessor clock based on two Schmitt inverting logic gates and a quartz crystal. The clock is to produce a square wave output at a frequency of between 1 MHz and 6 MHz (depending upon the quartz crystal used).

Assignment 18 Assembly language programming

Use a simple 8-bit microprocessor system to develop a simple assembly language program that will read the state of a set of eight input switches connected to an input port and illuminate a bank of eight light emitting diodes connected to an output port. The state of the input switches is to be indicated by the light emitting diodes.

Assignment 19 Variable pulse generator

Design, construct and test a variable pulse generator (along the lines of that shown on page 234). The pulse generator is to provide an output from 1 Hz to 10 kHz with a pulse width variable from 50 μs to 500 ms.

Assignment 20 AM radio tuner

Design, construct and test a simple AM radio tuner based on a diode demodulator and a variable-tuned circuit. The radio tuner is to cover the medium wave band from 550 kHz to 1.5 MHz and its output is to be connected to an external audio amplifier. Investigate the performance of the tuner and suggest ways in which it could be improved.

Assignment 21 Analogue multimeter

Design, construct and test a simple analogue multimeter based on a 1 mA moving coil meter. The multimeter is to have three voltage ranges (10 V, 50 V and 100 V), two current ranges (10 mA and 50 mA) and one ohms range.

Assignment 22 PIC microcontroller

Design, construct and test a simple PIC microcontroller-based intruder alarm. The alarm is to be capable of identifying an intrusion into any one of four 'zones' using an LED panel and is to produce a master alarm signal using a piezoelectric transducer whenever any one of the alarm inputs is triggered. The alarm is to be 'set' and 'reset' using two further switch inputs.

Assignment 23 Arduino application

Figures A1.6 and A1.7 respectively show the circuit schematic and wiring layout of a simple security alarm based on an Arduino Uno.

Construct the circuit and develop application software that will detect a break in the loop and operate the piezoelectric transducer. Ensure that the alarm can be set and reset by means of the two normally-open push-button switches.

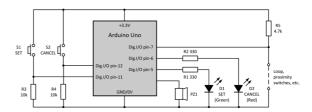


Figure A1.6 See Assignment 23

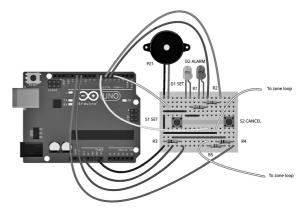


Figure A1.7 See Assignment 23

Revision problems

Chapter summary

These problems provide you with a means of checking your understanding prior to an end-of-course assessment or formal examination. If you have difficulty with any of the questions you should refer to the page numbers indicated.

- 1. A 120 $k\Omega$ resistor is connected to a 6 V battery. Determine the current flowing. [Page 7]
- 2. A current of 45 mA flows in a resistor of 2.7 k Ω . Determine the voltage dropped across the resistor. [Page 7]
- **3.** A 24 V d.c. supply delivers a current of 1.5 A. Determine the power supplied. [Page 9]
- **4.** A 27 Ω resistor is rated at 3 W. Determine the maximum current that can safely be applied to the resistor. [Page 9]
- 5. A load resistor is required to dissipate a power of 50 W from a 12 V supply. Determine the value of resistance required. [Page 9]
- 6. An electrical conductor has a resistance of $0.05~\Omega$ per metre. Determine the power wasted in a 175 m length of this conductor when a current of 8 A is flowing in it. [Page 7]
- **7.** Figure A2.1 shows a node in a circuit. Determine the value of I_{o} . [Page 52]
- **8.** Figure A2.2 shows part of a circuit. Determine the value of V_{\cdot} . [Page 52]
- **9.** A capacitor of 200 μ F is charged to a potential of 50 V. Determine the amount of charge stored. [Page 34]
- 10. A sinusoidal a.c. supply has a frequency of 400 Hz and an r.m.s. value of 120 V. Determine the periodic time and peak value of the supply. [Page 73]
- **11.** Four complete cycles of a waveform occur in a time interval of 20 ms. Determine the frequency of the waveform. [Page 73]
- **12.** Determine the periodic time, frequency and amplitude of each of the waveforms shown in Fig. A2.3. [Page 73]
- **13.** Determine the effective resistance of each circuit shown in Fig. A2.4. [Page 27]

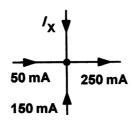


Figure A2.1 See Question 7

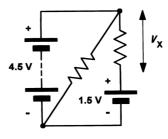
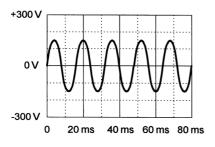
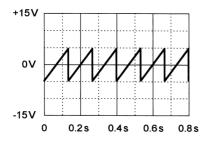




Figure A2.2 See Question 8

- **14.** Determine the effective capacitance of each circuit shown in Fig. A2.5. [Page 38]
- **15.** Determine the effective inductance of each circuit shown in Fig. A2.6. [Page 43]
- 16. A quantity of 100 nF capacitors is available, each rated at 100 V working. Determine how several of these capacitors can be connected to produce an equivalent capacitance of:

 (a) 50 nF rated at 200 V;
 (b) 250 nF rated at 100 V.
 [Page 38]
- 17. Two 60 mH inductors and two 5 mH inductors are available, each rated at 1 A. Determine how some or all of these can be connected to produce an equivalent inductance of: (a) 30 mH rated at 2 A; (b) 40 mH rated at 1 A; and (c) 125 mH rated at 1 A. [Page 43]
- **18.** Determine the resistance looking into the network shown in Fig. A2.7, (a) with C and D open-circuit and (b) with C and D shorted together. [Page 27]
- **19.** Determine the current flowing in each resistor and voltage dropped across each resistor in Fig. A2.8. [Page 52]
- **20.** Determine the current flowing in the voltmeter movement shown in Fig. A2.9. [Page 57]
- 21. Assuming that the capacitor shown in Fig. A2.10 is initially fully discharged (by switching to position B), determine the current in R1 at the instant that S1 is switched to position A. Also determine the capacitor voltage one minute after operating the switch. [Page 60]
- **22.** Determine the time taken for the output voltage in Fig. A2.11 to reach 4 V after the arrival of the pulse shown (assume that the capacitor is initially uncharged). [Page 60]

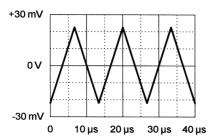


Figure A2.3 See Question 12

- 23. In Fig. A2.12 determine the current supplied to the inductor 100 ms after pressing the 'start' button. [Page 66]
- **24.** Determine the reactance at 2 kHz of (a) a 60 mH inductor and (b) a 47 nF capacitor. [Page 74]
- 25. A 50 μ F capacitor is connected to a 12 V, 50 Hz a.c. supply. Determine the current flowing. [Page 74]
- 26. An inductor of 2 H is connected to a 12 V, 50 Hz a.c. supply. If the inductor has a winding resistance of 40 Ω , determine the current flowing and the phase angle between the supply voltage and supply current. [Page 76]
- 27. An inductor of 100 μH is connected in series with a variable capacitor. If the capacitor is variable over the range 50 pF to 500 pF, determine the maximum and minimum

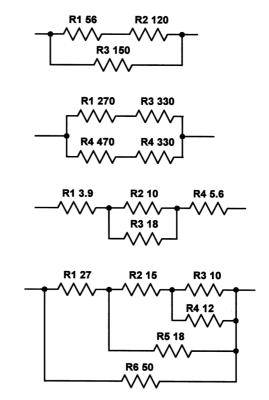


Figure A2.4 See Question 13

values of resonant frequency for the circuit. [Page 78]

- **28.** An audio amplifier delivers an output power of 40 W r.m.s. to an 8 Ω resistive load. What r.m.s. voltage will appear across the load terminals? [Page 9]
- 29. A transformer has 400 primary turns and 60 secondary turns. The primary is connected to a 220 V a.c. supply and the secondary is connected to a load resistance of 20 Ω . Assuming that the transformer is perfect, determine: (a) the secondary voltage; (b) the secondary current; and (c) the primary current. [Page 83]
- **30.** Figure A2.13 shows the characteristic of a diode. Determine the resistance of the diode when (a) $V_F = 2 \text{ V}$ and (b) $I_F = 9 \text{ mA}$. [Page 93]
- 31. A transistor operates with a collector current of 25 mA and a base current of 200 μA. Determine: (a) the value of emitter current; (b) the value of common-emitter current gain; and (c) the new value of collector

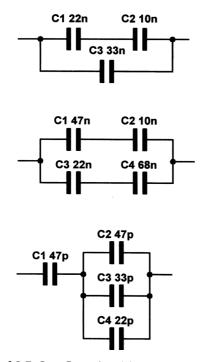


Figure A2.5 See Question 14

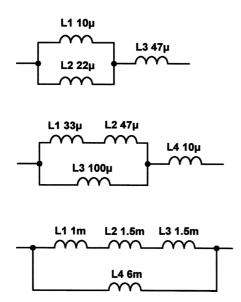


Figure A2.6 See Question 15

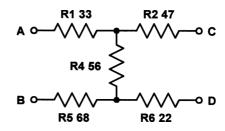
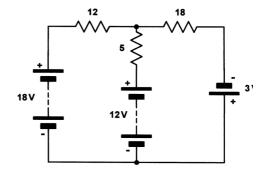



Figure A2.7 See Question 18

A2.8 See Question 19

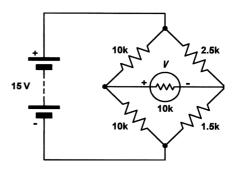


Figure A2.9 See Question 20

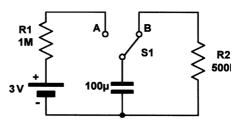


Figure A2.10 See Question 21

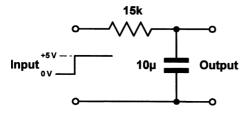


Figure A2.11 See Question 22

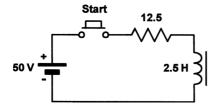


Figure A2.12 See Question 23

Forward current (mA)

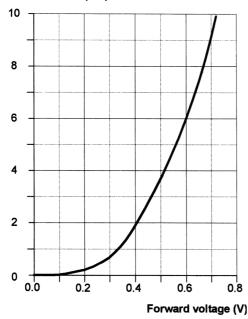


Figure A2.13 See Question 30

current if the base current increases by 50%. [Page 100]

- **32.** A zener diode rated at 5.6 V is connected to a 12 V d.c. supply via a fixed series resistor of 56 Ω . Determine the current flowing in the resistor, the power dissipated in the resistor and the power dissipated in the zener diode. [Page 124]
- **33.** An amplifier has identical input and output resistances and provides a voltage gain

- of 26 dB. Determine the output voltage produced if an input of 50 mV is applied. [Page 140]
- **34.** Figure A2.14 shows the frequency response of an amplifier. Determine the mid-band voltage gain and the upper and lower cut-off frequencies. [Page 144]
- **35.** Figure A2.15 shows the frequency response of an amplifier. Determine the bandwidth of the amplifier. [Page 144]
- **36.** The transfer characteristic of a transistor is shown in Fig. A2.16. Determine: (a) the static value of common-emitter current gain at $I_{\rm c}$ = 50 mA and (b) the dynamic (small-signal) value of common-emitter current gain at $I_{\rm c}$ = 50 mA. [Page 101]
- 37. The output characteristics of a bipolar transistor are shown in Fig. A2.17. If the transistor operates with $V_{\rm CC}$ = 15 V, $R_{\rm L}$ = 500 and $I_{\rm B}$ = 40 A determine: (a) the quiescent value of collector-emitter voltage; (b) the quiescent value of collector current; (c) the peak-peak output voltage produced by a base input current of 40 μ A. [Page 154]
- **38.** The output characteristics of a field effect transistor are shown in Fig. A2.18. If the transistor operates with $V_{\rm DD}=18~{\rm V}$, $R_{\rm L}=3~{\rm k}\Omega$ and $V_{\rm GS}=-1.5~{\rm V}$ determine: (a) the quiescent value of drain-source voltage; (b) the quiescent value of drain current; (c) the peak-peak output voltage produced by a gate input voltage of 1 V peak-peak; (d) the voltage gain of the stage. [Page 154]
- **39.** Figure A2.19 shows the circuit of a commonemitter amplifier stage. Determine the values of $I_{\rm B}$, $I_{\rm C}$, $I_{\rm E}$ and the voltage at the emitter. [Page 153]
- **40.** A transistor having $h_{\rm ie} = 2.5~{\rm k}\Omega$ and $h_{\rm fe} = 220$ is used in a common-emitter amplifier stage with $R_{\rm L} = 3.3~{\rm k}\Omega$. Assuming that $h_{\rm oe}$ and $h_{\rm re}$ are both negligible, determine the voltage gain of the stage. [Page 152]
- **41.** An astable multivibrator is based on coupling capacitors C1 = C2 = 10 nF and timing resistors R1 = 10 k Ω and R2 = 4 k Ω . Determine the frequency of the output signal. [Page 184]
- **42.** A sine wave oscillator is based on a Wien bridge with $R = 5 \text{ k}\Omega$ and C = 15 nF.

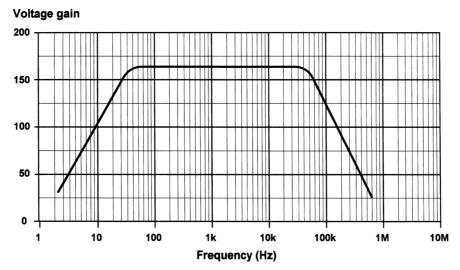


Figure A2.14 See Question 34

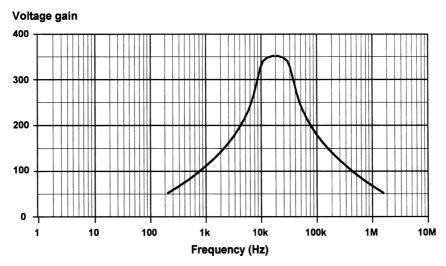


Figure A2.15 See Question 35

Determine the frequency of the output signal. [Page 182]

- **43.** The frequency response characteristic of an operational amplifier is shown in Fig. A2.20. If the device is configured for a closed-loop gain of 200, determine the resulting bandwidth. [Page 170]
- **44.** Redraw Fig. A2.21 using American (MIL/ANSI) symbols. [Page 196]
- **45.** Draw the truth table for the logic gate arrangement shown in Fig. A2.22. [Page 196]
- **46.** Redraw Fig. A2.23 using BS symbols. [Page 196]

- **47.** What single logic gate can be used to replace the logic circuit shown in Fig. A2.24? [Page 196]
- **48.** What single logic gate can be used to replace the logic circuit shown in Fig. A2.25? [Page 196]
- **49.** Devise arrangements of logic gates that will produce the truth tables shown in Fig. A2.26. Use the minimum number of logic gates in each case. [Page 196]
- **50.** A 1 kHz square wave clock waveform is applied to the circuit shown in Fig. A2.27.

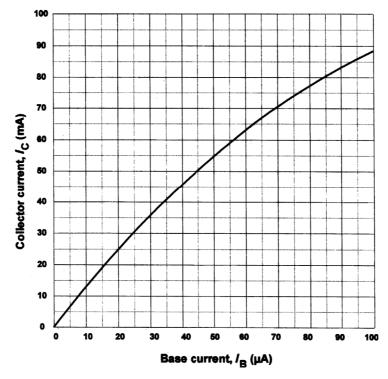


Figure A2.16 See Question 36

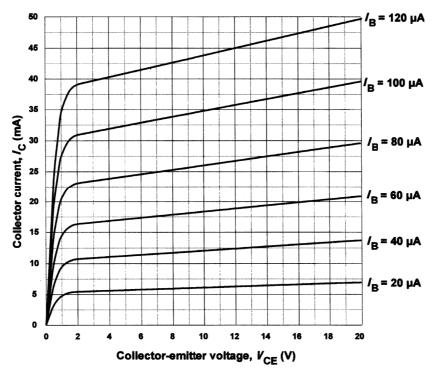


Figure A2.17 See Question 37

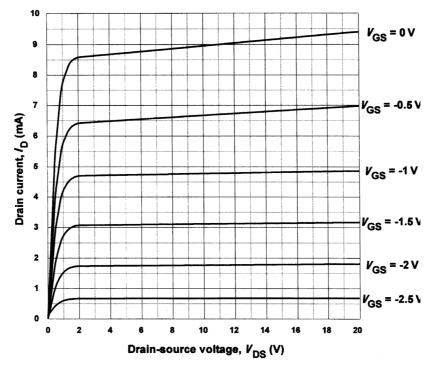


Figure A2.18 See Question 38

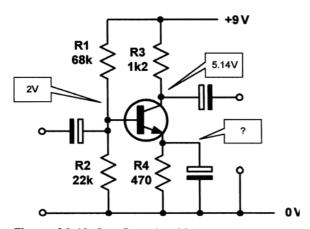
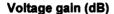



Figure A2.19 See Question 39

Sketch the output waveform against a labelled time axis. [Page 200]

- **51.** (a) Convert 7B hexadecimal to binary.
 - **(b)** Convert 11000011 binary to hexadecimal. [Page 211]
- **52.** What is the largest value, expressed (a) in decimal, and (b) in binary, that can appear at any one time on a 16-bit data bus. [Page 211]

- **53.** Sketch a diagram showing the basic arrangement of a microprocessor system. Label your drawing clearly. [Page 213]
- **54.** (a) Explain the function of a microprocessor clock.
 - (b) Explain why a quartz crystal is used to determine the frequency of a microprocessor clock. [Page 215]
- **55.** Sketch the circuit diagram of a typical microprocessor clock. Label your drawing clearly. [Page 216]
- **56.** Explain, briefly, how a microprocessor fetches and executes instructions. Illustrate your answer with a timing diagram showing at least one fetch–execute cycle. [Page 217]
- **57.** Sketch the circuit diagram of a monostable timer based on a 555 device. Explain, briefly, how the circuit operates. [Page 230]
- **58.** A 555 timer is connected in monostable mode. If the values of the timing components used are C = 100 nF and R = 10 k Ω , determine the monostable pulse time. [Page 230]
- **59.** Determine the frequency of a radio signal that has a wavelength of 1500 m. [Page *3*]

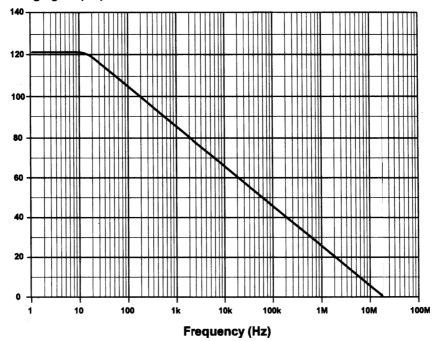


Figure A2.20 See Question 43

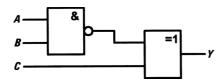


Figure A2.21 See Question 44

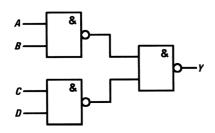


Figure A2.22 See Question 45



Figure A2.23 See Question 46

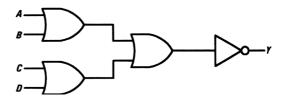


Figure A2.24 See Question 47

- **60.** Determine the wavelength of a radio signal that has a frequency of 40 MHz. [Page 3]
- **61.** A superhet medium wave broadcast receiver with an intermediate frequency of 470 kHz is to cover the frequency range 560 kHz to 1.58 MHz. Over what frequency range should the local oscillator be tuned? [Page *9*]
- **62.** Explain, with the aid of waveforms, the operation of a simple AM demodulator. [Page 10]
- **63.** Explain, with the aid of a labelled sketch, how the voltage and current are distributed in a half-wave dipole aerial. [Page *11*]
- **64.** Determine the length of a half-wave dipole for use at a frequency of 70 MHz. [Page 12]

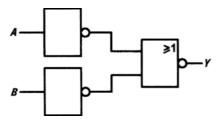


Figure A2.25 See Question 48

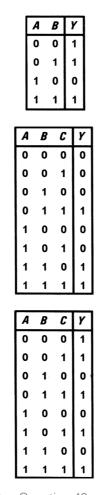


Figure A2.26 See Question 49

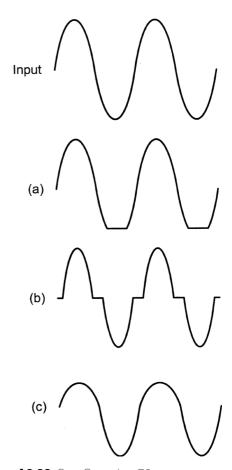


Figure A2.28 See Question 70

- **65.** Sketch the block schematic of a simple TRF radio receiver. Briefly explain the function of each stage. [Page 7]
- **66.** A moving coil meter has a full-scale deflection current of 1 mA and a coil resistance of 400 Ω . Determine the value of the multiplier resistor if the meter is to be used as a voltmeter reading 0 to 15 V. [Page 239]

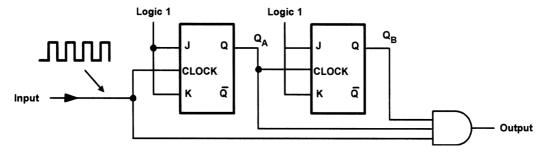


Figure A2.27 See Question 50

Appendix 2 Revision problems

- **67.** A moving coil meter has a full-scale deflection current of 5 mA and a coil resistance of 120 Ω . Determine the value of shunt resistor if the meter is to be used as an ammeter reading 0 to 20 mA. [Page 239]
- **68.** Explain the term 'ohms-per-volt' as applied to an analogue voltmeter. [Page 242]
- **69.** Sketch the circuit of a simple ohmmeter based on a moving coil meter. [Page 240]
- **70.** Identify each of the forms of distortion shown in Fig. A2.28. [Page 260]
- **71.** Give TWO reasons why a multimeter is generally considered to be unsuitable for checking the operation of logic circuits. [Page 283]
- **72.** Explain how a logic probe can be used to check the operation of a combinational logic circuit. [Page 284]
- **73.** Briefly explain the 'half-split' method of fault finding. [Page 277]
- **74.** Define the terms 'sensor' and 'transducer'. Give one example of each. [Page 291]
- 75. Identify one type of sensor for use in each of the following applications: (a) measuring the surface temperature of an integrated circuit package; (b) determining the pressure exerted on the walls of a gas storage vessel; (c) detecting the minimum level of fuel in a

- tank; (d) determining the flow rate of a liquid in a pipe. [Page 293]
- **76.** Sketch interface circuits to show how a TTL logic signal can be used to control (a) a 24 V d.c. relay and (b) an a.c. mains operated motor. Identify all components used in each circuit. [Page 302]
- 77. Sketch the block schematic diagram of an electronic control system that incorporates feedback. Label your drawing clearly. [Page 291]
- **78.** Sketch the block schematic diagram of an electronic instrumentation system that incorporates analogue input and digital display facilities. Label your drawing clearly. [Page 291]
- **79.** Explain, with the aid of a circuit diagram, how a threshold light-level detector can be made with the aid of a comparator. [Page 299]
- **80.** Explain the advantages of using a PIC microcontroller in simple control applications when compared with (a) logic gate arrangements and (b) conventional microprocessors. [Page 209]

Page numbers shown in italic refer to Chapter 21, 'Radio', the additional online chapter that can be downloaded from the book's **companion website**: www.key2electronics.com.

Answers to problems with numerical solutions

Appendix 3 Answers to problems with numerical solutions

Chapte	er 1	2.12	60 pF, 540 pF
1.1	Coulombs, Joules, Hertz	2.13	50 pF
1.2	3.6 MJ	2.14	0.655 J
1.3	0.52 radian	2.15	1.98 nF
1.4	11.46°	2.16	69.4 μF
1.5	39.57 kΩ	2.17	0.313 V
		2.18	0.136 H
1.6	0.68 H	2.19	0.48 J
1.7	2.45 nF	2.20	90 mH, 16.6 mH
1.8	0.19 mA	2.20	00 11111, 10.0 11111
1.9	$4.75 \times 10^{-4} \text{ V}$	Chapt	er 3
1.10	$16.5 \times 10^6 \ \Omega$	3.1	275 mA
1.11	4.8×10^{6} , 7.2×10^{3} , 4×10^{3} , 0.5×10^{-3} ,	3.1	200 Ω
	7.5		
1.12	Silver	3.3	1.5 A away from the junction, 215 mA
1.13	33.3 mA	0.4	away from the junction
1.14	6.72 V	3.4	1.856 V, 6.6 V
1.15	3.3 kΩ	3.5	0.1884 A, 0.1608 A, 0.0276 A, 5.09 V,
1.16	150		0.91 V, 2.41 V
1.17	0.436 Ω	3.6	1.8 V, 10.2 V
1.18	0.029 W	3.7	0.5 A, 1.5 A
1.19	0.675 W	3.8	1 V, 2 V, 3 V, 4 V, 5 V
1.20	57.7 mA	3.9	40.6 ms
1.21	$0.625 \times 10^6 \text{ V/m}$	3.10	3.54 s
1.22	12 A	3.11	112.1 μF
1.23	6 μWb	3.12	0.128 s
1.24	1.01×10^{6}	3.13	2.625 V, 5 Ω
1.25	0.5 A	3.14	21 V, 7 Ω, 3 A, 7 Ω
1.26	1P 4W	3.15	50 mA, 10 V
1.27	1 kΩ, 3 kΩ, 10 kΩ, 30 kΩ	3.16	50 V, 10 V
		Chapt	or A
Chapte	er 2	-	
2.1	60Ω , $3.75 W$, wirewound	4.1	4 ms, 35.35 V
2.2	270 k Ω 5%, 10 Ω 10%, 6.8 M Ω 5%,	4.2	59.88 Hz, 3394 V
	$0.39~\Omega~5\%$, $2.2~k\Omega~2\%$	4.3	50 Hz 30 V peak-peak, 15 Hz 10 V peak-
2.3	$44.65~\Omega$ to $49.35~\Omega$		peak, 150 kHz 0.1 V peak-peak
2.4	27 Ω and 33 Ω in series; 27 Ω and 33 Ω	4.4	19 V, –11.8 V
	in parallel; 56 Ω and 68 Ω in series; 27 Ω ,	4.5	10.6 V
	33 Ω and 56 Ω in parallel; 27 Ω , 33 Ω and	4.6	36.19 kΩ, 144.76 Ω
	68Ω in series	4.7	3.54 mA
2.5	66.67 Ω	4.8	10.362 Ω, 1.45 kΩ
2.6	10 Ω	4.9	4.71 V
2.7	102 Ω, 78.5 Ω	4.10	592.5 Ω , 0.186 A
2.8	407.2 Ω	4.11	0.55, 0.487 A
2.9	98.7 kΩ	4.12	157 nF
2.10	3.21×10^{-4}	4.13	(a) 2.04 k Ω , (b) 154 Ω , (c) 305 Ω ,
2.10	3.3 μF and 4.7 μF in parallel; 1 μF and		(d) 703 Ω
۷.۱۱	10 μF in parallel; 1 μF, 3.3 μF 4.7 μF and	4.14	1.77 MHz to 7.58 MHz
	10 μ F in parallel; 1 μ F and 10 μ F in series;	4.15	7.5 mA, 2.71 V
	3.3 μF and 4.7 μF in series	-	•
_	5.5 μι απα 4.7 μι πι Senes		

4.16	281 kHz, 41.5, 6.77 kHz	6.8	0.5 Ω, 8.3 V
4.17	(a) 455.4 kHz, (b) 2.6 kHz, (c) 175	6.9	1%, 15.15 V
4.18	670 kHz, 100 μA, 4 mA	6.10	Step-up (or 'boost'), pins 5 and 3, pin 7
4.19	Transformer	Chapte	or 7
4.20	18 V	•	
4.21	245 V	7.1	40, 160, 6400, 100 Ω
4.22	4 turns per volt, 48 turns, 1.7 W, 0.36 A	7.2	2 V
Chapte	er 5	7.3	56, 560 kHz, 15 Hz
•		7.4	18.5
5.1	Silicon (forward threshold approx. 0.6 V)	7.5	0.0144
5.2	41 Ω, 150 Ω	7.6	2.25 V
5.4	9.1 V zener diode	7.7	13 μA, 4.487 mA, 3.39 V, 2.7 V, 4.51 V
5.5	250 Ω	7.8	5 V, 7 mA, 8.5 V
5.6	Germanium: low-power, high-frequency;	7.9	0.6 V, 18 μA, 3.9 V, 2 mA, 0 V, 4.5 V, 9 V
	silicon: low-power, low-frequency;	7.10	12.2 V, 6.1 mA, 5.5
	silicon: high-power, low-frequency;	7.11	2,500
E 7	silicon: low-power, high-frequency	7.12	40, 0.27 W, 133 mA
5.7	2.625 A, 20	Chapte	er 8
5.8	5 mA, 19.6	8.3	
5.9 5.10	16.7	o.s 8.7	200 -7.5 V
5.10 5.11	BC108		
5.11	8 μA, 1.1 mA 47 mA, 94, 75	8.8	82 dB
5.12	47 mA, 94, 75 12.5 mA, 12V, 60 μA	Chapte	er 9
	12.5 mA, 12V, 60 μA 16 mA	9.1	
5.14 5.16		9.1	4.44, 40 6.49 kΩ
5.10	Dual-in-line, single-in-line, quad-in-line,	9.2	18 kΩ
5.17	large-scale integration 100 V, 500 mW, 50 nA, 0.7 V	9.3 9.4	
5.17	Signal or power diode, photo diode, zener	9.5	5.63 V peak-peak 23.32 ms, 42.9 Hz
5.10	diode, thyristor (or SCR)	9.6	14.3 kΩ, 42.9 kΩ
5.19	NPN BJT, PNP Darlington BJT, P-channel	9.8	1.448 ms, 690 Hz
5.15	enhancement MOSFET, N-channel JFET	9.10	15.9 Hz
5.20	PNP silicon general-purpose transistor,	9.13	R3 = 2R4 (minimum gain = 2)
5.20	-40 V, -500 mA, -0.25 V, 625 mW,	9.13	713 = 2714 (11111111111111111111111111111111111
	TO-92	Chapte	er 10
5.21	The maximum power dissipation is not	10.9	Low-power Schottky (LS) TTL, 27th week
0.21	exceeded	10.0	of 1998
5.22	N-channel JFET RF amplifier, 25 V,	10.10	0.6 V
0.22	50 mA, 2 nA, 2 mS, 8 pF, 350 mW, TO-92	10.10	
5.23	9.6 mA, 5 V, 0 V	Chapte	er 11
0.20		11.1	00111010
Chapte	er 6	11.2	C2
6.1	80 mV	11.3	(a) 111111, (b) 3F
6.2	5 mV	11.4	(c)
6.3	200 Ω	11.5	1,048,576
6.4	12.74 V, 9.1 V, 8.4 V	11.6	1,024
6.5	36.4 mA, 0.33 W	11.7	+127
6.6	0 V, 12.04 V, 0 V	11.8	(a) Input port, FEH; output port, FFH
6.7	14.35 V		(b) 001010000
	·		Nev elected

Appendix 3 Answers to problems with numerical solutions

Chapter 12 3. Semiconductor temperature sensor, threshold comparator, voltage (high or 12.5 (a) VR2 low) (b) S2 4. Position, microswitch, current (c) RA (d) VR1 Chapter 16 (e) S1 16.6 Three_input_or; three inputs and one (f) R2 output: bit (g) VR3 16.10 0000; 1111; 0010 (h) R5 (i) C10 Chapter 17 (i) *C*5 and *R*3 17.1 Analogue-to-digital converter; 12.6 50Ω digital-to-analogue converter; bus interface device (RS-232, USB etc.); Chapter 13 LED or LCD display driver 13.1 $19.6 \text{ k}\Omega$ 13.2 11.11 Ω Chapter 18 13.3 $16.67 \text{ k}\Omega$ 18.1 26-pins for Models A and B or 40-pins 13.4 $100 \text{ k}\Omega$ for model B+ 13.5 (a) 19.99 V 18.2 +5 V, +3.3 V (b) 10 mV 18.30 V low, +3.3 V high 18.3 13.6 $25 k\Omega$ 18.4 SD card random-access memory for 13.7 60 mA operating system, programs and user 13.8 35.3 μΑ data storage 13.9 (a) 4 V pk-pk, 3.33 ms 18.5 2 for SPI (limited by the Raspberry Pi's (b) 150 mV pk-pk, 125 ns two chip select lines (CS0 and CS1); 127 (c) 250 V pk-pk, 500 ms for I2C 13.10 (a) 7.8 μs (b) $3.4 \mu s$ Chapter 19 (c) $4.4 \mu s$ 19.1 14, using pinMode() (d) $1.5 \, \mu s$ 19.2 Digital I/O pin-13 (e) 1 μs 19.3 Serial Monitor (f) 5 V 19.4 40 mA 19.5 Chapter 14 (a) Sets an integer value of 11 for powerLED 14.1 Fault 1: R2 open-circuit (b) Toggles the state of powerGood Fault 2: TR2 collector-emitter (c) Places a high state on the powerLED short-circuit output Fault 3: R3 open-circuit (d) Sends ASCII text ("Power good!") via Fault 4: TR1 base-collector short-circuit the serial output Fault 5: C2 short-circuit 19.6 (a) A0 Fault 6: R5 open-circuit (b) Pins 2 to 8 (c) +9Vdigital Chapter 15 (d) See Figures 19.23 and 19.26 15.1 1. Volume, float gauge, voltage or current 2. Flow, flow sensor (rotating vane), Chapter 20 voltage or pulse repetition frequency

20.1

20.3

Point-to-point wiring

17.85 °C/W

Semiconductor pin connections



Figure A4.2 Transistors

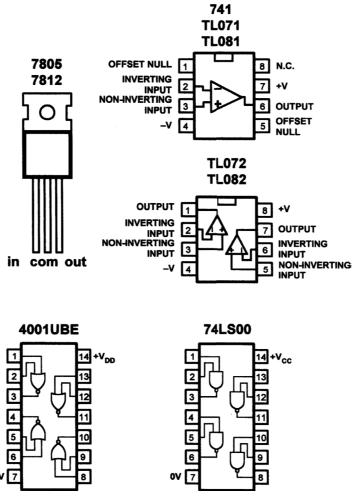


Figure A4.3 Integrated circuits

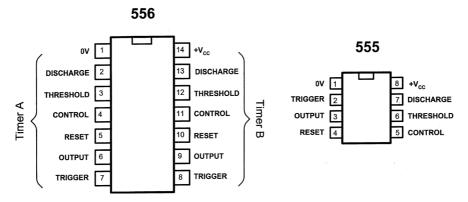


Figure A4.4 Integrated circuit timers

1N4148 data sheet

1N/FDLL 914/A/B / 916/A/B / 4148 / 4448

COLOR BAND MARKING DEVICE 1ST BAND 2ND BAND FDLL914A BLACK
FDL1914B BROWN
FDL1916B BLACK
FDL1916B BROWN
FDL1916B BROWN
FDL1916B BROWN
FDL19448 BROWN BROWN GRAY BLACK RED WHITE BROWN BROWN BLACK

LL-34

THE PLACEMENT OF THE EXPANSION GAP HAS NO RELATIONSHIP TO THE LOCATION OF THE CATHODE TERMINAL

Small Signal Diode

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{RRM}	Maximum Repetitive Reverse Voltage	100	V
I _{F(AV)}	Average Rectified Forward Current	200	mA
I _{FSM}	Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 second Pulse Width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
TJ	Operating Junction Temperature	175	°C

Thermal Characteristics

Symbol	Characteristic	Characteristic Max	
		1N/FDLL 914/A/B / 4148 / 4448	
P _D	Power Dissipation	500	mW
R _{eJA}	Thermal Resistance, Junction to Ambient	300	°C/W

©2002 Fairchild Semiconductor Corporation

1N/FDLL 914/A/B / 916/A/B / 4148 / 4448, Rev. B

¹⁾ These ratings are based on a maximum junction temperature of 200 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Small Signal Diode

(continued)

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
V _R	Breakdown Voltage	I _R = 100 μA	100		V
	Farmer IV/alliana AND 4 AD 44 AD	I _R = 5.0 μA	75	700	V
V_{F}	Forward Voltage 1N914B/4448 1N916B	I _F = 5.0 mA I _F = 5.0 mA	620 630	720 730	mV mV
	1N914/916/4148	I _F = 10 mA		1.0	V
	1N914A/916A	I _F = 20 mA		1.0	V
	1N916B	I _F = 20 mA		1.0	V
	1N914B/4448	I _F = 100 mA		1.0	V
I _R	Reverse Current	V _R = 20 V V _R = 20 V, T _Δ = 150°C		25 50	nA μA
		V _R = 75 V		5.0	μΑ
C _T	Total Capacitance				
	1N916A/B/4448	V _R = 0, f = 1.0 MHz		2.0	pF
	1N914A/B/4148	$V_R = 0, f = 1.0 \text{ MHz}$		4.0	pF
t _{rr}	Reverse Recovery Time	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V } (60\text{mA}),$		4.0	ns
		$I_{rr} = 1.0 \text{ mA}, R_{L} = 100\Omega$			

Typical Characteristics

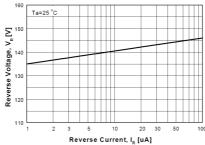
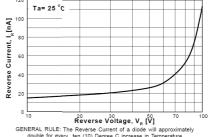



Figure 1. Reverse Voltage vs Reverse Current BV - 1.0 to 100 uA

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

Figure 2. Reverse Current vs Reverse Voltage IR - 10 to 100 V

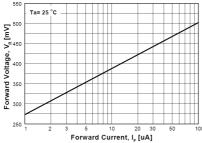


Figure 3. Forward Voltage vs Forward Current VF - 1 to 100 uA

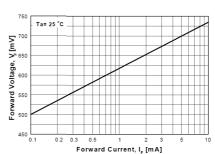
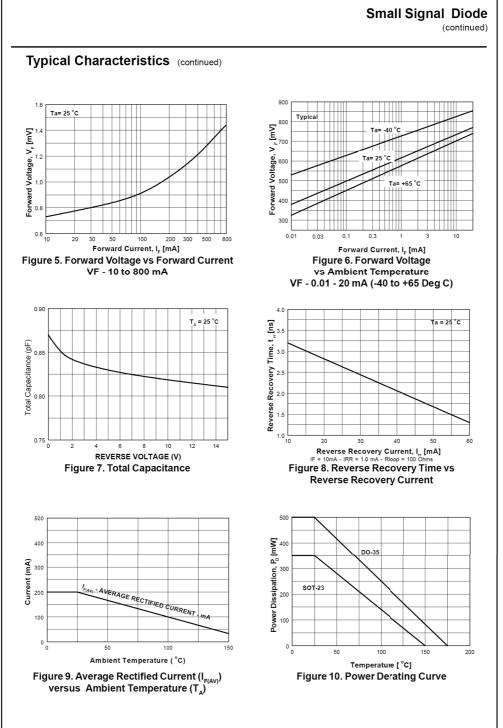
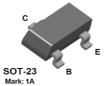
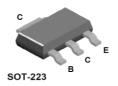



Figure 4. Forward Voltage vs Forward Current VF - 0.1 to 10 mA

Datasheet reproduced by kind permission of Fairchild Semiconductor.

2N3904 data sheet




2N3904

MMBT3904

PZT3904

NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier.

Absolute Maximum Ratings* T_A = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) Those are ateady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics T_A = 25°C unless otherwise noted

Symbol	Characteristic	Max			Units
		2N3904	*MMBT3904	**PZT3904	1
P _D	Total Device Dissipation	625	350	1,000	mW
	Derate above 25°C	5.0	2.8	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3			°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	125	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

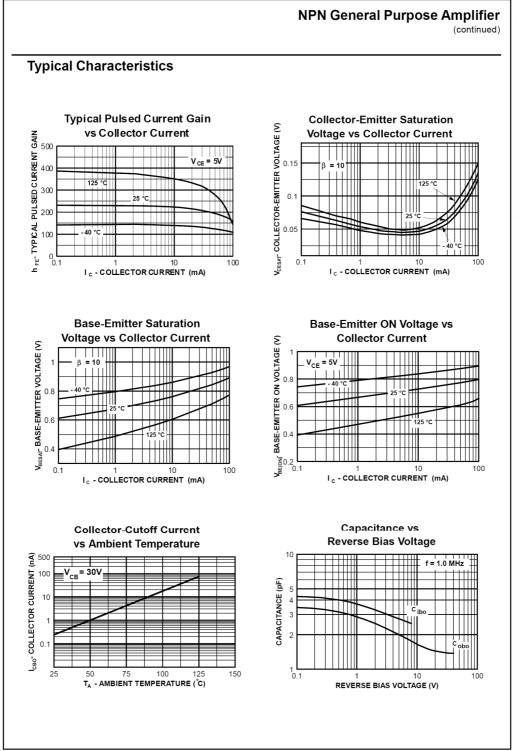
© 2001 Fairchild Semiconductor Corporation

2N3904/MMBT3904/PZT3904, Rev A

 $[\]hbox{\ensuremath{}^{**}} \label{eq:decomposition} \mbox{Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm^2.}$

NPN General Purpose Amplifier

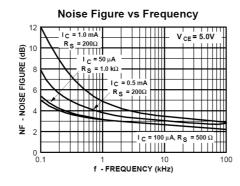
(continued)

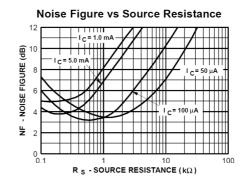

	10		:-1:
Electri	cai Ci	naracte	eristics

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHAI	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	I _C = 1.0 mA, I _B = 0	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	I _C = 10 μA, I _E = 0	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	6.0		V
I _{BL}	Base Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA
I _{CEX}	Collector Cutoff Current	V _{CE} = 30 V, V _{EB} = 3V		50	nA
	•	•		•	•
ON CHAR	ACTERISTICS*				
∩ _{FE}	DC Current Gain	$\begin{array}{l} I_C = 0.1 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C = 1.0 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C = 10 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \\ I_C = 50 \text{ mA}, \ V_{CE} = 1.0 \text{ V} \end{array}$	40 70 100 60	300	
		$I_{\rm C} = 100 \text{mA}, V_{\rm CE} = 1.0 \text{V}$	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.2 0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 50 \text{ m/s}, I_B = 5.0 \text{ m/s}$ $I_C = 10 \text{ mA}, I_B = 1.0 \text{ mA}$ $I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$	0.65	0.85 0.95	V
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	I_{C} = 10 mA, V_{CE} = 20 V,	300	T	MHz
C _{obo}	Output Capacitance	f = 100 MHz $V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz		4.0	pF
	Output Capacitance Input Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz $V_{EB} = 0.5 \text{ V}, I_{C} = 0,$		4.0	
C _{ibo}		$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 1.0 MHz			pF
C _{ibo}	Input Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz $V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 MHz $I_{C} = 100 \mu\text{A}, V_{CE} = 5.0 \text{ V},$		8.0	pF pF
C _{ibo} NF SWITCHIN	Input Capacitance Noise Figure	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 1.0 MHz $V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 MHz $I_{C} = 100 \mu\text{A}, V_{CE} = 5.0 \text{ V},$		8.0	pF pF
Cibo NF SWITCHIN	Input Capacitance Noise Figure NG CHARACTERISTICS	$\begin{split} &V_{CB} = 5.0 \text{ V, } I_E = 0, \\ &f = 1.0 \text{ MHz} \\ &V_{EB} = 0.5 \text{ V, } I_C = 0, \\ &f = 1.0 \text{ MHz} \\ &I_C = 100 \mu\text{A, } V_{CE} = 5.0 \text{ V,} \\ &R_S = 1.0 \text{k}\Omega, \text{f=10 Hz to 15.7kHz} \end{split}$		8.0	pF pF dB
C _{obo} C _{ibo} NF SWITCHIN	Input Capacitance Noise Figure NG CHARACTERISTICS Delay Time	$\begin{split} &V_{CB} = 5.0 \text{ V, } I_E = 0, \\ &f = 1.0 \text{ MHz} \\ &V_{EB} = 0.5 \text{ V, } I_C = 0, \\ &f = 1.0 \text{ MHz} \\ &I_C = 100 \mu\text{A, } V_{CE} = 5.0 \text{ V,} \\ &R_S = 1.0 \text{k}\Omega, \text{f=10 Hz to 15.7kHz} \\ \end{split}$		8.0 5.0	pF pF dB

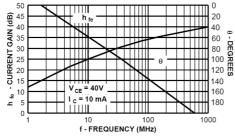
^{*}Pulse Test: Pulse Width $\leq\!300~\mu\text{s}$, Duty Cycle $\leq\!2.0\%$

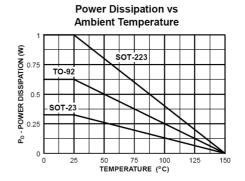
Spice Model

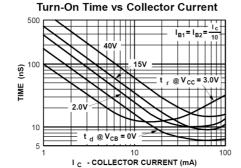

NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)

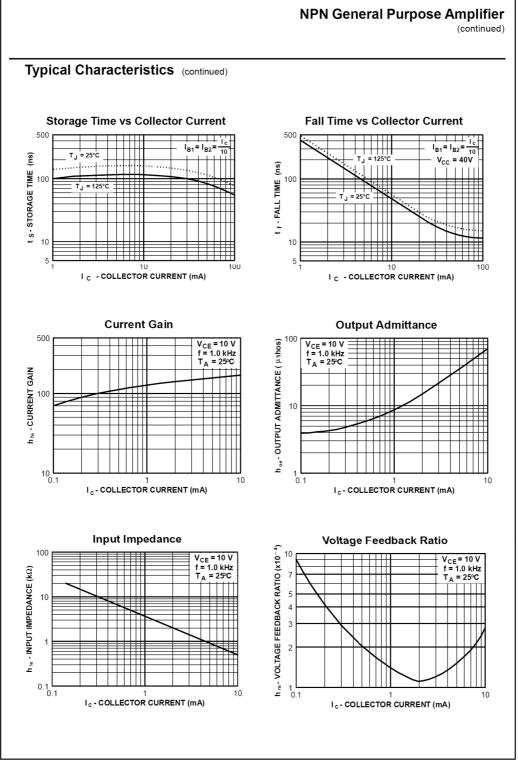


NPN General Purpose Amplifier


(continued)






Current Gain and Phase Angle vs Frequency

NPN General Purpose Amplifier Test Circuits 3.0 V 10.6 V - 0.5 V < 1.0 ns FIGURE 1: Delay and Rise Time Equivalent Test Circuit 10 < t₁ < 500 µs → t₁ Duty Cycle = 2% 10 ΚΩ FIGURE 2: Storage and Fall Time Equivalent Test Circuit

Datasheet reproduced by kind permission of Fairchild Semiconductor.

Decibels

Chapter summary

Decibels (dB) are a convenient means of expressing gain (amplification) and loss (attenuation) in electronic circuits. In this respect, they are used as a *relative* measure (i.e. comparing one voltage with another, one current with another or one power with another). In conjunction with other units, decibels are sometimes also used as an *absolute* measure. Hence dBV are decibels relative to 1 V, dBm are decibels relative to 1 mW, etc.

The decibel is one-tenth of a bel which, in turn, is defined as the logarithm, to the base 10, of the ratio of output power (P_{out}) to input power (P_{in}).

Gain and loss may be expressed in terms of power, voltage and current, such that:

$$A_{\rm p} = \frac{P_{\rm out}}{P_{\rm in}}$$
 $A_{\rm v} = \frac{V_{\rm out}}{V_{\rm in}}$ and $A_{\rm i} = \frac{I_{\rm out}}{I_{\rm in}}$

where $A_{\rm p}$, $A_{\rm v}$ or $A_{\rm i}$ is the power, voltage or current gain (or loss) expressed as a ratio, $P_{\rm in}$ and $P_{\rm out}$ are the input and output powers, $V_{\rm in}$ and $V_{\rm out}$ are the input and output voltages, and $I_{\rm in}$ and $I_{\rm out}$ are the input and output currents. Note, however, that the powers, voltages or currents should be expressed in the same units/multiples (e.g. $P_{\rm in}$ and $P_{\rm out}$ should both be expressed in W, mW, μ W or nW).

It is often more convenient to express gain in decibels (rather than as a simple ratio) using the following relationships:

$$A_{p} = 10\log_{10}\left(\frac{P_{out}}{P_{in}}\right) \qquad A_{v} = 20\log_{10}\left(\frac{V_{out}}{V_{in}}\right)$$

and
$$A_1 = 20 \log_{10} \left(\frac{I_{\text{out}}}{I_{\text{in}}} \right)$$

Note that a positive result will be obtained whenever $P_{\rm out}$, $V_{\rm out}$ or $I_{\rm out}$ is greater than $P_{\rm in}$, $V_{\rm out}$ or $I_{\rm out}$, respectively. A negative result will be obtained whenever $P_{\rm out}$, $V_{\rm out}$ or $I_{\rm out}$ is less than $P_{\rm in}$, $V_{\rm in}$ or $I_{\rm in}$. A negative result denotes attenuation rather than amplification. A negative gain is thus equivalent to an attenuation (or loss). If desired, the formulae may be adapted to produce a positive result for attenuation simply by inverting the ratios, as shown below:

$$A_{p} = 10 \log_{10} \left(\frac{P_{in}}{P_{out}} \right)$$
 $A_{v} = 20 \log_{10} \left(\frac{V_{in}}{V_{out}} \right)$

and
$$A_1 = 20 \log_{10} \left(\frac{I_{in}}{I_{out}} \right)$$

where $A_{\rm p}$, $A_{\rm v}$ or $A_{\rm i}$ is the power, voltage or current gain (or loss) expressed in decibels, $P_{\rm in}$ and $P_{\rm out}$ are the input and output powers, $V_{\rm in}$ and $V_{\rm out}$ are the input and output voltages, and $I_{\rm in}$ and $I_{\rm out}$ are the input and output currents. Note, again, that the powers, voltages or currents should be expressed

in the same units/multiples (e.g. P_{in} and P_{out} should both be expressed in W, mW, μ W or nW).

It is worth noting that, for identical decibel values, the values of voltage and current gain can be found by taking the square root of the corresponding value of power gain. As an example, a voltage gain of 20 dB results from a voltage ratio of 10 while a power gain of 20 dB corresponds to a power ratio of 100.

Finally, it is essential to note that the formulae for voltage and current gain are only meaningful when the input and output impedances (or resistances) are identical. Voltage and current gains expressed in decibels are thus only valid for matched (constant impedance) systems. Table A7.1 gives some useful decibel values.

Example A7.1

An amplifier with matched input and output resistances provides an output voltage of 1 V for an input of 25 mV. Express the voltage gain of the amplifier in decibels.

Table A7.1 Decibels and ratios of power, voltage and current

Decibels (dB)	Power gain (ratio)	Voltage gain (ratio)	Current gain (ratio)
0	1	1	1
1	1.26	1.12	1.12
2	1.58	1.26	1.26
3	2	1.41	1.41
4	2.51	1.58	1.58
5	3.16	1.78	1.78
6	3.98	2	2
7	5.01	2.24	2.24
8	6.31	2.51	2.51
9	7.94	2.82	2.82
10	10	3.16	3.16
13	19.95	3.98	3.98
16	39.81	6.31	6.31
20	100	10	10
30	1,000	31.62	31.62
40	10,000	100	100
50	100,000	316.23	316.23
60	1,000,000	1,000	1,000
70	10,000,000	3,162.3	3,162.3

Solution

The voltage gain can be determined from the formula:

$$A_{v} = 20 \log_{10}(V_{out}/V_{in})$$

where $V_{in} = 25 \text{ mV}$ and $V_{out} = 1 \text{ V}$.

Thus:

$$A_{v} = 20 \log_{10}(1 \text{ V/25 mV})$$

= $20 \log_{10}(40) = 20 \times 1.6 =$ **32 dB**

Example A7.2

A matched 600 Ω attenuator produces an output of 1 mV when an input of 20 mV is applied. Determine the attenuation in decibels.

Solution

The attenuation can be determined by applying the formula:

$$A_{V} = 20 \log_{10}(V_{out}/V_{in})$$

where $V_{in} = 20 \text{ mV}$ and $V_{out} = 1 \text{ mV}$.

Thus:

$$A_{v} = 20 \log_{10}(20 \text{ mV/1 mV})$$

= $20 \log_{10}(20) = 20 \times 1.3 =$ **26 dB**

Example A7.3

An amplifier provides a power gain of 33 dB. What output power will be produced if an input of 2 mW is applied?

Solution

Here we must re-arrange the formula to make P_{out} the subject, as follows:

$$A_{\rm v} = 10 \log_{10}(P_{\rm out}/P_{\rm in})$$

thus

$$A_0/10 = \log_{10}(P_{out}/P_{in})$$

or

antilog₁₀
$$(A_n/10) = P_{out}/P_{in}$$

Hence

$$P_{\text{out}} = P_{\text{in}} \times \text{antilog}_{10}(A_{\text{p}}/10)$$

Now $P_{\rm in}$ = 2 mW = 20 × 10⁻³ W and $A_{\rm v}$ = 33 dB, thus:

$$P_{\text{out}} = 2 \times 10^{-3} \text{ antilog}_{10}(33/10)$$

= $2 \times 10^{-3} \times \text{antilog}_{10}(3.3)$
= $2 \times 10^{-3} \times 1.995 \times 10^{-3} = 3.99 \text{ W}$

Mathematics for electronics

Chapter summary

This section introduces the mathematical techniques that are essential to developing a good understanding of electronics. The content is divided into eight sections; notation, algebra, equations, graphs, trigonometry, Boolean algebra, logarithms and exponential growth and decay. We have included a number of examples and typical calculations.

Notation

The standard notation used in mathematics provides us with a shorthand that helps to simplify the writing of mathematical expressions. Notation is based on the use of symbols that you will already recognize. These include = (equals), + (addition), - (subtraction), \times (multiplication) and \div (division). Other symbols that you may not be so familiar with include < (less than), > (greater than), \propto (proportional to) and \sqrt (square root).

Indices

The number 4 is the same as 2×2 , that is, 2 multiplied by itself. We can write (2×2) as 2^2 . In words, we would call this 'two raised to the power two' or simply 'two squared'. Thus:

$$2 \times 2 = 2^{2}$$

By similar reasoning we can say that:

$$2 \times 2 \times 2 = 2^3$$

and

$$2 \times 2 \times 2 \times 2 = 2^4$$

In these examples, the number that we have used (i.e. 2) is known as the *base* while the number that we have raised it to is known as an *index*. Thus, 2⁴ is called 'two to the power of four', and it consists of a base of 2 and an index of 4. Similarly, 5³ is called 'five to the power of 3' and has a base of 5 and an index of 3. Special names are used when the indices are 2 and 3, these being called 'squared' and 'cubed', respectively. Thus 7² is called 'seven squared' and 9³ is called 'nine cubed'. When no index is shown, the power is 1, i.e. 2¹ means 2.

Reciprocals

The *reciprocal* of a number is when the index is -1 and its value is given by 1 divided by the base. Thus the reciprocal of 2 is 2^{-1} and its value is ½ or 0.5. Similarly, the reciprocal of 4 is 4^{-1} which means ¼ or 0.25.

Square roots

The *square root* of a number is when the index is $\frac{1}{2}$. The square root of 2 is written as $2^{\frac{1}{2}}$ or $\sqrt{2}$.

The value of a square root is the value of the base which when multiplied by itself gives the number. Since $3 \times 3 = 9$, then $\sqrt{9} = 3$. However, $(-3) \times (-3) = 9$, so we have a second possibility, i.e. $\sqrt{9} = \pm 3$. There are always two answers when finding the square root of a number and we can indicate this is by placing a \pm sign in front of the result meaning 'plus or minus'. Thus:

$$4^{\frac{1}{2}} = \sqrt{4} = \pm 2$$

and

$$9^{\frac{1}{2}} = \sqrt{9} = \pm 3$$

Variables and constants

Unfortunately, we don't always know the value of a particular quantity that we need to use in a calculation. In some cases the value might actually change, in which case we refer to it as a *variable*. In other cases, the value might be fixed but we might prefer not to actually quote its value. In this case we refer to the value as a *constant*.

An example of a *variable quantity* is the output voltage produced by a power supply when the load current is changing. An example of a *constant quantity* might be the speed at which radio waves travel in space.

In either case, we use a symbol to represent the quantity. The symbol itself (often a single letter) is a form of shorthand notation. For example, in the case of the voltage from the power supply we would probably use v to represent voltage. Whereas, in the case of the speed of travel of a radio wave we normally use c to represent the speed of radio waves in space (i.e. the speed of light).

We can use letters to represent both variable and constant quantities in mathematical notation. For example, the statement:

voltage is equal to *current* multiplied by resistance

can be written in mathematical notation as follows:

$$V = I \times R$$

where *V* represents voltage, *I* represents current and *R* represents resistance.

Appendix 8 Mathematics for electronics

Similarly, the statement:

resistance is equal to voltage divided by

can be written in mathematical notation as follows:

$$R = \frac{V}{I}$$

where *R* represents resistance, *V* represents voltage and *I* represents current.

Proportionality

In electronic circuits, when one quantity changes it normally affects a number of other quantities. For example, if the output voltage produced by a power supply increases when the resistance of the load to which it is connected remains constant, the current supplied to the load will also increase. If the output voltage doubles, the current will also double in value. If, on the other hand, the output voltage falls by 50% the current will also fall by 50%. To put this in a mathematical way we can say that (provided that load resistance remains constant):

load current is *directly proportional* to output voltage

Using mathematical notation and symbols to represent the quantities, we would write this as:

$$I \propto V$$

where *I* represents load current, *V* represents output voltage and ∝ means 'is proportional to'. In some cases, an increase in one quantity will produce a *reduction* in another quantity. For example, if the frequency of a wavelength of a radio wave increases, its wavelength is reduced. To put this in a mathematical way we say that (provided the speed of travel remains constant):

wavelength is *inversely proportional* to frequency

Using mathematical notation and symbols to represent the quantities, we would write this as follows:

$$T \propto \frac{1}{f}$$

where T represents periodic time and f represents frequency.

It's useful to illustrate these important concepts using some examples:

Example 1

The power in a loudspeaker is proportional to the square of the r.m.s. output voltage and inversely proportional to the impedance of the speaker. Write down an equation for the power, P, in terms of the voltage, V, and impedance, Z. Obtain a formula for P in terms of V and Z.

From the information given, we can say that 'power is proportional to voltage squared' hence:

$$P \propto V^2 \tag{1}$$

and 'power is inversely proportional to impedance' thus:

$$P \propto \frac{1}{7} \tag{2}$$

We can re-write this expression using a negative index, as follows:

$$P \propto Z^{-1}$$

We can go one stage further and combine these two relationships to obtain a formula for power that involves both variables, i.e. *V* and *Z*:

$$\frac{1}{Z}$$

Example 2

In Example 1, determine the power delivered to the loudspeaker if the r.m.s. voltage, V, is 8 V and the loudspeaker has an impedance, Z, of 4 W.

$$P = V^2 Z^{-1} = \frac{V^2}{Z} = \frac{8^2}{4} = \frac{8 \times 8}{4} = \frac{64}{4} = 16 \text{ W}$$

Example 3

The equipment manufacturer in Example 2 recommends testing the amplifier at a power of 10 W. Determine the r.m.s. voltage at the output that corresponds to this power level.

Here we must re-arrange the formula in order to make V the subject. If we multiply both sides of the equation by Z we will have P and Z on one side of the equation and V^2 on the other:

$$P \times Z = \frac{V^2}{Z} \times Z$$

from which

$$PZ = V^2 \frac{Z}{Z}$$

or

$$PZ = V^2$$

Re-arranging (1) gives:

$$V^2 = PZ$$

Taking square roots of both sides:

$$\sqrt{V^2} = \sqrt{PZ}$$

The square root of V^2 is V hence:

$$V = \sqrt{PZ} = (PZ)^{\frac{1}{2}}$$

We need to find V when P = 10 W and Z = 4 Ω :

$$V = \sqrt{10 \times 4} = \sqrt{40} =$$
6.32 V

Laws of indices

When simplifying calculations involving indices, certain basic rules or laws can be applied, called the *laws of indices*. These are listed below:

- (a) When multiplying two or more numbers having the same base, the indices are added. Thus $2^2 \times 2^4 = 2^2 + 4^4 = 2^6$.
- **(b)** When a number is divided by a number having the same base, the indices are subtracted. Thus $2^5/2^2 = 2^{5-2} = 2^3$.
- (c) When a number which is raised to a power is raised to a further power, the indices are multiplied. Thus $(2^5)^2 = 2^{5\times2} = 2^{10}$.
- (d) When a number has an index of 0, its value is 1. Thus $2^0 = 1$.
- (e) When a number is raised to a negative power, the number is the reciprocal of that number raised to a positive power. Thus $2^{-4} = 1/2^4$.
- (f) When a number is raised to a fractional power the denominator of the fraction is the root of the number and the numerator is the power. Thus $25^{1/2} = \sqrt{25^{1}} = \pm 5$

Standard form

A number written with one digit to the left of the decimal point and multiplied by 10 raised to some power is said to be written in standard form. Thus: 1234 is written as 1.234×10^3 in standard form, and 0.0456 is written as 4.56×10^{-2} in standard form.

When a number is written in standard form, the first factor is called the **mantissa** and the second factor is called the **exponent**. Thus the number 6.8×10^3 has a mantissa of 6.8 and an exponent of 10^3 .

(1) Numbers having the same exponent can be added or subtracted in standard form by adding
 (2) or subtracting the mantissa and keeping the exponent the same. Thus:

$$2.3 \times 10^4 + 3.7 \times 10^4 = (2.3 + 3.7) \times 10^4$$

= 6.0×10^4 .

and

$$5.7 \times 10^{-2} - 4.6 \times 10^{-2} = (5.7 - 4.6) \times 10^{-2}$$

= 1.1 × 10⁻²

When adding or subtracting numbers it is quite acceptable to express one of the numbers in non-standard form, so that both numbers have the same exponent. This makes things much easier as the following example shows:

$$2.3 \times 10^4 + 3.7 \times 10^3 = 2.3 \times 10^4 + 0.37 \times 10^4$$

= $(2.3 + 0.37) \times 10^4$
= 2.67×10^4

Alternatively,

$$2.3 \times 10^4 + 3.7 \times 10^3 = 23,000 + 3700$$

= $26.700 = 2.67 \times 10^4$

The laws of indices are used when multiplying or dividing numbers given in standard form. For example.

$$(22.5 \times 10^3) \times (5 \times 10^2) = (2.5 \times 5) \times (10^3 + ^2)$$

= 12.5×10^5 or 1.25×10^6

Example 4

Period, t, is the reciprocal of frequency, f. Thus

$$t = f^{-1} = \frac{1}{f}$$

Calculate the period of a radio frequency signal having a frequency of 2.5 MHz.

Now f = 2.5 MHz. Expressing this in standard form gives $f = 2.5 \times 10^6$ Hz.

Since

$$t = f^{-1} = \frac{1}{2.5 \times 10^6} = \frac{10^{-6}}{2.5} = \frac{1}{2.5} \times 10^{-6} = 0.4 \times 10^{-6}$$

Thus

$$t = 4 \times 10^{-7} \text{ s}$$

Example 5

Resistors of 3.9 k Ω , 5.6 k Ω and 10 k Ω are connected in parallel as shown in Fig. A8.1. Calculate the effective resistance of the circuit. The resistance of a parallel circuit is given by the equation:

$$\frac{1}{R} = \frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3}$$

Now we know that:

$$R1 = 3.9 \text{ k}\Omega = 3.9 \times 10^3 \Omega$$

$$R2 = 5.6 \text{ k}\Omega = 5.6 \times 10^3 \Omega$$

$$R3 = 10 \text{ k}\Omega = 1 \times 10^4 \Omega = 10 \times 10^3 \Omega$$

Hence:

$$\frac{1}{R} = \frac{1}{3.9 \times 10^{3}} + \frac{1}{5.6 \times 10^{3}} + \frac{1}{10 \times 10^{3}}$$

$$= \frac{10^{-3}}{3.9} + \frac{10^{-3}}{5.6} + \frac{10^{-3}}{10} = \left(\frac{1}{3.9} + \frac{1}{5.6} + \frac{1}{10}\right) \times 10^{-3}$$

$$= (0.256 + 0.179 + 0.1) \times 10^{-3} = 0.535 \times 10^{-3}$$

$$\frac{1}{R} = 0.535 \times 10^{3}$$

Now since we can invert both sides of the equation so that:

$$R = \frac{1}{0.535 \times 10^{-3}} = 1.87 \times 10^{3}$$

Hence

$$R$$
 = 1.87 k Ω

Equations

We frequently need to solve equations in order to find the value of an unknown quantity. Any arithmetic operation may be applied to an

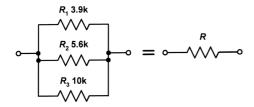


Figure A8.1 See Example 5

equation as long as the equality of the equation is maintained. In other words, the same operation must be applied to both the left-hand side (LHS) and the right-hand side (RHS) of the equation.

Example 6

A current of 0.5 A flows in the 56 Ω shown in Fig. A8.2. Given that V = IR, determine the voltage that appears across the resistor.

It's a good idea to get into the habit of writing down what you know before attempting to solve an equation. In this case:

$$I = 0.5 \text{ A}$$

 $R = 56 \Omega$
 $V = ?$

Now

$$V = IR = 0.5 \times 56 = 28 \text{ V}$$

Example 7

The current present at a junction in a circuit is shown in Fig. A8.3 where $I_1 = 0.1$ A, $I_2 = 0.25$ A and $I_3 = 0.3$ A. Determine the value of the unknown current, I_2 .

From Kirchhoff's Current Law, the algebraic sum of the current at a junction in a circuit is zero. Adopting the convention that current flowing towards the junction is positive and that flowing away from the junction is negative we can construct a formula along the following lines:

$$0 = -l_{x} + l_{1} - l_{2} - l_{3}$$

$$I = 0.5 A \qquad R = 56 \Omega$$

$$V = ?$$

Figure A8.2 See Example 6

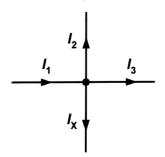


Figure A8.3 See Example 7

We can re-arrange the equation to make l_x the subject by adding l_y to both sides:

$$0 + I_x = -I_x + I_x + I_1 - I_2 - I_3$$

From which:

$$I_{y} = I_{1} - I_{2} - I_{3}$$

Now $I_1 = 0.1 \text{ A}$, $I_2 = 0.25 \text{ A}$ and $I_3 = 0.3 \text{ A}$

Thus:

$$L = 0.1 - 0.25 - 0.3 = -0.45 A$$

Hence $l_{x} = 0.45$ A flowing towards the junction.

It is important to note here that our original 'guess' as to the direction of l_x as marked on Fig. A8.3 was incorrect and the current is actually flowing the other way!

Note that it is always a good idea to check the solution to an equation by substituting the solution back into the original equation. The equation should then balance such that the LHS can be shown to be equal to the RHS.

In many cases it can be more convenient to change the subject of a formula *before* you insert values. The next few examples show how this is done:

Example 8

A copper wire has a length, l, of 1.5 km, a resistance, R, of 5 Ω and a resistivity, ρ , of 17.2 × 10⁻⁶ Ω mm. Find the cross-sectional area, a, of the wire, given the following relationship:

$$R = \frac{\rho l}{a}$$

Once again, it is worth getting into the habit of summarizing what you know from the question and what you need to find. Also, don't forget to include the units for each one of the quantities that you know.

$$R = 5 \Omega$$

$$\rho = 17.2 \times 10^{-6} \,\Omega$$
 mm

$$I = 1500 \times 10^3 \text{ mm}$$

$$a = ?$$

Now since

$$R = \frac{\rho l}{a}$$

then

$$5 = \frac{(17.2 \times 10^{-6}) (1,500 \times 10^{3})}{a}$$

Cross multiplying (i.e. exchanging the '5' for the 'a') gives:

$$a = \frac{(17.2 \times 10^{-6}) (1,500 \times 10^{3})}{5}$$

Now group the numbers and the powers of 10 as shown below:

$$a = \frac{17.2 \times 1,500 \times 10^{-6} \times 10^3}{5}$$

Next simplify as far as possible:

$$a = \frac{17.2 \times 1,500}{5} \times 10^{-6+3}$$

Finally, evaluate the result using your calculator:

$$a = 5.160 \times 10^{-3} = 5.16$$

Don't forget the units! Since we have been working in mm, the result, a, will be in mm².

Hence
$$a = 5.16 \text{ mm}^2$$

It's worth noting from the previous example that we have used the laws of indices to simplify the powers of ten before attempting to use the calculator to determine the final result. The alternative to doing this is to make use of the exponent facility on your calculator. Whichever technique you use it's important to be confident that you are correctly using the exponent notation since it's not unknown for students to produce answers that are incorrect by a factor of 1,000 or even 1,000,000 and an undetected error of this magnitude could be totally disastrous!

Before attempting to substitute values into an equation, it's important to be clear about what you know (and what you don't know) and always make sure that you have the correct units. The values marked on components can sometimes be misleading and it's always worth checking that you have interpreted the markings correctly before wasting time solving an equation that doesn't produce the right answer!

Example 9

The reactance, *X*, of a capacitor is given by the relationship:

$$X = \frac{1}{2\pi fC}$$

Appendix 8 Mathematics for electronics

Find the value of capacitance that will exhibit a reactance of 10 k Ω at a frequency of 400 Hz.

First, let's summarize what we know:

$$X = 10 \text{ k}\Omega$$

$$f = 400 \text{ Hz}$$

 π = 3.142 (or use the ' π ' button on your calculator)

$$C = ?$$

We need to re-arrange the formula to make *C* the subject. This is done as follows:

$$X = \frac{1}{2\pi fC}$$

Cross multiplying gives:

$$C = \frac{1}{2\pi f \times X}$$

(note that we have just 'swapped' the C and the X over).

Next, replacing π , C and f by the values that we know gives:

$$C = \frac{1}{2 \times 3.142 \times 400 \times 10 \times 10^{3}} = \frac{1}{25,136 \times 10^{3}}$$
$$= \frac{1}{2.5136 \times 10^{7}} = \frac{1}{2.5136} \times 10^{-7} = 0.398 \times 10^{-7} \text{ F}$$

Finally, it would be sensible to express the answer in nF (rather than F). To do this, we simply need to multiply the result by 10°, as follows:

$$C = 0.398 \times 10^{-7} \times 10^9 = 0.398 \times 10^{9-7}$$

= $0.398 \times 10^2 = 39.8 \text{ nF}$

Example 10

The frequency of resonance, *f*, of a tuned circuit (see Fig. A8.4) is given by the relationship:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

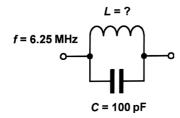


Figure A8.4 See Example 10

If a tuned circuit is to be resonant at 6.25 MHz and C = 100 pF, determine the value of inductance, L.

Here we know that:

$$C = 100 \text{ pF} = 100 \times 10^{-12} \text{ F}$$

$$f = 6.25 \text{ MHz} = 6.25 \times 10^6 \text{ Hz}$$

 π = 3.142 (use the ' π ' button on your calculator!)

$$L = ?$$

First we will re-arrange the formula in order to make *L* the subject:

$$f = \frac{1}{2\pi\sqrt{LC}}$$

Squaring both sides gives:

$$f^{2} = \left(\frac{1}{2\pi\sqrt{LC}}\right)^{2} = \frac{1^{2}}{2^{2}\pi^{2}\left(\sqrt{LC}\right)^{2}} = \frac{1}{4\pi^{2}LC}$$

Re-arranging gives:

$$L = \frac{1}{4\pi^2 f^2 C}$$

We can now replace f, C and π by the values that we know:

$$L = \frac{1}{4 \times 3.142^{2} \times (6.25 \times 10^{6})^{2} \times 100 \times 10^{-12}} \text{ H}$$

$$L = \frac{1}{39.49 \times 39.06 \times 10^{12} \times 100 \times 10^{-12}} \text{ H}$$

$$= \frac{1}{154,248} = \frac{1}{1.54248 \times 10^5} = \frac{1}{1.54248} \times 10^{-5}$$

=
$$0.648 \times 10^{-5} = 6.48 \times 10^{-6} \text{ H} = 6.8 \,\mu\text{H}$$

More complex equations

More complex equations are solved in essentially the same way as the simple equations that we have just met. Note that equations with square (or higher) laws may have more than one solution. Here is an example:

Example 11

The impedance of the a.c. circuit shown in Fig. A8.5 is given by:

$$Z = \sqrt{R^2 + X^2}$$

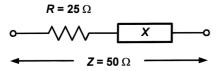


Figure A8.5 See Example 11

Determine the reactance, X, of the circuit when $R = 25 \Omega$ and $Z = 50 \Omega$.

Here we know that:

 $R = 25 \Omega$

 $Z = 50 \Omega$

X = ?

First we will re-arrange the formula in order to make *X* the subject:

$$Z = \sqrt{R^2 + X^2}$$

Squaring both sides gives:

$$Z^2 = \left(\sqrt{R^2 + X^2}\right)^2 = R^2 + X^2$$

Re-arranging gives:

$$X^2 = Z^2 - R^2$$

Taking the square root of both sides gives:

$$X = \sqrt{Z^2 - R^2}$$

We can now replace Z and R by the values that we know:

$$X = \sqrt{50^2 - 25^2} = \sqrt{2,500 - 625} = \sqrt{1,875}$$

thus

$$X$$
 = 43.3 Ω

In the previous example we arrived at a solution of 43.3 Ω for X. This is not the only solution as we will now show:

As before, we can check that we have arrived at the correct answer by substituting values back into the original equation, as follows:

$$50 = Z = \sqrt{R^2 + X^2} = \sqrt{25^2 + 43.3^2}$$

$$50 = \sqrt{625 + 1,875} = \sqrt{2,500} = 50$$

Thus LHS = RHS.

However, we could also have used –43.3 Ω (instead of +43.3 Ω) for X and produced the *same* result:

$$50 = Z = \sqrt{R^2 + X^2} = \sqrt{25^2 + (-43.3)^2}$$

$$50 = \sqrt{625 + 1,875} = \sqrt{2,500} = 50$$

Once again, LHS = RHS.

The reason for this apparent anomaly is simply that the result of squaring a negative number will be a positive number (i.e. $(-2)^2 = (-2) \times (-2) = +4$).

Hence, a correct answer to the problem in Example 11 would be:

$$X = \pm 43.3 \ \Omega$$

Don't panic if the ambiguity of this answer is worrying you! Reactance in an a.c. circuit *can* be either positive or negative depending upon whether the component in question is an inductor or a capacitor. In this case, the numerical value of the impedance is the same regardless of whether the reactance is inductive or capacitive.

Graphs

Graphs provide us with a visual way of representing data. They can also be used to show, in a simple pictorial way, how one variable affects another variable. Several different types of graph are used in electronics. We shall start by looking at the most basic type, the straight line graph.

Straight line graphs

Earlier we introduced the idea of *proportionality*. In particular, we showed that the current flowing in a circuit was directly proportional to the voltage applied to it. We expressed this using the following mathematical notation:

$$i \propto v$$

where i represents load current and ν represents output voltage.

We can illustrate this relationship using a simple graph showing current, i, plotted against voltage, v.

Figure A8.6 Corresponding readings of current, i, and voltage, v, are taken and used to construct the graph shown in Fig. A8.7

Appendix 8 Mathematics for electronics

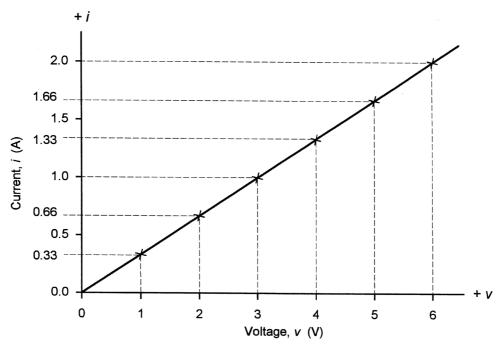
Let's assume that the voltage applied to the circuit varies over the range 1 V to 6 V and the circuit has a resistance of 3 W. By taking a set of measurements of *v* and *i* (see Fig. A8.6) we would obtain the following table of corresponding values shown below:

Voltage, v (V)	1	2	3	4	5	6
Current, i (A)	0.33	0.66	1.0	1.33	1.66	2.0

The resulting graph is shown in Fig. A8.7. To obtain the graph, a point is plotted for each pair of corresponding values for v and i. When all the points have been drawn they are connected together by drawing a line. Notice that, in this case, the line that connects the points together takes the form of a straight line. This is *always* the case when two variables are directly proportional to one another.

It is conventional to show the *dependent variable* (in this case it is current, i) plotted on the vertical axis and the *independent variable* (in this case it is voltage, v) plotted on the horizontal axis. If you find these terms a little confusing, just remember that what you know is usually plotted on the horizontal scale while what you don't know (and may be trying to find) is usually plotted on the

vertical scale. In fact, the graph contains the same information regardless of which way round it is drawn!


Now let's take another example. Assume that the following measurements are made on an electronic component:

Temperature, t (°C)	10	20	30	40	50	60
Resistance, R (W)	105	110	115	120	125	130

The results of the experiment are shown plotted in graphical form in Fig. A8.8. Note that the graph consists of a straight line but that it does not pass through the *origin* of the graph (i.e. the point at which t and V are 0 °C and 0 V, respectively). The second most important feature to note (after having noticed that the graph is a straight line) is that, when t = 0 °C, R = 100 W.

By looking at the graph we could suggest a relationship (i.e. an *equation*) that will allow us to find the resistance, *R*, of the component at any given temperature, *t*. The relationship is simply:

$$R = 100 + \frac{t}{2} \Omega$$

Figure A8.7 Graph of *i* plotted against v

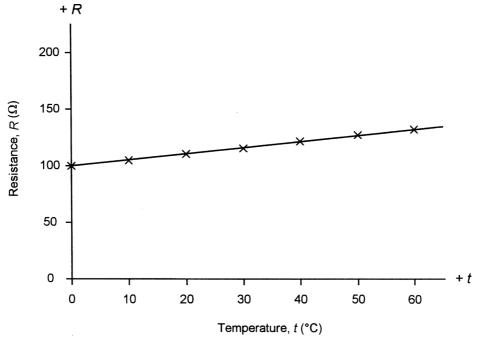


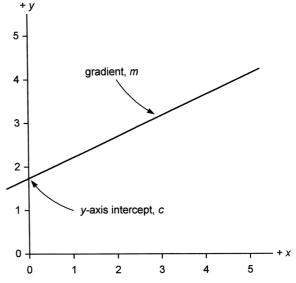
Figure A8.8 Graph of resistance, R, plotted against temperature, t, for a thermistor

If you need to check that this works, just try inserting a few pairs of values from those given in the table. You should find that the equation balances every time!

Earlier we looked at equations. The shape of a graph is dictated by the equation that connects its two variables. For example, the general equation for a straight line takes the form:

$$V = m X + C$$

where *y* is the *dependent variable* (plotted on the vertical or *y-axis*), *x* is the *independent variable* (plotted on the horizontal or *x-axis*), *m* is the slope (or *gradient*) of the graph and *c* is the *intercept* on the *y-axis*. Fig. A8.9 shows this information plotted on a graph.


The values of m (the gradient) and c (the y-axis intercept) are useful when quoting the specifications for electronic components. In the previous example, the electronic component (in this case a *thermistor*) has:

- (a) a resistance of 100 W at 0 °C (thus $c = 100 \Omega$)
- (b) a characteristic that exhibits an increase in resistance of 0.5 W per °C (thus m = 0.5 W/°C).

Example 12

The following data were obtained while making measurements on an N-channel field effect transistor:

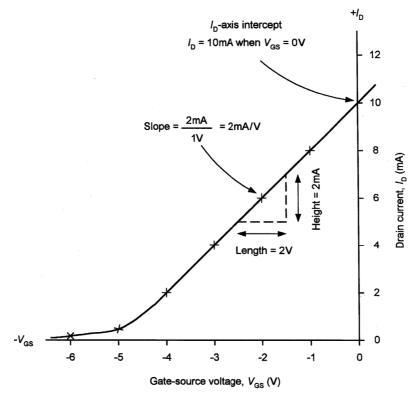
V _{GS} (V)	-1	-2	-3	-4	-5	-6
I_{D} (mA)	8	6	4	2	0.4	0.1

Figure A8.9 Definition of gradient (slope), *m*, and *y*-axis intercept, *c*

Plot a graph showing how drain current ($I_{\rm D}$) varies with gate-source voltage ($V_{\rm GS}$) and use the graph to determine:

- (a) the value of I_D when $V_{GS} = 0$ V, and
- **(b)** the slope of the graph (expressed in mA/V) when $V_{GS} = -2$ V.

The data have been shown plotted in Fig. A8.10. Note that, since the values of $V_{\rm GS}$ that we have been given are negative, we have plotted these to the left of the vertical axis rather than to the right of it.


- (a) We can use the graph to determine the crossing point (the *intercept*) on the drain current (I_D) axis. This occurs when I_D = 10 mA.
- **(b)** The slope (or *gradient*) of the graph is found by taking a small change in drain current and dividing it by a corresponding small change in gate-source voltage. In order to do this we have drawn a triangle on the graph at the point where $V_{\rm GS} = -2$ V. The slope of the graph is found by dividing the vertical height of the triangle (expressed in mA) by the horizontal

length of the triangle (expressed in V). From Fig. A8.10 we can see that the vertical height of the triangle is 2 mA while its horizontal length is 1 V. The slope of the graph is thus given by 2 mA/1 V = 2 mA/V.

Square law graphs

Of course, not all graphs have a straight line shape. In the previous example we saw a graph that, while substantially linear, became distinctly curved at one end. Many graphs are curved rather than linear. One common type of curve is the square law. To put this into context, consider the relationship between the power developed in a load resistor and the current applied to it. Assuming that the load has a resistance of 15 W we could easily construct a table showing corresponding values of power and current, as shown below:

Current, I (A)	0.25	0.5	0.75	1	1.25	1.5
Power, P (W)	0.94	3.75	8.44	15	23.44	33.75

Figure A8.10 Drain current, I_D , plotted against gate-source voltage, V_{GS} , for a field effect transistor

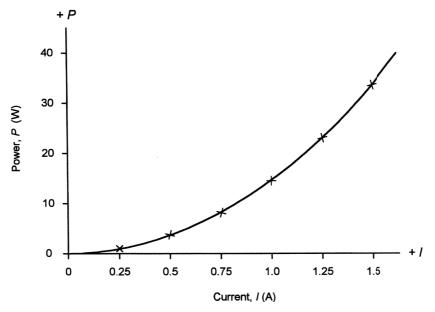


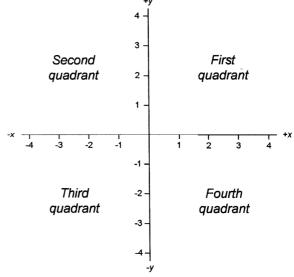
Figure A8.11 Power, P, plotted against current, I, showing a square law graph

We can plot this information on a graph showing power, *P*, on the vertical axis plotted against current, *I*, on the horizontal axis. In this case, *P* is the *dependent variable* and *I* is the *independent variable*. The graph is shown in Fig. A8.11.

It can be seen that the relationship between *P* and *I* in Fig. A8.11 is far from linear. The relationship is, in fact, a *square law relationship*. We can actually deduce this from what we know about the power dissipated in a circuit and the current flowing in the circuit. You may recall that:

$$P = I^2 R$$

where *P* represents power in watts, *I* is current in amps and *R* is resistance in ohms.


Since R remains constant, we can deduce that: $P \propto I^2$

In words, we would say that 'power is proportional to current squared'.

Many other examples of square law relationships are found in electronics.

More complex graphs

Many more complex graphs exist and Fig. A8.13 shows some of the most common types. Note that these graphs have all been plotted over the range $x = \pm 4$, $y = \pm 4$. Each graph consists of four quadrants. These are defined as follows (see Fig. A8.12):

Figure A8.12 The first, second, third and fourth quadrants of a graph

First quadrant	Values of x and y are both
	positive
Second quadrant	Values of x are negative while
	those for y are positive
Third quadrant	Values of x and y are both
	negative
Fourth quadrant	Values of x are positive while
	those for v are negative

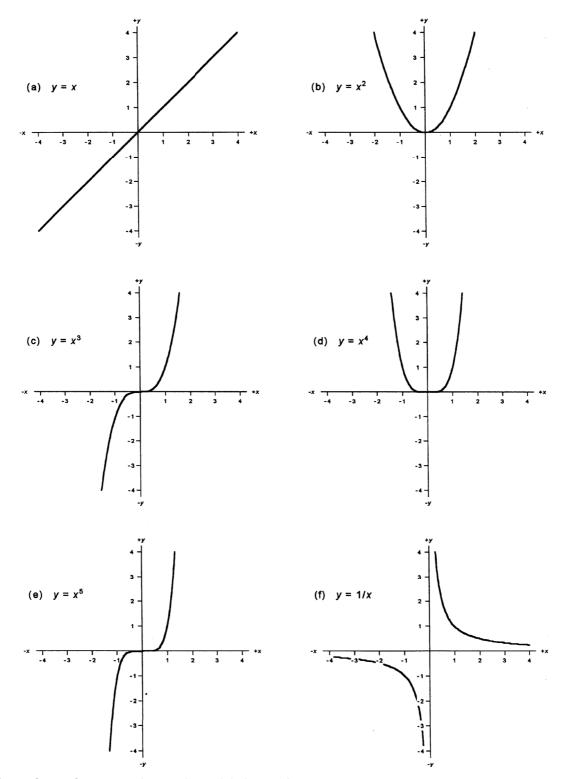


Figure A8.13 Some complex graphs and their equations

The straight line relationship, y = x, is shown in Fig. A8.13(a). This graph consists of a straight line with a gradient of 1 that passes through the *origin* (i.e. the point where x = 0 and y = 0). The graph has values in the first and third quadrants.

The relationship $y = x^2$ is shown in Fig. A8.13(b). This graph also passes through the origin but its gradient changes, becoming steeper for larger values of x. As you can see, the graph has values in the first and second quadrants.

The graph of $y = x^3$ is shown in Fig. A8.13(c). This *cubic law* graph is steeper than the square law of Fig. A8.13(b) and it has values in the first and third quadrants.

Fig. A8.13(d) shows the graph of $y = x^4$. This graph is even steeper than those in Figs. A8.13(b) and A8.13(c). Like the square law graph of Fig. A8.13(b), this graph has values in the first and second guadrants.

The graph of $y = x^5$ is shown in Fig. A8.13(e). Like the cubic law graph of Fig. A8.13(c), this graph has values in the first and third quadrants.

Finally, Fig. A8.13(f) shows the graph of y = 1/x (or $y = x^{-1}$). Note how the y values are very large for small values of x and very small for very large values of x. This graph has values in the first and third quadrants.

If you take a careful look at Fig. A8.13 you should notice that, for odd powers of x (i.e. x^1 , x^3 , x^5 and x^{-1}) the graph will have values in the first and third quadrant while for even powers of x (i.e. x^2 and x^4) the graph will have values in the first and second quadrants.

Trigonometry

You might be wondering what trigonometry has to do with electronics. It's just that a familiarity with some basic trigonometry is fundamental to developing an understanding of signal, waveforms and a.c. circuits. Indeed, the most fundamental waveform used in a.c. circuits is the sine wave and this wave is a trigonometric function.

Basic trigonometrical ratios

Trigonometrical ratios are to do with the way in which we measure angles. Take a look at the

right-angled triangle shown in Fig. A8.14. This triangle has three sides; a, b and c. The angle that we are interested in (we have used the Greek symbol θ to denote this angle) is adjacent to side a and is opposite to side b. The third side of the triangle (the *hypotenuse*) is the longest side of the triangle.

In Fig. A8.14, the theorem of Pythagoras states that 'the square on the hypotenuse is equal to the sum of the squares on the other two sides'. Writing this as an equation we arrive at:

$$c^2 = a^2 + b^2$$

where *c* is the hypotenuse and *a* and *b* are the other two sides.

Taking square roots of both sides of the equation we can see that:

$$c = \sqrt{a^2 + b^2}$$

Thus if we know two of the sides (for example, *a* and *b*) of a right-angled triangle we can easily find the third side (*c*).

The ratios a/c, b/c and a/b are known as the basic *trigonometric ratios*. They are known as sine (*sin*), cosine (*cos*) and tangent (*tan*) of angle θ , respectively. Thus:

$$\sin \theta = \frac{opposite}{hypotenuse} = \frac{a}{c}$$

and

$$\cos \theta = \frac{adjacent}{hypotenuse} = \frac{b}{c}$$

and

$$\tan \theta = \frac{opposite}{adiacent} = \frac{a}{b}$$

Trigonometrical equations

Equations that involve trigonometrical expressions are known as trigonometrical equations.

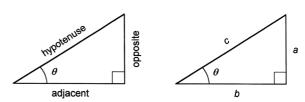


Figure A8.14 Right-angled triangles

Appendix 8 Mathematics for electronics

Fortunately they are not quite so difficult to understand as they sound! Consider the equation:

$$\sin \theta = 0.5$$

This equation can be solved quite easily using a calculator. However, before doing so, you need to be sure to select the correct mode for expressing angles on your calculator. If you are using a 'scientific calculator' you will find that you can set the angular mode to either **radian** measure or **degrees**. A little later we will explain the difference between these two angular measures but for the time being we shall use degrees.

If you solve the equation (by keying in 0.5 and pressing the **inverse sine** function keys) you should see the result 30° displayed on your calculator. Hence we can conclude that:

$$\sin 30^{\circ} = 0.5$$

Actually, a number of other angles will give the same result! Try pressing the sine function key and entering the following angles in turn:

They should all produce the same result, 0.5! This should suggest to you that the graph of the sine function repeats itself (i.e. the shape of the graph is *periodic*). In the next section we shall plot the sine function but before we do we shall take a look at using radian measure to specify angles.

The **radian** is defined as the angle subtended by an arc of a circle equal in length to the radius of the circle. This relationship is illustrated in Fig. A8.15.

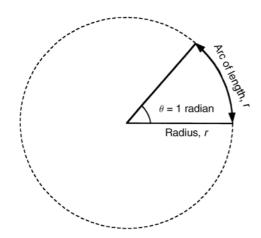


Figure A8.15 Definition of the radian

The circumference, *l*, of a circle is related to its radius, *r*, according to the formula:

$$l = 2 \pi r$$

Thus

$$r = \frac{l}{2\pi}$$

Now, since there are 360 degrees in one complete revolution we can deduce that one radian is the same as $360^{\circ}/2\pi = 57.3^{\circ}$. In other words, to convert:

- (a) degrees to radians multiply by 57.3
- (b) radians to degrees divide by 57.3

It is important to note that one complete cycle of a periodic function (i.e. a waveform) occurs in a time, *T*. This is known as the *periodic time* or just the *period*. In a time interval equal to *T*, the angle will have changed by 360°. The relationship between time and angle expressed in degrees is thus:

$$\theta = \frac{T}{t} \times 360^{\circ} \text{ and } t = \frac{T}{\theta} \times 360^{\circ}$$

Thus, if one complete cycle (360°) is completed in 0.02 s (i.e. T = 20 ms) an angle of 180° will correspond to a time of 0.01 s (i.e. t = 10 ms).

Conversely, if we wish to express angles in radians:

$$\theta = \frac{T}{t} \times 2\pi$$
 and $t = \frac{T}{\theta} \times 2\pi$

Thus, if one complete cycle (2π radians) is completed in 0.02 s (i.e. T = 20 ms) an angle of θ radians will correspond to a time of 0.01 (i.e. t = 10 ms). It should be apparent from this that, when considering waveforms, time and angle (whether expressed in degrees or radians) are interchangeable. Note that the general equation for a sine wave *voltage* is:

$$v = V_{\text{max}} \sin(2\pi f t) = V_{\text{max}} \sin\left(6.28 \times \frac{t}{T}\right)$$

where $V_{\rm max}$ is the maximum value of the voltage and T is the periodic time.

Graphs of trigonometrical functions

To plot a graph of $y = \sin \theta$ we can construct a table of values of $\sin \theta$ as θ is varied from 0° to 360° in suitable steps. This exercise (carried out

using a scientific calculator) will produce a table that looks something like this:

Angle, θ	0°	30°	60°	90°	120°	150°
$\sin \theta$	0	0.5	0.87	1	0.87	0.5

Angle, θ	180°	210°	240°	270°	300°	330°
$\sin \theta$	0	-05	-0.87	-1	-0.87	-0.5

Plotting a graph of the values in the table reveals the graph shown in Fig. A8.16. We can use the same technique to produce graphs of $\cos \theta$ and $\tan \theta$, as shown in Figs A8.17 and A8.18.

Example 13

The voltage applied to a high voltage rectifier is given by the equation:

$$v = 800 \sin(314 t)$$

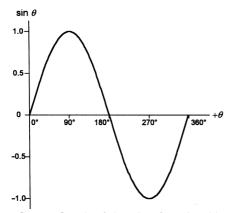
Determine the voltage when:

(a)
$$t = 1 \text{ ms}$$

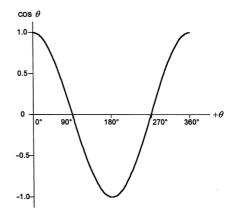
(b)
$$t = 15 \text{ ms}.$$

We can easily solve this problem by substituting values into the expression.

In case (a):


$$v = 800 \sin(314 \times 0.001) = 800 \sin(0.314)$$

$$= 800 \times 0.3088 = 247 \text{ V}$$


In case (b):

$$v = 800 \sin(314 \times 0.015) = 800 \sin(4.71)$$

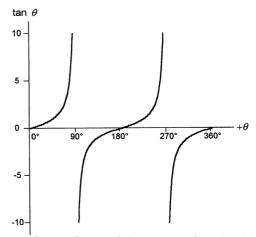

$$= 800 \times -1 = -800 \text{ V}$$

Figure A8.16 Graph of the sine function (the equation of the function is $y = \sin \theta$)

Figure A8.17 Graph of the cosine function (the equation of the function is $y = \cos \theta$)

Figure A8.18 Graph of the tangent function (the equation of the function is $y = \tan \theta$)

Example 14

The voltage appearing at the secondary winding of a transformer is shown in Fig. A8.19. Determine:

- (a) the period of the voltage
- **(b)** the value of the voltage when (i) t = 5 ms and (ii) t = 35 ms
- (c) the maximum and minimum values of voltage
- (d) the average value of the voltage during the time interval 0 to 40 ms
- (e) the equation for the voltage.

All of the above can be obtained from the graph of Fig. A8.19, as follows:

- (a) period, T = 20 ms (this is the time for one complete cycle of the voltage)
- **(b)** at t = 5 ms, v = 20 V; at t = 35 ms, v = -20 V
- (c) $v_{\rm max}$ = +20 V and $v_{\rm min}$ = -20 V

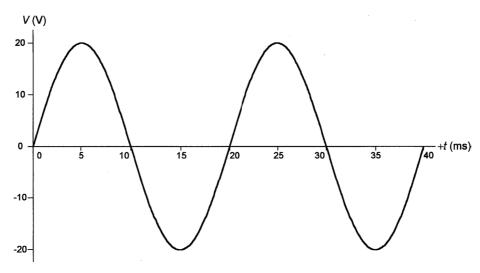


Figure A8.19 See Example 14

- (d) $v_{av.} = 0 \text{ V}$ (the positive and negative cycles of the voltage are equal)
- (e) $v = 20 \sin 314 t$ (the maximum value of the voltage, V_{max} is 20 V and T = 0.02 s).

Boolean algebra

Boolean algebra is the algebra that we use to describe and simplify logic expressions. An understanding of Boolean algebra can be extremely useful when troubleshooting any circuit that employs digital logic. It is, for example, very useful to be able to predict the output of a logic circuit when a particular input condition is present.

Boolean notation

Just as with conventional algebra, we use letters to represent the variables in these expressions. The symbols used in Boolean algebra do not, however, have the same meanings as they have in conventional algebra:

Symbol	Meaning
	Logical AND
+	Logical OR
\oplus	Logical exclusive-OR
_	Logical NOT

Thus 'A AND B' can be written $(A \cdot B)$ whereas 'A OR B' is written (A + B). The bar symbol, $\overline{}$, used above a variable (or over a part of an expression) indicates inversion (the NOT function). Thus 'NOT A' is written \overline{A} and 'NOT (A AND B)' is written $\overline{A} \cdot \overline{B}$. Note that $\overline{A} \cdot \overline{B}$ is not the same as $\overline{A} \cdot \overline{B}$. It is important to note that a logic variable (such as A or B) can exist in only two states variously (and interchangeably) described as true or false, asserted or non-asserted, 1 or 0, etc. The two states are mutually exclusive and there are no 'in between' conditions.

Truth tables

We often use tables to describe logic functions. These tables show all possible logical combinations and they are called *truth tables*. The columns in a truth table correspond to the input variables and an extra column is used to show the resulting output. The rows of the truth tables show all possible states of the input variables. Thus, if there are two input variables (*A* and *B*) there will be four possible input states, as follows:

$$A = 0, B = 0$$

$$A = 0$$
, $B = 1$

$$A = 1, B = 0$$

$$A = 1, B = 1$$

Basic logic functions

The basic logic functions are: OR, AND, NOR and NAND. We can describe each of these basic logic functions using truth tables as shown in Fig. A8.20 (for two input variables) and in Fig. A8.21 (for three input variables).

In general, a logic function with n input variables will have 2^n different possible states for those inputs. Thus, with two input variables there will be four possible input states, for three input variables there will be eight possible states, and for four input variables there will be 16 possible states.

Take a look at Figs A8.20 and A8.21 and compare the output states for AND with those for NAND as well as OR with those for NOR. In every case, you should notice that the output states are complementary – in other words, all of the 0s in the AND column have been inverted to become 1s in the NAND column, and vice versa. The same rule also applies to the OR and NOR columns.

Venn diagrams

An alternative technique to that of using a truth table to describe a logic function is that of using a

Α	В	A + B	A·B	A + B	A·B
0	0	0	0	1	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	1	0	0

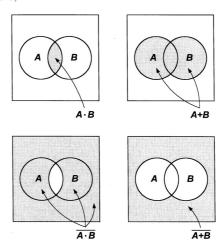
Figure A8.20 Truth tables for the basic logic functions using two variables: A and B

Α	В	С	A+B+C	A·B·C	A+B+C	A·B·C
0	0	0	0	0	1	1
0	0	1	1	0	0	1
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	1	0	0	1
1	0	1	1	0	0	1
1	1	0	1	0	0	1
1	1	1	1	1	0	0

Figure A8.21 Truth tables for the basic logic functions using three variables: *A*, *B* and *C*

Venn diagram. This diagram consists of a number of overlapping areas that represent all of the possible logic states.

A simple Venn diagram with only one variable is shown in Fig. A8.22. The shaded area represents the condition when variable *A* is *true* (i.e. logic 1). The non-shaded area represents the condition when variable *A* is *false* (i.e. logic 0). Obviously, variable *A* cannot be both true and false at the same time hence the shaded and non-shaded areas are mutually exclusive.


Fig. A8.23 shows Venn diagrams for the basic logic functions: AND, OR, NAND and NOR. You should note that these diagrams convey exactly the same information as the truth tables in Fig. A8.20 but presented in a different form.

Karnaugh maps

A Karnaugh map consists of a square or rectangular array of cells into which 0s and 1s may be placed to indicate false and true, respectively. Two alternative representations of a Karnaugh map for two variables are shown in Fig. A8.24.

Figure A8.22 Venn diagram for a single logic variable. *A*

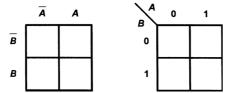
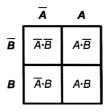


Figure A8.23 Venn diagrams for the basic logic functions


Appendix 8 Mathematics for electronics

The relationship between Boolean logic expressions for two variables and their Karnaugh maps is illustrated in Fig. A8.25 while Fig. A8.26 shows how the basic logic functions, AND, OR, NAND and NOR, can be plotted on Karnaugh maps.

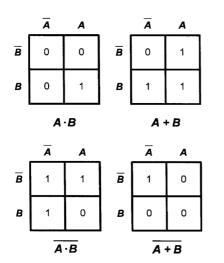

Adjacent cells within a Karnaugh map may be grouped together in rectangles of two, four, eight, etc. cells in order to simplify a complex logic expression. Taking the NAND function, for example, the two groups of two adjacent cells

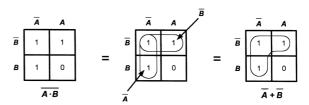
Figure A8.24 Alternative representations for a Karnaugh map showing two variables

Figure A8.25 Karnaugh map for two variables showing the Boolean logic expression for each cell

Figure A8.26 Karnaugh maps for the basic logic functions

in the Karnaugh map correspond to \overline{A} or \overline{B} , as shown in Fig. A8.27. We thus conclude that:

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$


Once again note how the overscore character is used to indicate the inverting function.

This important relationship is known as *De Morgan's theorem*.

Karnaugh maps can be drawn showing two, three, four or even more variables. The Karnaugh map shown in Fig. A8.28 is for three variables – note that there are eight cells and that each cell corresponds to one of the eight possible combinations of the three variables; *A, B* and *C*.

The technique of grouping cells together is an extremely powerful one. On a Karnaugh map showing three variables, if two adjacent cells both contain 1s they can be grouped together to produce an expression containing just two variables. Similarly, if four adjacent cells can be grouped together, they reduce to an expression containing only one variable.

It is also important to note that the map is a continuous surface which links edge to edge. This allows cells at opposite extremes of a row or column to be linked together. The four corner cells of a four (or more) variable map may likewise be grouped together (provided they all contain 1s).

Figure A8.27 Grouping adjacent cells together to prove De Morgan's theorem

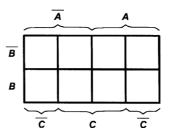
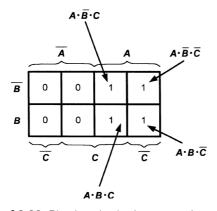


Figure A8.28 Karnaugh maps for three variables

As an example, consider the following Boolean function:

$$(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot \overline{C})$$


Fig. A8.29 shows how this function is plotted on the Karnaugh map.

As before, we have placed a 1 in each cell. Then we can begin to link together adjacent cells – notice how we have reduced the diagram to a group of four cells equivalent to the logic variable, *A*. In other words, the value of variables *B* and *C*, whether 0 or 1, will have no effect on the logic function. From Fig. A8.30 we can conclude that:

$$(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot \overline{C}) = A$$

Boolean algebra

The laws of Boolean algebra are quite different from those of ordinary algebra. For example:

Figure A8.29 Plotting the logic expression on a Karnaugh map

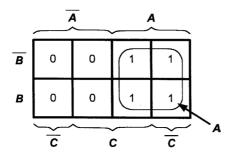


Figure A8.30 Grouping adjacent 1 cells together

$$A \cdot 0 = 0$$

$$A \cdot 1 = A$$

$$A + 0 = A$$

$$A + 1 = 1$$

The **Commutative Law** shows us that:

$$A + B = B + A$$

and also that:

$$A \cdot B = B \cdot A$$

The **Associative Law** shows us that:

$$A + (B + C) = (A + B) + C = A + B + C$$

and also that:

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$$

The **Distributive Law** shows us that:

$$A \cdot (B + C) = A \cdot B + B \cdot C$$

and also that:

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

All of the above laws can be proved using the various techniques that we met earlier.

Boolean simplification

Using the laws of Boolean algebra and De Morgan's theorem, $\overline{A \cdot B} = \overline{A} + \overline{B}$ (see earlier), we can reduce complex logical expressions in order to minimize the number of variables and the number of terms. For example, the expression that we met earlier can be simplified as follows:

$$(A \cdot B \cdot C) + (A \cdot B \cdot \overline{C}) + (A \cdot \overline{B} \cdot C) + (A \cdot \overline{B} \cdot \overline{C})$$
$$= (A \cdot B) + (A \cdot \overline{B}) = A$$

Here we have eliminated the variable C from the first and second pair of terms and then eliminated B from the result. You might like to compare this with the Karnaugh map that we drew earlier in Fig. A8.30!

Example 15

Part of the control logic for an intruder alarm is shown in Fig. A8.31. Determine the logic required to select the Y4 output and verify that the Y3 output is permanently selected and unaffected by the states of S1 and S2.

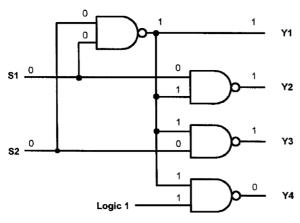


Figure A8.31 See Example 15

S1	S2	Y1	Y2	Y3	Y4	Logic states
0	0	1	1	1	0	corresponding to
0	1	1	1	1	0	in Fig. A8.31
1	0	1	0	1	0	
1	1	0	1	1	1	

Figure A8.32 Truth table for Example 15

Each logic gate shown in Fig. A8.31 is a two-input NAND gate. We can construct the truth table for the control circuit (see Fig. A8.32) by placing all four possible combinations of 0 and 1 on the S1 and S2 inputs and tracing the logic states through the circuit. We have shown the first stage of this process (the logic conditions that produce the first line of the truth table) in Fig. A8.32.

From Fig. A8.32 it can be seen that the Y4 output corresponds to the AND logic function:

$$Y4 = S1 \cdot S2$$

You can also see from Fig. A8.32 that the Y3 output remains at logic 1 regardless of the states of S1 and S2.

Logarithms

Many of the numbers that we have to deal with in electronics are extremely large while others can be extremely small. The problem of coping with a wide range of numbers is greatly simplified by using logarithms. Because of this, we frequently employ logarithmic scales, **Bels** (B) and **decibels** (dB), when comparing values. Note that a decibel (dB) is simply one-tenth of a Bel (B). Hence:

$$10 dB = 1 B$$

It is important to note that the Bel is derived from the logarithm of a ratio – it's *not* a unit like the volt (V) or ampere (A).

The logarithm (to the base 10) of a number is defined as the power that 10 must be raised to in order to equal that number. This may sound difficult but it isn't, as a few examples will show:

Because $10 = 10^{1}$, the logarithm (to the base 10) of 10 is 1.

Because $100 = 10^2$, the logarithm (to the base 10) of 100 is 2.

Because $1,000 = 10^3$, the logarithm (to the base 10) of 1,000 is 3, and so on.

Writing this as a formula we can say that:

If $x = 10^n$, the logarithm (to the base 10) of x is n.

You might like to check that this works using the examples that we just looked at!

You may be wondering why we keep writing 'to the base 10'. Logarithms can be to any base but 10 just happens to be the most obvious and useful.

Logarithmic notation

The notation that we use with logarithms is quite straightforward:

If
$$x = 10^n$$
 we say that $\log_{10}(x) = n$.

The subscript that appears after the 'log' reminds us that we are using base 10 rather than any other (unspecified) number. Re-writing what we said earlier using our logarithmic notation gives:

$$\log_{10}(10) = \log_{10}(10^{1}) = \mathbf{1}$$

$$\log_{10}(100) = \log_{10}(10^{2}) = \mathbf{2}$$

$$\log_{10}(1,000) = \log_{10}(10^{3}) = \mathbf{3}$$

and so on.

So far we have used values (10, 100 and 1,000) in our examples that just happen to be exact powers of 10. So how do we cope with a number that isn't an exact power of 10? If you have a scientific calculator this is quite easy! Simply enter the number and press the 'log' button to find its logarithm (the instructions provided with your calculator will tell you how to do this).

You might like to practice with a few values, for example:

 $\log_{10}(56) = 1.748$ $\log_{10}(1.35) = 0.1303$ $\log_{10}(4,028) = 3.605$ $\log_{10}(195,891) = 5.292$ $\log_{10}(0.3175) = -0.4983$

Finally, there's another advantage of using logarithmic units (i.e. Bels and decibels) in electronics. If two values are multiplied together the result is equivalent to adding their values expressed in logarithmic units.

To put all of this into context, let's assume that the following items are connected in the signal path of an amplifier (see Fig. A8.33):

Pre-amplifier; input power = 1 mW, output power = 80 mW

Tone control; input power = 80 mW, output power = 20 mW

Power amplifier; input power = 20 mW, output power = 4 W

The power gain of each component, expressed as both a ratio and in dB, is shown in the table below:

Component	Input power	Output power	Power gain (expressed as a ratio)	Power gain (expressed in decibels)
Pre-amplifier	1 mW	80 mW	80	19
Tone control	80 mW	20 mW	0.25	-6
Power amplifier	20 mW	4 W	200	23

The overall power gain can be calculated from the following:

Overall power gain (expressed as a ratio)

$$= \frac{\text{output power}}{\text{input power}} = \frac{4W}{1 \text{ mW}} = 4,000$$

Converting this gain to decibels gives:

$$10 \log_{10} (4,000) = 36 dB$$

Adding the power gains from the right-hand column gives: 19 - 6 + 23 = 36 dB

Example 16

An amplifier has a power gain of 27,000. Express this in Bels (B) and decibels (dB).

In Bels, power gain = $\log_{10}(27,000) = 4.431$ B In decibels, power gain

=
$$10 \times \log_{10}(27,000) = 10 \times 4.431 = 44.31 dB$$

Example 17

An amplifier has a power gain of 33 dB. What input power will be required to produce an output power of 11 W?

Now power gain expressed in decibels will be given by:

$$10\log_{10}\left(\frac{P_{\text{out}}}{P_{\text{in}}}\right)$$

Thus
$$33 = 10 \log_{10} \left(\frac{11 \text{ W}}{P_{\text{in}}} \right)$$

Dividing both sides by 10 gives:

$$3.3 = \log_{10} \left(\frac{11 \text{ W}}{P_{\text{in}}} \right)$$

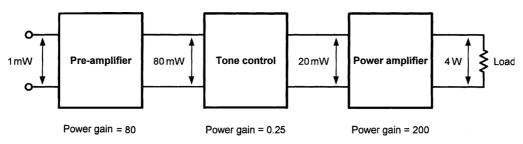


Figure A8.33 Amplifier system showing power gains and losses

Taking the antilog of both sides gives:

antilog(3.3) =
$$\frac{11 \text{ W}}{P_{\text{in}}}$$

1,995 =
$$\frac{11 \text{ W}}{P_{\text{in}}}$$

from which:

$$P_{in} = \frac{11 \text{ W}}{1.995} = 5.5 \text{ mW}$$

Note that the **antilog** or 'inverse log' function can be found using your calculator. This sometimes appears as a button marked '10x' or is obtained by pressing 'shift' (to enable the inverse function) and then 'log'. In any event, you should refer to your calculator's instruction book for more information on the keystrokes required!

Exponential growth and decay

In electronics we are often concerned with how quantities grow and decay in response to a sudden change. In such cases the laws that apply are the same as those that govern any natural system. The formula that relates to **exponential growth** takes the form:

$$y = Y_{\text{max}} \left(1 - e^x \right)$$

while that which relates to *exponential decay* takes the form:

$$y = Y_{\text{max}} e^{-x}$$

In the case of exponential growth, the value Y_{\max} is simply the maximum value for y. In other words, it is approximately the value that y will reach after a very long time (note that, even though y gets very close in value to it, Y_{\max} is never quite reached).

In the case of exponential decay, the value $Y_{\rm max}$ is the initial value of y. In other words, it is the value of y before the decay starts. After a very long period of time, the value of y will reach approximately zero (note that, even though y gets very close in value to zero, it is never quite reached).

Fig. A8.34 shows a graph showing exponential growth while Fig. A8.35 shows a graph showing

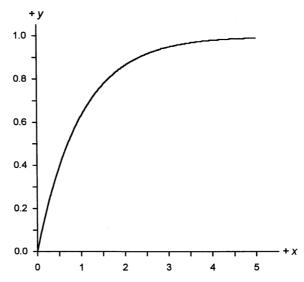


Figure A8.34 An exponential growth curve

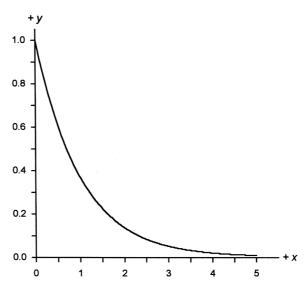


Figure A8.35 An exponential decay curve

exponential decay. In both cases Y_{\max} has been set to 1.

The name given to the constant, e, is the **exponential constant** and it has a value of approximately 2.713. The value of the constant is normally accessible from your calculator (in the same way that the value of π is stored as a constant in your calculator).

Finally, let's take a look at a practical example of the exponential function involving the discharge of a capacitor.

Example 18

A capacitor is charged to a potential of 100 V. It is then disconnected from its charging source and left to discharge through a resistor. If it takes 10 s for the voltage to fall to 50 V, how long will it take to fall to 10 V?

Here we are dealing with exponential decay. If we use y to represent the capacitor voltage at any instant, and since the initial voltage is 100 V, we can determine the value of x (i.e. x_1) when the voltage reaches 50 V by substituting into the formula:

$$y = Y_{\text{max}} e^{-x}$$

hence:

$$50 = 100e^{-x_1}$$

from which:

$$e^{-x_1} = \frac{50}{100} = 0.5$$

taking logs (to the base e this time) of both sides:

$$\log_e\left(e^{-x_1}\right) = \log_e\left(0.5\right)$$

thus:

$$-X_1 = -0.693$$

hence:

$$X_1 = 0.693$$

We can use a similar process to find the value of x (i.e. x_2) that corresponds to a capacitor voltage of 10 V:

$$y = Y_{\text{max}} e^{-x}$$

hence:

$$10 = 100e^{-x_2}$$

from which:

$$e^{-x_2} = \frac{10}{100} = 0.1$$

taking logs (again to the base e) of both sides:

$$\log_e\left(e^{-x_2}\right) = \log_e\left(0.1\right)$$

thus:

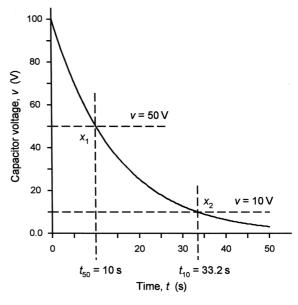
$$-x_2 = -2.3$$

hence:

$$x_2 = 2.3$$

We can now apply direct proportionality to determine the time taken for the voltage to reach 10 V. In other words:

$$\frac{t_{50}}{X_1} = \frac{t_{10}}{X_2}$$


from which:

$$t_{10} = t_{50} \times \frac{X_2}{X_1}$$

thus:

$$t_{10} = 10 \times \frac{2.3}{0.693} = 33.2 \text{ s}$$

Fig. A8.36 illustrates this relationship.

Figure A8.36 Capacitor voltage during discharge – see Example 18

Useful web addresses

Author's website and additional resources to support this book

key2electronics www.key2electronics.com

Semiconductor manufacturers

Analog Devices	www.analog.com
Fujitsu	www.fujitsu.com
Harris Semiconductor	www.harris.com
Holtek Semiconductor	www.holtek.com
Intel	www.intel.com
Infineon (International Rectifier)	www.infineon.com
Linear Technology	www.linear.com
Maxim	www.maximintegrated.com
Microchip Technology	www.microchip.com
National Semiconductor	See Texas Instruments
NXP	www.nxp.com
Philips	See NXP
Samsung	www.samsung.com
Seiko	www.sii-ic.com
SGS-Thomson	www.st.com
Siemens	www.siemens.de
Sony	www.sony.com
Teridian Semiconductor	See Maxim
Texas Instruments	www.ti.com
Zilog	www.zilog.com

Electronic component suppliers

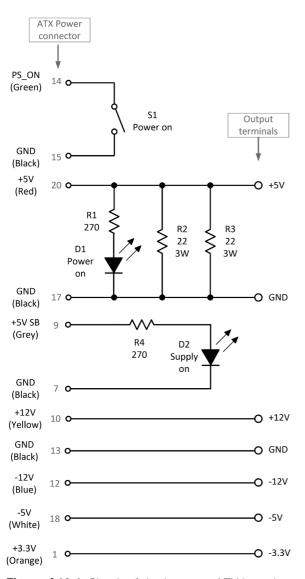
Cricklewood Electronics	www.cricklewoodelectronics.com
Element14	www.element14.com
ESR Electronic Components	www.esr.co.uk
Farnell Electronic Components	www.farnell.co.uk
Greenweld	www.greenweld.co.uk
Jaycar Electronics	www.jaycarelectronics.com.au
Magenta	www.magenta2000.co.uk
Maplin Electronics	www.maplin.co.uk
Quasar Electronics	www.quasarelectronics.com
Rapid Electronics	www.rapidonline.co.uk
RS Components	www.rswww.com

Magazines

Practical Electronics (PE)	www.epemag3.com
Make	www.makezine.com
Elektor	www.elektormagazine.com

Clubs and societies

American Radio Relay league	www.arrl.org
British Amateur Electronics Club	http://members.tripod.com/baec
Radio Society of Great Britain	www.rsgb.org.uk


Miscellaneous

5Spice Analysis	www.5spice.com
AB Electronics	www.abelectronics.co.uk
CadSoft Online (Eagle)	www.cadsoftusa.com
DesignSoft	www.tina.com
Multisim	www.multisim.com
Labcenter Electronics	www.labcenter.com
Matrix Multimedia (E-blocks)	www.matrixtsl.com
Microchip Technology (MPLab IDE)	www.microchip.com
EasyPIC	www.mikroe.com
Oshonsoft (Z80 and PIC simulators)	www.oshonsoft.com
Peak (Instruments and analysers)	www.peakelec.co.uk
Pico Technology (Picoscope)	www.picotech.com
PoLabs (PoScope and PoKeys)	www.poscope.com
Soundcard Scope	www.zeitnitz.de/christian/de_en
Tina Design Suite	www.tina.com
Electronic Design	www.electronicdesign.com
WinSpice	www.winspice.com
Virtins (PC-based oscilloscopes)	www.virtins.com

A low-cost bench power supply

Appendix 10 A low-cost bench power supply

A surplus ATX computer power supply can provide the basis of an excellent low-cost fixed-voltage bench power unit. Such a unit can be removed from a scrapped PC and will only require a few external components and a suitable enclosure in order to operate as a versatile stand-alone power supply (see Fig. A10.1). The standard wiring of the 20-way ATX power connector is shown in Fig. A10.2 and the maximum output current rating for a 250 W ATX power supply is shown in Table A10.1

Figure A10.1 Circuit of the low-cost ATX-based bench power supply

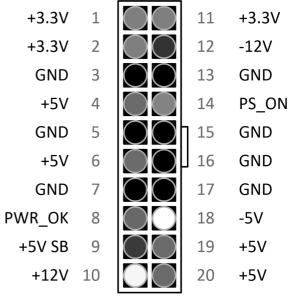


Figure A10.2 The ATX power connector

Figure A10.3 The author's ATX-based power unit makes a handy bench supply

Appendix 10 A low-cost bench power supply

Table A10.1 Current rating for a typical 250 W ATX power supply

Voltage supply	Wiring colour	ATX 20-way connector pin number(s)	Typical current rating
+12 V	Yellow	10	10A
+5 V	Red	4, 6, 19, 20	25A
-12 V	Blue	12	0.5A
+3.3 V	Orange	1, 2, 11	13A
-5 V	White	18	0.3A
+5 V SB	Dark grey	9	2A
GND	Black	3, 5, 7, 13, 15, 16, 17	n/a

AA battery 132 AAA battery 132 Absolute permittivity 11, 14

A.c. (alternating current) 72; analysis 308; coupled amplifier 139, 140; measurement 243, 248

Acceptor circuit 79
Accumulator 213, 217

Accuracy 265 Active sensor 292

ADC (analogue-to-digital converter) 110, 221, 329, 350, 351, 355

Address bus 210, 213, 215; buffer 214 Air cored: inductor 42; transformer 81, 83

Algorithm 307

Alkaline battery 132, 134 ALU (arithmetic logic unit) 212, 213, 215, 215, 217

Ammeter 239 Ampere 4

Amplifier 139, 146, 155, 156, 173; types 140

Amplitude 73

Analogue: multi-meter 243, 244, 246; sensor 292;

-to-digital converter (ADC) see ADC

Analogy 292

AND 486, 487; gate 195; logic 193, 194

Angles 3

Angular: measurement 3; position sensor 293

Anode 91, 92 Apparent power 77

Arduino 371, 372; family 372; simulation 383, 386;

simulator 387; Uno 329, 372, 375, 437

Arithmetic logic unit see ALU

Assembly: code 219, 223; language 225

Associative Law 489

Astable: multivibrator 183; oscillator 184, 185, 303;

pulse generator 231

Atom 6

Audible transducer 293

Audio: transformer 81; frequency amplifier 140

Auto ranging 243, 264, 266

Avalanche diode 94 Average value 73, 74

B2 Spice 308, 314 Back e.m.f. 40

Balanced condition 56

Band-gap voltage reference 129 Bandwidth 79, 80, 144, 168, 170, 265

Base 99; -emitter voltage 277

Battery 130, 133, 132; backed memory 212; capacity 130; characteristics 131, 134; charging 135;

efficiency 130; types 131, 134

Bel 490

B-H curves 15 Bias 152; point 141

Bidirectional 72; buffer 214 Binary 210, 211; logic 193 Bi-phase rectifier 121, 122

Bipolar junction transistor (BJT) see BJT

Bistable 197; multivibrator 183

BJT (bipolar junction transistor) 99, 109, 148

Boolean algebra 486, 489

Boost SMPS 128 Breadboard 401, 403 Breakdown voltage 91

Bridge 56, 57; rectifier 123, 124, 127

BS 1852 27 Buck SMPS 128 Buffer 195 Bus 210, 213 Byte 211, 213

C cell battery 132 CAD 410, 411

Cadmium: selenide 31; sulphide 31

CAL 254 Conductance 4 Calibrator 55 Conductivity 8 Capacitance 4, 34, 35; measurement 252 Conductor 6 Constant current characteristic 106 Capacitive: loads 346; proximity sensor 294; Constants 471 reactance 74 Control: bus 210, 213; system 291; unit 214, 215 Capacitors 32: colour code 37; in parallel 38; in series 38; markings 37; types 36 Conventional flow 6 Carbon film resistor 24 Cosine 483 CARRY 215, 317 Coulomb 4 Cathode 91, 92; ray tube 254 Coupling 157 Centi 5 CPU (central processing unit) 210, 212, 216; clock Central processing unit (CPU) see CPU 216 Ceramic: capacitors 36; coated wire-wound resistor C-R circuit 60: networks 64 Cross-over distortion 260, 313 Changeover switch 296 Crystal controlled oscillator Channel 105 Current 4, 7; divider 55; gain 101, 150; measurement Charge 4, 10, 33, 34, 60 243, 248 Cut-off 105, 152; frequency 143 Choke 78 Circuit: diagram 16; simulation 306 Class: A 141, 143, 152; AB 142; B 142, 143; C 142, D cell battery 132 143 D.c. (direct current) 51; analysis 307; coupled Classes of operation 141, 143 amplifier 139, 140; level 72; measurement 243, CLEAR 198 248; power supply 118 Clipped signal 142 DAC (digital-to-analogue converter) 110, 221, 222, 363, 366 Clipping 260 **CLOCK 198** Damped oscillation 260 Clock 215, 216; waveform 216 Darlington transistor 109 Closed loop 145; voltage gain 167 Data 211, 383; bus 210, 213; bus buffer 214; latch CMOS (complementary metal-oxide semiconductor) 320; logging 360, 362; representation 210; storage 212; types 212 201, 202, 202, 203 Coding 317 Debounce circuit 297, 298 Coil 40 Decibel 167, 467, 468, 469, 490 Cold junction 299 Degree 484 Collector 99 Demand 291 Colour code 25, 37 Denary 211 Combinational logic 196 Depletion region 91 Common: base 147, 148; collector 146, 147, 148; De-rating 422 drain 146, 147, 148; emitter 101, 147, 148, 150, 156; Derived units 2 gate 146, 147, 148; rail 165; 146, 147, 148; source Design specification 428 106 De-soldering 416; pump 419; tool 420 Commutative Law 489 Destination register 213 Comparator 174, 175, 291 Diac 97 Compilation 317 Dielectric 12; constant 11; strength 11, 12 Compiler 321 Differential amplifier 172 Complementary: metal-oxide semiconductor (CMOS) Differentiating circuit 64 see CMOS; output stage 158 Differentiator 174 Digital: logic 193; meter 242; multi-meter 247, 249, Complex waveform 72 Component: models 312; removal/replacement 418 253; sensor 292; storage oscilloscope

Conception 317

Digital-to-analogue converter (DAC) see DAC

DIL (dual-in-line) 110: switch 296 Error signal 291 Diode 91; characteristic 92; checker 284; coding 98; ESD (electrostatic discharge) 416 test circuit 93; testing 280, 281; types 94 E-series 23, 24, 95 Direct: coupling 157; current (D.C.) see D.C. ETS (equivalent time sampling) 267 Discharge 62 Exclusive-OR 196, 486 Distortion 260; analysis 310 Exponent 5, 473 Distributed system 327 Exponential: constant 492; decay 60, 62, 65, 492; Distributive Law 489 growth 60, 65, 492 Doping 91 Double-pole double throw (DPDT) switch 17 Farad 4 DPDT switch see double-pole double-throw switch Fast Fourier transformation Drain 105 Fault finding 275, 276, 277 Driver 302 Feedback 145, 176, 180 Ferrite cored: inductor 42, transformer 81 Driver transistor 99 DSO 262, 263, 264 FET (field effect transistor) 99, 105; characteristic D-type bistable 198, 320 105, 106; parameters 106; test circuit 106 Dual-in-line 110 Fetch-execute cycle 217 FFT 264 Duty cycle 129 Field: effect transistor see FET; (electric) 10; Dynamic microphone 292 (magnetic) 12; programmable gate array (FPGA) see **FPGA** E.m.f. 6 Eagle CAD 411 Five times rule 265 EasyPIC 338 Flag register 215, 217, 217, 218 E-blocks 334, 338 Flash memory 329 EEPROM (electrically erasable/programmable read-Flatpack 110 only memory) 328 Float switch 294, 295 Effective value 73 Flow: chart 219, 276; sensor 293, 295 Electric: circuit 14, 15; field strength 10; fields 10; Flowcode 333, 339 shock xi Flux 414; density 13 Electrically erasable/programmable read-only Force between: charges 10; conductors12 memory (EEPROM) see EEPROM Forward: bias 92; current gain 101; direction 91; threshold voltage 92; transfer conductance 106 Electrolytic capacitors 36 FPGA (field programmable gate array) 262 Electromagnetic vibration sensor 294 Electromagnetism 11 Free electron 89 Free space 10 Electromotive force 6 Electron 6, 89 Frequency 4, 72 Electronic solder 413 Frequency response 143, 144, 260; checking 260 Electrostatic 10; damage 416; discharge see ESD Full-power bandwidth 168 Embedded microcontroller 327 Full: -scale deflection 242; -wave control 97; -wave Emitter 99; follower 146, 156 rectifier 121 Fume extraction 415 Enclosure 412, 430 End-to-end method 277 Fundamental 144; mode 186; units 2 Energy 4, 9; content 130; storage 34, 41 Gain 140, 170 Entity 316 Environmental monitor 395 Gas sensor 295 EPROM 328 Gate 105, 195, 201; trigger 97 General purpose: input/output (GPIO) see GPIO; Equations 474

register 214; solder 414

Germanium 99; diode 92

Equipment wire 402

Equivalent: circuit 55, 57, 58; time sampling see ETS

Giga 5 Internal: architecture 213; data bus 214; gain 146; GPIO (general purpose input/output) 343, 345, 346, resistance 125, 131 348; library 347 Interrupt 219 Graphs 477, 482 Inverse sine function 484 Graticule 254 Inverter 195 Inverting: amplifier 170, 172; input 165 Group board 401 I/O (input/output) 210, 216, 217, 345 Half-: adder 317, 322; power frequency 80; split Iron cored: inductor 42; transformer 81, 82 method 277; wave: control 97; rectifier 118, 119, 120 **IRQ 215** Hardware description language Harmonic 144 JFET parameters 106 Harvard architecture 328 J-K bistable 198, 199, 200 HDL 315: simulator 321 Joule 4 Heat dissipator 423 Joystick 296 Heating element 292 Junction: diode 92; gate FET 105; temperature 423 Heatsink 420, 422, 423, 424, 426, 427 Karnaugh maps 487, 488 Helium 6 Hertz 4 Kilo 5 Hex code 331, 332 Kirchhoff's: Current Law 52; Voltage Law 52 Hexadecimal 211 Ladder network oscillator High: state 210; time 261; -Q 80 Hole 89 LAN 210 Hot junction 299 Large-signal: amplifier 139, 140; current gain 101 Hybrid parameter 101, 148, 151 Large-scale: integration (LSI) see LSI; logic systems 315 12C 363, 365, 366, 367 Lattice 6 IDE (integrated development environment) 331, 332, L-C: circuits 78; coupling 157 335, 378 L-C-R circuits 79 LDR (light dependent resistor) 31, 293, 299 Impedance 77; triangle 77 Impurity element 89, Lead acid battery 133 Index register 217 Leakage: current 91; flux 14 Induced e.m.f. 40 Least significant bit (LSB) see LSB Inductance 40, 41 LED (light emitting diode) 97, 98, 300, 301 Inductive proximity sensor 294; reactance 76 Light: dependent resistor (LDR) see LDR; emitting diode (LED) see LED; level detector 299, 300; Inductor 39: markings 42; specifications 42 Input: characteristic 100; devices 220; impedance sensor 295 143; offset voltage 168; resistance 143, 148, 149, Linear: position sensor 293, 295; power supply 127; 167: transducer 292 variable differential transducer (LVDT) see LVDT Input/output (I/O) see I/O Linearity 141 Instruction: decoder 215; register 213 Linux 344 Liquid level sensor 294 Instrumentation system 291 Insulated gate FET 105 Lithium: polymer battery 133; -ion battery 133 Insulator 6 Load 23, 301: cell 294; line 154; test 431 Integrated: circuit 109, 201, 279; development Loading 54, 241 environment (IDE) see IDE Logarithmic scale 143 Integrating circuit 64 Logarithm 490 Logic 193; circuit faults 283; family 203; gate 195, Integrator 174 Interface 221 201, 205; level 202, 345; probe 284, 286, 288; Interference 260 pulser 285; simulation 313

Loop 13; gain 146 Loss resistance 39 Loudspeaker 292

Low: -noise amplifier 140; state 210; time 261

Low-Q 80 L-R circuits 65 LR03 battery 132 LR14 battery 132 LR6 battery 132

LSB (least significant bit) 213 LSI (large-scale integrated) 110, 315

LVDT (linear variable differential transducer) 293

M1 cycle 216, 217 M2 cycle 217 Machine cycle 213 Magnet 14

Magnetic: circuit 13, 14, 15; field 12; flux 4

Mains-connected load 303

Majority vote 196 Mantissa 473

Mark-to-space ratio 129 Maskable interrupt 219 Master 351, 365

Matrix board 401, 402, 403

Maximum reverse repetitive voltage

Measurement: accuracy 266; resolution 266

Medium-Q 80 Mega 5

Memory card 343, 392

Mesh 52

Metal: clad resistor 24; film resistor 24; oxide

resistor 24 Meter 239

Mica capacitors 36

Micro 5

Microcomputer 209

Microcontroller 209, 219, 220

Microphone 292

Microprocessor 208, 209, 210, 212, 215

Microswitch 294 Mid-band 143, 145

Milli 5

Monostable 183

MOSFET 109; driver 302, 303 Most significant bit (MSB) see MSB

Motor 302; driver 303 Moving coil meter 239

MPLAB 335

MSB (most significant bit) 213

Multi-meter 240 Multiples 4

Multiplier 127, 239

Multi: -range meter 240; -stage amplifier 157, 176

Multisim 308

Multi

Multivibrator 183

Mutual characteristic 105

NAND 196, 487

Nano 5

NC (normally closed) switch 296

N-channel 109

Negative: feedback 145, 176, 291; temperature coefficient (NTC) see NTC; -going edge 261

Netlist 307, 310, 311, 312

Nibble 211

Nickel-metal hydride (Ni-MH) battery 132

NMI 215 NO switch 296 Node 52, 283, 309

Noise 260; analysis 311; margin 202 Non-inverting: amplifier 172; input 165

Non-linear power supply 128

Non-linearity 260

Non-maskable interrupt 219

NOR 196, 487

Normally: closed switch 296; open switch 296

Norton's Theorem 58

NOT 486

Notation 5, 471, 486

NPN junction transistor 99, 109, 277, 282

NTC 29, 30

N-type, 91, 92, 99, 105

Nucleus 89

Nyquist criterion 265

Offset 168 Ohm 4

Ohmmeter 240 Ohm's Law 7 Ohm-per-volt 242

Open-collector buffer 303, 304

Operating: point 154, 155; system 344

Operational amplifier 165

Optical: isolator 390; sensor 294, 295

OR 194, 195, 486, 487

Oscillation 181

Oscillator 179, 181, 182, 184
Oscilloscope 253, 255, 261, 262; adjustments 256, 263; probe 269
Oshonsoft PIC simulator 336
Output: characteristic 100, 105; devices 221; impedance 143; level measurement 246; resistance 125, 168; sink current 345; source current 345;

stage 157, 158; transducer 292 Over-driven amplifier 141

Overtone 186

P.d. (potential difference) 6

P.r.f. (pulse repetition frequency) 261

Parallel: connection 27, 38, 43; inductors 43; resistors 27; resonant circuit 78; -to-serial data conversion 218

Particles 6

Passive components 22; sensor 292

PCB (printed circuit board) 44, 45, 404, 405, 406, 407, 408, 411, 421; bench magnifier 419; header 414;

holder 419 P-channel 109

Peak: inverse voltage (PIV) see PIV; value 73, 74; -to-

peak value 73
Pentavalent , 91
Period 73, 261
Periodic time 73
Permanent magnet 14

Permeability of free space Permittivity 11; of free space 10

Phase shift 145 Phasor diagram 75, 76

Photocell 293 Photodiode 293 Photoresistor 293 Phototransistor 293

PIC 209, 327; architecture 328; families 328, 329; programming 331, 335; simulator 336, 340

Pico 5

Piezo: transducer 303; -resistive sensor 294

PIV (peak inverse voltage) 93, 94

PLC (programmable logic controller) 209, 210

PLD (programmed logic device) 209 PNP junction transistor 99, 109, 277, 282

Point-to-point wiring 401, 403 Pole-zero analysis 309 Polyester capacitors 36 Polystyrene capacitors 36 Position sensor 293 Positive: -going edge 261; feedback 145, 176, 180; temperature coefficient (PTC) see PTC

Pot cored inductor 42

Potential 4

Potential difference (p.d.) see p.d.

Potential divider 54 Potentiometer 32, 292

Power 4, 9: amplifier 157; factor 77; ratings 23; supply 126, 430, 432; transformer 81; transistor 99

Powers of ten 5 PP3 battery 132 Preferred values 23 PRESET 198

Pre-set resistors 32 Pressure sensor 294

Primary 81; cell 130; voltage 82; winding 82

Printed circuit board (PCB) see PCB

Program counter 214, 217

Programmable logic controller (PLC) see PLC Programmed logic 209; device (PLD) see PLD

Proportionality 472

Proton 6

Proximity sensor 294

PTC (positive temperature coefficient) 29, 30, 31

P-type, 91, 92, 99, 105 Pull-up resistor 231, 296

Pulse: generator 229, 231, 234; measurement 260; parameters 260; repetition frequency (p.r.f.) see p.r.f.; waveform 72; width modulation see PWM

Push-: button switch 296; pull amplifier 143 PWM (pulse with modulation) 129, 328, 372

Python 347, 368, 369

Q-factor 79, 80 QIL 110

Quad-in-line 110 Quadrant 481 Quality factor 79

Quantity of electricity 34
Quartz crystal 186
Quiescent point 155

R.m.s. value 73, 74 R20 battery 132 Radian 3, 484 Radio solder 413

RAM (random access memory) 210, 212, 216 Random access memory (RAM) *see* RAM

Raspberry Pi 342, 343, 344

R-C coupling 157 Secondary 81; cell 130; voltage 82; winding 82 Reactance 74 Semiconductor 88, 91; strain gauge 294; **READ 214** temperature sensor 294 Read: -only memory (ROM) see ROM 210; operation Sensitivity 242; analysis 310 214, 216 Sensor 292 Read/write memory 210 Serial peripheral interface (SPI) see SPI Reciprocals 471 Serial-to-parallel data conversion 218 Rectifier 118, 121; diode 94 Series: connection 27, 38, 43; inductors 43; loss Reduced instruction set computer (RISC) see RISC resistance 40; pass transistor 126; resistors Reed switch 294 27; resonant circuit 78; resonant frequency 78; Register 212, 213, 214, 217 transistor regulator 126 Regulated d.c. 118 Service link 252 Shift register 218, 313, 314 Regulation 82, 125 Regulator 95 Shock xi Shunt 239; resistor 55 Rejector circuit 79, 80 Relative: conductivity 8; permeability 14; permittivity Siemen 4 Signal 72; diode 94 11, 12, 35 Silicon 99; controlled rectifier 95; diode 92 Relay 388, 389, 390, 391; driver 302 Reluctance 13, 14 Silver bearing solder 414 Repetitive sampling 267 Simulation 306, 318 Reservoir capacitor 118 Sine 483; function 485 RESET 214 Single-chip microcontroller Resistance 4, 7, 8; measurement 246, 248 Sink 228; current 345 SLA (sealed lead acid battery) 133 Resistive strain gauge 294 Slave 351, 365 Resistivity 8 Resistor: colour code 25, 26; types 24 Slew rate 168 Resistors 23, 24; in parallel 27; in series 27; types Small-signal: amplifier 139, 140; analysis 308, 310 24 SMC (surface mounted component) 44 SMD (surface mounted device) 421 Resolution 242, 265 Resonance 79 Smoothed d.c. 118 Resonant: frequency 79; transformer 83 Smoothing 119 Reverse: breakdown voltage 91; direction 91; bias SMPS (switched mode power supply) 128 92 SMT (surface mounting technology) 44, 402 Rework tool 420 Snubber network 304 Ringing 260 Solder 413, 414 Ripple 120; filter 121 Soldering 413, 416, 419; iron 415, 417 RISC (reduced instruction set computer) 328 Solenoid 13 ROM (read-only memory) 210, 212, 216 Solid-state relay see SSR Root mean square (r.m.s.) see r.m.s. Sound card oscilloscope 267, 268 Rotary potentiometer 292 Source 105, 228; current 345; follower 146, 147; Routing 318 mounting 403; register 213 R-S bistable 197 Specific resistance 8 SPI (serial peripheral interface) 350, 392 Safety 415, 416 SPICE 307, 309, 311, 313 Sampling rate 265 Square: roots 471; wave 184, 233, 260 Saturation 15, 152 SRAM (static random access memory) 262 Scientific notation 5 SSR (solid state relay) 303, 304

> Stack pointer 217 Standard form 473

SD card: 343, 392, 393, 394, 396; library 393

Sealed lead acid (SLA) battery see SLA

Static: hazard 415: random access memory see Transistor 99; amplifier 146; characteristics 100; SRAM; values 101 checker 283, 284; coding 109; current gain Status register 215 measurement 283; faults 277; mounting 426, Step-down transformer 81, 118 427; packages 108; test circuit 102; testing 282; Stepped voltage generator 368 transistor-transistor logic (TTL) see TTL; voltages 278 Step-up 81 Triac 97 Strain sensor 294 Trigger 97, 228 Stripboard 402 Trigonometric ratio 483 Sub-multiples 4 Trigonometry 483 Substrate 105 Tripler 127 **SUM 317** Tri-state 284 Summing amplifier 175 Trivalent 91 Supply rail fuse 252 True power 77 Surface mounting technology see SMT Truth table 193, 486, 487 Switch 295, 296; debounce 297; logic 193 TTL (transistor-transistor logic) 201, 202, 202, 203 Switched mode power supply see SMPS Tuned circuit 79 Switching: regulator 129; transistor 99 Turns ratio 82, 83 Turns-per-volt 83 Synthesis 318 Two's complement 212 System services 345 Type K thermocouple 299 Tachogenerator 293 **UDF 357** Tachometer 293 Tag strip 401 Unidirectional 72 Tangent 483 Uninterruptible power supply (UPS) see UPS Temperature: coefficient 8, 29; sensor 292, 294, 295, Units 2.4 298, 360, 361 Universal synchronous/asynchronous receiver/ Tera 5 transmitter (USART) see USART Tesla 4 Uno 372, 329, 375 Test: bench 321; equipment 238; point 277 UnoArduSim 387 Thermal: analysis 311; resistance 423, 424, 427 Unsmoothed d.c. 118 Thermistor 30, 294 UPS (uninterruptible power supply) 133 Thermocouple 292, 293, 294, 299 USART (universal synchronous/asynchronous Thevenin's Theorem 57 receiver/transmitter) 328 USB interface 375 Three-terminal regulator 126 Threshold 228: detection 299; voltage 91, 92 User defined function 357 Thyristor 95 Time 4 VA 81 Time constant 60, 65 Valence shell 89 Timer 227, 228 Variable: capacitance diode 95; capacitor 39; inductor Timing diagram 198, 199, 200 44; resistor 32 Tina Pro 307, 309, 310, 311, 324 Variables 471 Toroidal transformer 83 Varicap diode 95 Touch switch 298 VDR (voltage dependent resistor) 31 Transconductance 309 Venn diagram 487 Transducer 290, 291, 292 Verification 318

Very large-scale integration (VLSI) see VLSI

322; types 318

VHDL 316; design flow 317; operators 319; programs

318; signal modes 318; simulation 321; timing 321,

Transfer characteristic 101, 141

Transient analysis 309

Transimpedance 309

Transformer 81, 82; coupling 157; regulation 82

VHSIC 315	2N3819 107, 108, 454
Vibration sensor 294	2N3820 108
Virtual: instrument 307; oscilloscope 310	2N3866 104
Vitreous enamel coated wire-wound resistor 24	2N3904 104, 289, 302, 324, 461, 462, 463, 464
VLSI (very large-scale integration) 209, 315	2N4444 96
Volt 4	2N5401 357, 358, 359
Voltage 34; calibrator 55; dependent resistor	2N5457 108
(VDR) see VDR; drop 252; follower 173; gain 152;	2N5459 108
measurement 243, 248; multiplier 127; ratio 82;	2N5461 108
reference 118; regulation 125; regulator 95, 124,	2N6075 97
127; source 57; tripler 127	2110073 37
Voltage-dependent resistor	358 299, 300
Volt-amperes 81	330 233, 300
·	1001 202 455
Voltmeter 239	4001 203, 455
W 4	4011 298
Watt 4	4190 138
Waveform 72; measurement 259	FFF 007 000 000 004 00F 000 007 000 400
Wave shaping 64	555 227, 228, 229, 234, 235, 286, 287, 303, 433,
Weber 4	455; family 228
Weight sensor 294	556 455
Wheatstone bridge 56, 57	
Wideband amplifier 140	68705 209
Wien bridge oscillator 182, 311	
WRITE 214	741 169, 455
Write operation 214	74LS00 203, 4001, 455
	74LS03 303
Zener diode 94, 125	74LS05 304
ZERO 215	74LS14 297, 298
	74LS73 298
Semiconductor devices	7805 430
	7812 126
16L8 209	78S40 129
1N4001 94, 270, 126, 287, 302, 303, 436, 454	8051 209
1N4148 94, 270, 271, 159, 302, 324, 331, 454, 457,	89C51 209
458, 459	
1N5333 95	AA113 94
1N5349 126	AD548 169
1N5401 94, 288, 454	AD590 298, 299, 304
1N5450 96	AD711 169
1N914 94, 454	ATmega328 329, 372, 374
201/40, 202	DC407, 454
22V10 209	BC107 454
2N2905 324	BC108 104, 156, 159, 160, 435, 454
2N3053 104, 135, 331, 435, 454	BC141 271
2N3055 104, 435	BC142 159
2N3702 103	BC184L 454
2N3703 287	BC212L 454
2N3705 287	BC547 454

BC548 301, 303, 454 MV1404 96 BC549 454 MV2103 96 BC635 302 MV2115 96 BCM2835 344 MV5754A 301, 302 BCY70 104 NORP12 299, 300, 435 BD131 104, 138, 159, 271, 454 BD132 104, 159, 271, 454 OA47 94 BF180 104 BF244 454 OA90 454 BF244A 108 OA91 94, 454 BF245 270 ORP12 300 BFY50 151, 454 BFY51 454 PIC12C508 209 BFY52 454 PIC16C54 328 PIC16C55 328 BPX48 300 BPX48F 300 PIC16C56 328 BT109 96 PIC16C57 328 PIC16C620 209 BT139 97 PIC16C71 328 BT152 96 BTY79-400R 96 PIC16C84 328, 329, 331, 337 PIC16F84 329, 331, 332, 337, 411 BY127 94 BY253 127 PIC16F877 331 BZX61 95, 454 PIC16F877A 329, 330, 333 BZX79 126, 288 PIC17C42 328 BZX85 95, 135, 454 TIC106D 96 BZY88 95, 435, 454 TIC126D 96 CA3140 169 TIC206M 97 TIC226M 97 DHT11 395, 396, 397 TIP121 302, 303 TIP31 454 G3M 304 TIP31C 324 TIP32C 324 IRF610 302, 303 TIP41C 288 TL071 169, 455 JFET 109, 148 TL072 455 TL081 288, 304, 455 L200 429, 430 TL082 455 TMP35 360, 361 LD33V 353, 355 LF347 169 TMP36 360, 361 LM301 169 TMP37 360, 361 LM348 169 LM393 286 Z80 209, 210, 217, 222 Z80PIO 218 MCP3008 350, 351, 352, 353, 355 Z84C 209 MCP4725 363, 366 Z86E 209